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Skeletal muscle is essential to physical activity and energy metabolism. Maintaining intact
functions of skeletal muscle is crucial to health and wellbeing. Evolutionarily, skeletal
muscle has developed a remarkable capacity to maintain homeostasis and to regenerate
after injury, which indispensably relies on the resident muscle stem cells, satellite cells.
Satellite cells are largely quiescent in the homeostatic steady state. They are activated in
response to muscle injury. Activated satellite cells proliferate and differentiate into
myoblasts. Myoblasts fuse to form myotubes which further grow and differentiate into
mature myofibers. This process is tightly regulated by muscle microenvironment that
consists of multiple cellular and molecular components, including macrophages. Present
in both homeostatic and injured muscles, macrophages contain heterogeneous functional
subtypes that play diverse roles in maintaining homeostasis and promoting injury repair.
The spatial-temporal presence of different functional subtypes of macrophages and their
interactions with myogenic cells are vital to the proper regeneration of skeletal muscle after
injury. However, this well-coordinated process is often disrupted in a chronic muscle
disease, such as muscular dystrophy, leading to asynchronous activation and
differentiation of satellite cells and aberrant muscle regeneration. Understanding the
precise cellular and molecular processes regulating interactions between macrophages
and myogenic cells is critical to the development of therapeutic manipulation of
macrophages to promote injury repair. Here, we review the current knowledge of the
many roles played by macrophages in the regulation of myogenic cells in homeostatic,
regenerating, and dystrophic skeletal muscles.
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1 INTRODUCTION

Skeletal muscle injury can be acute or chronic depending on etiologies. Acute injury is commonly
caused by trauma, ischemia, freeze, or myotoxin exposure. Chronic injury is usually associated with a
disease process, such as muscular dystrophy, inflammatory myopathy, or infectious myopathy. Skeletal
muscle injury repair is a complex process, consisting of muscle inflammation, regeneration,
revascularization, and extracellular matrix (ECM) remodeling (Bentzinger et al., 2013a; Yin et al.,
2013; Dumont et al., 2015a). As a tissue that constantly encounters mechanical stretch, skeletal muscle
suffers a high rate of micro-injury in the normal steady state. To cope with this challenge, skeletal
muscle has evolutionarily developed a remarkable regenerative capacity, which involves activation,
proliferation, differentiation, and growth of myogenic cells (Bentzinger et al., 2013a; Yin et al., 2013;
Dumont et al., 2015a). Acutely injured skeletal muscle repairs well if the injury is not large or repeated.
The injury repair process, however, requires an adequate inflammatory response which is initiated by
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transient neutrophil infiltration followed shortly by massive
macrophage infiltration. Infiltrating macrophages not only
phagocytose damaged tissue debris but also produce cytokines
and growth factors to interact with myogenic, fibrogenic, and
angiogenic cells to support skeletal muscle injury repair (Tidball
and Villalta, 2010; Tidball, 2011; Muñoz-Cánoves and Serrano,
2015; Dort et al., 2019). While essential to the acute skeletal muscle
injury repair, infiltrating macrophages contribute to muscle
pathology in chronic injury associated with muscular dystrophy.
With such diverse roles, macrophages have become a central topic
of research in the field of skeletal muscle injury repair.

Macrophages are heterogeneous and multi-functional cells that
are critical to tissue functions in both steady state and disease state.
Although classically identified as innate immune cells, functioning in
the activation and resolution of tissue inflammation, it is now clear
that macrophages play important roles in a much wider range of
biological processes, such as tissue remodeling during organogenesis,
tissue homeostasis, injury repair, and immune response to
pathogens (Hashimoto et al., 2013; Wynn et al., 2013; Kierdorf
et al., 2015; Ginhoux et al., 2016; Wynn and Vannella, 2016). In the
normal steady state, resident macrophages maintain tissue
homeostasis via surveillance of local tissue environment and
response to physiological and pathological changes. In a disease
state, macrophages exert pro-inflammatory, anti-inflammatory, pro-
fibrotic, or pro-regenerative functions depending on the tissue
environment and macrophage origin. They are critically involved
in a variety of disease processes, such as chronic tissue inflammation,
tumor growth and metastasis, and tissue fibrosis (McNelis and
Olefsky, 2014; Noy and Pollard, 2014; Ginhoux et al., 2016;
Wynn and Vannella, 2016; Vannella and Wynn, 2017). Such
diverse capabilities of macrophages are rooted in their diverse
origins and high plasticity when responding to environmental
changes. In this article, we will review the multiple origins and
many roles of macrophages in skeletal muscle homeostasis,
regeneration following acute injury, and degeneration,
regeneration, and fibrosis in muscular dystrophy.

2 SKELETAL MUSCLE-RESIDENT
MACROPHAGES ARISE FROM MULTIPLE
ORIGINS AND APPEAR ACTIVE IN
MAINTAINING TISSUEHOMEOSTASIS AND
PROMOTING MUSCLE GROWTH AND
REGENERATION

Tissue macrophages consist of two classes: resident macrophages
and infiltrating macrophages. In adult mammals, while resident
macrophages are present in all tissues, infiltrating macrophages are
found in a diseased tissue, such as injured tissue. Unlike infiltrating
macrophages which are all derived from blood monocytes
originating from bone marrow hematopoietic stem cells (HSCs),
tissue-resident macrophages arise from multiple origins during
embryonic and adult hematopoiesis.

Macrophages reside in homeostatic tissues including skeletal
muscle (Wang et al., 2020). Most of the tissue-resident
macrophage populations in the steady state are established

prenatally by two embryonic progenitors: primitive yolk sac
macrophages and fetal liver monocytes (aka fetal monocytes)
(Ginhoux et al., 2010; Schulz et al., 2012; Hashimoto et al., 2013;
Ginhoux and Jung, 2014; Gomez Perdiguero et al., 2015; Hoeffel
et al., 2015; Hoeffel and Ginhoux, 2015; Mass et al., 2016; Hoeffel
and Ginhoux, 2018). Primitive yolk sac macrophages originate from
early erythro-myeloid progenitors (EMPs) which emerge in yolk sac
at embryonic day 7 (E7) in mice. They differentiate into primitive
macrophages and migrate to embryonic tissues from E9.5. Fetal
monocytes mainly arise from late EMPs that emerge in yolk sac at
E8.5. They migrate into fetal liver and differentiate into fetal
monocytes at E12.5. Fetal monocytes seed all other embryonic
tissues except for brain (Hoeffel et al., 2015). Within individual
tissues, primitive macrophages and fetal monocytes are induced by
local tissue environment to differentiate into tissue-specific resident
macrophages, expressing tissue-specific transcription factors and
displaying tissue-specific functions. They persist into adulthood
through proliferative self-renewal. Pre-hematopoietic stem cells
(HSCs) first appear at aorta-gonad-mesonephros (AGM) at E9.5
and then seed fetal liver around E10.5, where they differentiate into
mature HSCs (Hoeffel and Ginhoux, 2015). HSCs also contribute to
fetal monocytes at the later stage of embryonic development (Gomez
Perdiguero et al., 2015; Wang et al., 2020). Mature HSCs migrate
into nascent bonemarrow at the late embryonic stage and give rise to
bloodmonocytes (adultmonocytes) after birth. Adultmonocytes are
recruited by many tissues to replenish resident macrophages
(Tamoutounour et al., 2013; Bain et al., 2014; Epelman et al.,
2014; Bain et al., 2016; Scott et al., 2016), including by skeletal
muscle (Wang et al., 2020) but not the brain (Hoeffel et al., 2015).
Depending on the origin and tissue environment, resident
macrophages display high plasticity in their function and activation.

Resident macrophages in the steady-state skeletal muscle
have been identified and studied in mice (Wang et al., 2020).
CD45+F4/80+CD64+ resident macrophages are found in
interstitial tissues of skeletal muscle, expressing a low level
of Ly6C and a high level of CD163 and CD206. They arise from
both embryonic hematopoietic progenitors, including yolk sac
primitive macrophages and fetal liver monocytes, and adult
bone marrow HSCs. The transcriptome of resident
macrophages in skeletal muscle is highly distinctive from
that in other tissues. Skeletal muscle-resident macrophages
express a specific set of transcription factor genes, including
Maf,Mef2c, and Tcf4 (Wang et al., 2020). They appear active in
maintaining tissue homeostasis and promoting muscle growth
and regeneration based on their differentially expressed genes.
Functionally diverse subsets correlating to their origins are
identified within skeletal muscle-resident macrophages. While
the CCR2+MHCIIhiLyve1low macrophages are mainly derived
from adult blood monocytes and are more active antigen-
presenting cells, the CCR2-MHCIIlowLyve1hi macrophages
arise from both embryonic and adult progenitors and are
more active phagocytes. Both subsets may play roles in
maintaining skeletal muscle homeostasis. Interestingly,
skeletal muscle-resident macrophages also have muscle
type-specific features, as they express a higher level of stress
response genes in respiratory muscle than in limb muscle
(Wang et al., 2020).
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Functional study of skeletal muscle-resident macrophages is
limited. A recent study showed that in multiple tissues, including
skeletal muscle, tissue-resident macrophages can rapidly cloak
tissue microlesions through sensing damage-associated alarmins.
The cloaking prevents chemoattractant signaling-mediated
neutrophil swarms and subsequent inflammatory tissue
damage. As a result, tissue microlesions heal without
inflammation (Uderhardt et al., 2019). In the steady-state
skeletal muscle, the cloaking by resident macrophages prevents
complete death of myofibers with microlesions and maintains
their structural integrity (Uderhardt et al., 2019). The findings
support the important homeostatic function of resident
macrophages in the steady-state skeletal muscle. The
interactions between resident macrophages and myogenic cells
in the steady-state and the roles of resident macrophages in

skeletal muscle development and postnatal growth remain
largely unknown and need to be determined.

3 INFILTRATING MACROPHAGES ARE
ESSENTIAL TO SKELETAL MUSCLE
REGENERATION FOLLOWING ACUTE
INJURY

3.1 Skeletal Muscle Regenerates Well
Following Acute Injury
Skeletal muscle has an excellent regenerative capacity. Unless
caused by a repeated or a large volumetric muscle loss injury
(Dadgar et al., 2014; Corona et al., 2015), acutely injured skeletal

FIGURE 1 | (A) H&E staining illustrating the normal acute muscle injury repair process following intramuscular BaCl2 injection into mouse quadriceps muscle. Bar =
50 μm. (B) Pie chart showing percentages of macrophages (MPs), neutrophils (Neu), and other cells among CD45+ cells in BaCl2-injured quadriceps muscle at different
days post injury. (C) Line graph showing densities of intramuscular Ly6Chi and Ly6Clo macrophages in BaCl2-injured quadriceps at different days post injury. (D) Pie
charts showing percentages of Ly6Chi and Ly6Clo subpopulations among macrophages in BaCl2-injured quadriceps at different days post injury.
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muscle regenerates well. Acute skeletal muscle injury can be
caused by many etiologies, including intense exercise, trauma,
ischemia, freeze, and myotoxin exposure. To study acute skeletal
muscle injury repair, several animal models have been developed
and used, including those with acute injuries caused by
mechanical damage, intramuscular toxin or heavy metal salt
injection, muscle freeze, and muscle ischemia induced by
artery ligation. The technical merits of different injury models
are reviewed by Baghdadi and Tajbakhsh (2018). Studies with
these models have revealed a similar muscle repair process with
small differences. Figure 1A illustrates the time course of murine
skeletal muscle repair following acute injury induced by barium
chloride. Massive muscle fiber necrosis is observed at day 1 post-
injury, accompanied by inflammatory cell infiltration. The
inflammation peaks at day 3. Small, central-nucleated
myoblasts and multi-nucleated myotubes emerge around day
5. At day 7, infiltrating inflammatory cells drop significantly in
number, and necrotic fibers are largely replaced by regenerating
fibers. Extracellular matrix deposition is increased (transient
fibrosis) at this stage to provide structural support to the
injury repair. Inflammation and transient fibrosis resolve by
day 14, and muscle fibers reach the size comparable to un-
injured muscle.

3.2 Myogenic Cell Homeostasis, Activation,
and Differentiation During Skeletal Muscle
Regeneration
Regeneration of injured skeletal muscle relies on muscle-resident
stem cells, satellite cells, as depletion of satellite cells completely
abolishes skeletal muscle regeneration (Murphy et al., 2011). In
the homeostatic healthy muscle, satellite cells are quiescent and in
close association with myofibers, residing between sarcolemma of
muscle fibers and basal lamina that surrounds fibers (Mauro,
1961). Quiescent satellite cells are characterized by the expression
of paired box 7 (Pax7) (Seale et al., 2000) and forkhead box
(FOXO) transcription factors (García-Prat et al., 2020). Upon
injury, satellite cells undergo activation and differentiation to
regenerate muscle. This process is regulated by a distinct set of
transcription factors termed myogenic regulatory factors (MRFs)
which include MYOD, MYF5, MRF4 (MYF6), and myogenin
(MYOG) (Segalés et al., 2015; Hernández-Hernández et al., 2017;
Massenet et al., 2021). Myf5 and Myod1 are transcribed in
quiescent satellite cells, but the subsequent protein translation
is prevented by posttranscriptional regulation (Beauchamp et al.,
2000; Crist et al., 2012; van Velthoven et al., 2017; Yue et al.,
2020). Upon muscle injury, the injured muscle
microenvironment releases signals to activate satellite cells to
allow protein translation ofMyf5 andMyod1mRNAs (Crist et al.,
2012; Yue et al., 2020) and loss of FOXO expression (García-Prat
et al., 2020). Activated satellite cells can generate both
Pax7+MYF5+ and Pax7+MYF5− cells through apical-basal
asymmetric division, of which the Pax7+MYF5+ cells exhibit
precocious differentiation, while the Pax7+Myf5− cells
contribute to the satellite cell reservoir (Kuang et al., 2007).
Activated Pax7+MYF5+MYOD+ satellite cells, which are also
called myoblasts, expand through symmetric division.

Terminal differentiation of myoblasts, symbolled by
upregulation of MYOG and MYF6/MRF4 and loss of PAX7
and MYF5 expression, generates myocytes and ultimately
myofibers through fusion (Bentzinger et al., 2013a; Yin et al.,
2013; Dumont et al., 2015a; Hernández-Hernández et al., 2017;
Massenet et al., 2021).

The dynamic balance among quiescence, activation, and
differentiation of satellite cells is vital to the maintenance of
stem cell pool in healthy muscle and the successful regeneration
in injured muscle. It is tightly regulated during skeletal muscle
regeneration following injury (Dumont et al., 2015b). Infiltrating
macrophages contribute to the signals required for satellite cell
activation and differentiation.

3.3 Macrophages are the Predominant
Inflammatory Cells in Acutely Injured
Muscle, and They Differentiate From
Circulation-Derived Inflammatory
Monocytes
Although multiple immune cells are involved in the
inflammatory response induced by acute muscle injury,
neutrophils and macrophages are the predominant ones
(Figure 1B) (Tidball and Villalta, 2010; Tidball, 2011; Yin
et al., 2013). Neutrophils are the earliest inflammatory cells
that infiltrate injured muscle. The neutrophil infiltration starts
within 2 h post-injury, and the number peaks around 24 h post-
injury (Tidball and Villalta, 2010). Neutrophils phagocytose
damaged muscle debris and release reactive oxygen species
(ROS), protease, and inflammatory cytokines to promote
inflammation (Tidball, 2011; Wang et al., 2018). Depleting
neutrophils during acute skeletal muscle injury impairs
phagocytosis of necrotic tissue and delays regeneration
(Teixeira et al., 2003; Toumi et al., 2006). Ly6Chi monocyte/
macrophage infiltration starts shortly after the neutrophil
infiltration, and the number peaks 1–3 days after injury
(Figures 1B–D) (Arnold et al., 2007). The total number of
macrophages and the number of Ly6Clo macrophages peak at
day 3 post-injury (Figures 1B–D) (Arnold et al., 2007; Wang
et al., 2018). Inflammation resolution is complete by day 14
(Arnold et al., 2007; Wang et al., 2018).

Infiltratingmacrophages are derived from blood inflammatory
monocytes (Arnold et al., 2007; Shi and Pamer, 2011). Blood
monocytes consist of two principal subsets:
Ly6ChiCCR2+CX3CR1lo and Ly6CloCCR2−CX3CR1hi cells in
mice, distinguished by the expression of cell surface markers
Ly6C, C-C motif chemokine receptor 2 (CCR2), and CX3C
chemokine receptor 1 (CX3CR1) (Geissmann et al., 2003).
Tissue recruitment of cells from blood circulation requires the
chemokine system, with tissue cells expressing chemokine ligands
to chemoattract blood cells that express corresponding
chemokine receptors. The Ly6ChiCCR2+CX3CR1lo cells are
inflammatory monocytes, which rapidly enter tissues upon
injury or infection and differentiate into inflammatory
macrophages (Geissmann et al., 2003). It has been shown that
spleen is also a reservoir of the Ly6Chi inflammatory monocytes
which can be deployed into inflamed tissues, including skeletal
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muscle (Swirski et al., 2009; Rizzo et al., 2020). The recruitment of
Ly6Chi inflammatory monocytes by acutely injured muscle
requires CCR2 expression by monocytes and CC chemokine
ligand 2 (CCL2) expression by both muscle resident cells and
infiltrating macrophages (Sun et al., 2009; Lu et al., 2011a; Lu
et al., 2011b). CCL2 is the main ligand of CCR2. Deficiency in
CCR2 or CCL2 diminishes macrophage infiltration in several
acute skeletal muscle injury models (Arnold et al., 2007;
Contreras-Shannon et al., 2007; Sun et al., 2009; Lu et al.,
2011a; Lu et al., 2011b). The Ly6CloCCR2−CX3CR1hi cells are
patrolling monocytes, which patrol the vascular endothelial
surface and may enter tissue via CX3CR1/CX3CL1 to
contribute to tissue-resident macrophages (Auffray et al.,
2007). It has been shown that Ly6Clo monocytes are not
recruited by acutely injured muscle during injury repair
(Varga et al., 2013). However, while most of the intramuscular
macrophages at day 1 are Ly6Chi, the majority at day 3 are Ly6Clo

(Figures 1C,D). The accumulation of Ly6Clo macrophages is
resulted from Ly6Chi-to-Ly6Clo switch, as Ly6Chi inflammatory
macrophages switch into Ly6Clo macrophages after
phagocytosing necrotic muscle debris (Arnold et al., 2007).
Ly6C is not expressed in human cells. The CD14hiCD16low

and CD14lowCD16hi monocytes in humans correspond to the
Ly6Chi and Ly6Clo monocytes in mice, respectively (Ziegler-
Heitbrock et al., 2010).

3.4 Macrophages Undergo Phenotype
Changes With Time to Support Acute
Skeletal Muscle Injury Repair
Macrophages have been historically classified into M1 (classically
activated) and M2 (alternatively activated) subsets, mainly based
on in vitro studies and in vivo studies of parasite infections
(Martinez and Gordon, 2014). M1 and M2 macrophages are
different in their activation stimuli, cell surface markers, arginine
metabolism, and cytokine production profiles (Martinez et al.,
2006; Martinez and Gordon, 2014). While M1 macrophages,
activated by IFN-γ ± LPS, are pro-inflammatory, M2
macrophages, activated by Il-4 ± IL-13, can be anti-
inflammatory, pro-regenerative, and/or pro-fibrotic. Following
this bipolar macrophage activation model, the Ly6Chi and Ly6Clo

macrophages in injured skeletal muscle have once been
considered M1 and M2 macrophages, respectively, based on
the findings that the Ly6Chi macrophages express more pro-
inflammatory genes, while the Ly6Clo macrophages express more
anti-inflammatory genes (Arnold et al., 2007; Ruffell et al., 2009;
Perdiguero et al., 2011; Wang et al., 2014). However, there has
been growing evidence demonstrating that the M1/M2 paradigm
of macrophage activation is over-simplistic and cannot mimic
complex in vivo settings, in which the macrophage activation
status can be influenced by many other co-existing cell types. In
vivo, M1 and M2 stimuli often co-exist, macrophages can display
mixed M1/M2 phenotypes, and they may not expand clonally to
maintain phenotype (Martinez and Gordon, 2014; Murray et al.,
2014; Ransohoff, 2016). The phenotype of in vivo macrophages
may be M1-like or M2-like but not strictly M1 or M2. Gene
expression profiles of macrophages in acutely injured skeletal

muscle indicate that the Ly6Chi macrophages at an early stage of
inflammation (day 1–2 post-injury) are not strictly M1, and the
Ly6Clo macrophages at the late stage of inflammation are not
strictly M2 (Novak et al., 2014; Varga et al., 2016a; Wang et al.,
2018). One study showed that although the Ly6Chi-to-Ly6Clo

switch of macrophages was accompanied by downregulation of
M1 genes (tnfa, il1b, and il6) and upregulation of M2 genes
(cd206, tgfb1, and igf1), the Ly6Chi macrophages at day 1 co-
expressed a high level of both M1 (tnfa, il1b, and il6) and M2
genes (arginase 1, ym1, and il10), and the Ly6Chi and Ly6Clo

macrophages at day 3 expressed a similar level of many M1 and
M2 genes (Wang et al., 2018). A more profound transcriptome
analysis revealed four macrophage activation statuses, specifying
the sequential changes of macrophages during acute muscle
injury repair: 1) infiltrating Ly6Chi macrophages expressing
acute-phase proteins and exhibiting an inflammatory profile;
2) metabolic changes in macrophages characterized by
decreased glycolysis and increased tricarboxylic acid cycle/
oxidative pathways; 3) Ly6Clo macrophages actively
proliferating; 4) restorative Ly6Clo macrophages featuring
secretion of molecules for intercellular communication (Varga
et al., 2016a). Both studies suggest that the changes in
macrophage phenotype in injured muscle is driven by the
changes in muscle microenvironment with time (Varga et al.,
2016a; Wang et al., 2018). The macrophages at the early stage of
inflammation display a more “pro-inflammatory” phenotype,
while the macrophages at the later stage of inflammation
display a more “anti-inflammatory” and “pro-regenerative”
phenotype. This is further supported by the changes in
macrophage-produced lipid mediators from pro-inflammatory
lipids at the early-stage to pro-resolving lipids at the late-stage
(Scher and Pillinger, 2005; Giannakis et al., 2019).

3.5 Macrophages Play Essential Roles in
Supporting Acute Skeletal Muscle Injury
Repair
An adequate inflammatory response predominated by
macrophage infiltration is essential to acute skeletal muscle
injury repair. The absence of macrophage infiltration or
disruption of macrophage functions leads to profound
impairment of muscle regeneration and development of
muscle fibrosis (Arnold et al., 2007; Contreras-Shannon et al.,
2007; Sun et al., 2009; Lu et al., 2011a; Lu et al., 2011b;Wang et al.,
2014; Dort et al., 2019). Macrophages regulate not only
inflammation but also the other aspects of injury repair,
including muscle regeneration, ECM remodeling, and
angiogenesis.

3.5.1 Inflammation
Macrophages are both effectors and regulators of the
inflammatory response after acute skeletal muscle injury.
Ly6Chi monocytes/macrophages massively infiltrate into
injured muscle shortly after an injury occurs, and they
produce a relatively high level of pro-inflammatory cytokines
such as TNF-α (Arnold et al., 2007; Shi and Pamer, 2011; Wang
et al., 2018). Pro-inflammatory cytokines can promote
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inflammation by increasing tissue damage and amplifying
inflammatory cell recruitment (Arnold et al., 2007; Shi and
Pamer, 2011). Pro-inflammatory macrophages are also known
as active phagocytes, as they phagocytose and clear damaged
tissue debris for muscle injury repair (Tidball and Villalta, 2010;
Tidball, 2011). When macrophage infiltration is diminished due
to CCR2 deficiency, the clearance of necrotic muscle fibers is
protracted (Lu et al., 2011b). The necrotic fibers eventually
disappear more likely by necrotic fiber autolysis than by
macrophage phagocytosis in this setting. Phagocytosis of dead
cells has been shown essential to the pro-to anti-inflammatory
phenotype switch in macrophages (Arnold et al., 2007; Johann
et al., 2007; Xiao et al., 2008; Mounier et al., 2013; Zhang et al.,
2019; Saclier et al., 2020). The anti-inflammatory macrophages
contribute, in part, to inflammation resolution. They express a
variety of anti-inflammatory cytokines, such as IL-4, TGF-β1, and
IGF-1 (Serhan and Savill, 2005; Arnold et al., 2007; Ruffell et al.,
2009; Perdiguero et al., 2011; Mounier et al., 2013; Wang et al.,
2014; Wynn and Vannella, 2016; Vannella and Wynn, 2017;
Wang et al., 2018), as well as pro-resolving lipids (Scher and
Pillinger, 2005; Giannakis et al., 2019). These anti-inflammatory
molecules counteract pro-inflammatory signals, reduce ROS
production, block neutrophil recruitment, and promote
neutrophil apoptosis and clearance by macrophages (Serhan
and Savill, 2005). Prolonged presence of neutrophils was
observed in injured muscle when macrophages were depleted
(Dumont and Frenette, 2010). Therefore, macrophages play
essential roles in both initiation and resolution of
inflammation during acute skeletal muscle injury repair.

3.5.2 Muscle Regeneration
Macrophages interact with myogenic cells to regulated muscle
regeneration following acute injury. In a study using in vitro
engineered model of rat adult skeletal muscle repair,
incorporation of macrophages was required to stimulate
satellite cell-mediated myogenesis (Juhas et al., 2018).
Implantation of macrophages within engineered tissues in a
mouse dorsal window-chamber model augmented muscle
regeneration and contractile function (Juhas et al., 2018).
Meanwhile, macrophages of different activation status have
been shown to differentially regulate myogenic cell activation,
proliferation, and differentiation. While pro-inflammatory
macrophages promote myoblast proliferation but inhibit
myoblast fusion and differentiation, anti-inflammatory
macrophages inhibit myoblast proliferation but promote
myotube formation and differentiation (Arnold et al., 2007;
Bencze et al., 2012; Saclier et al., 2013; Hsieh et al., 2018). The
differential regulation is mediated, at least in part, by paracrine
cytokines and growth factors released by macrophages.
Fibronectin, an ECM component that is highly expressed by
day 1 pro-inflammatory macrophages (Wang et al., 2018), can
activate satellite cells (Bentzinger et al., 2013b). Pro-inflammatory
macrophages also produce a high level of IL-6 (Zhang et al.,
2013), TNF-α (Li, 2002), PGE2 (Ho et al., 2017), and A
Disintegrin-Like and Metalloproteinase with Thrombospondin
Type 1 Motif (ADAMTS1) (Du et al., 2017) that can stimulate
satellite cell proliferation. On the other hand, molecules that are

highly expressed by day 3 anti-inflammatory macrophages,
including IL-4 (Horsley et al., 2003), IGF-1 (Dumont and
Frenette, 2010; Lu et al., 2011b; Tonkin et al., 2015), and
GDF-3 (Varga et al., 2016b), can stimulate myoblast
differentiation and myofiber growth. The increase in glutamine
synthesis in macrophages during pro-to anti-inflammatory
phenotype transition can also boost satellite cell activation and
muscle regeneration (Shang et al., 2020). Therefore, the pro-to
anti-inflammatory macrophage phenotype switch is likely
important for the sequential activation, proliferation,
differentiation, and growth of myogenic elements to complete
muscle regeneration for injury repair. The critical role of the
spatiotemporal presence of pro- and anti-inflammatory
macrophages in acutely injured muscle has been corroborated
by in vivo studies showing that targeting signaling molecules that
regulate the pro-to anti-inflammatory macrophage phenotype
switch, including IGF-1 (Tonkin et al., 2015), Meteorin-like
(Metrnl) (Baht et al., 2020), AMP-activated protein kinase-1
(AMPKα1) (Mounier et al., 2013; McArthur et al., 2020),
Nuclear Factor IX (Nfix) (Saclier et al., 2020), CCAAT/
enhancer binding protein-β (C/EBPβ) (Ruffell et al., 2009),
and peroxisome proliferator-activated receptor-γ (PPARγ)
(Varga et al., 2016b), impaired myofiber growth without
affecting clearance of necrotic tissue. Direct physical contact of
macrophages with myogenic cells also appears important for
myogenesis, as in vitro co-culture experiments showed that
physical contact of macrophages with myogenic cells
prevented apoptosis of myogenic cells (Chazaud et al., 2003;
Sonnet et al., 2006). Both paracrine and direct physical contact
require close proximity between macrophages and myogenic
cells, which has been observed in vivo (Saclier et al., 2013;
Ceafalan et al., 2018). In regenerating muscle, pro-
inflammatory macrophages are in close proximity to
proliferating satellite cells, while anti-inflammatory
macrophages are close to the area containing differentiated
myoblasts (Saclier et al., 2013).

3.5.3 Extracellular Matrix remodeling
A well-regulated ECM remodeling is important to providing
structural support for skeletal muscle injury repair. The ECM
components, collagen 6a (Col6a) (Urciuolo et al., 2013) and
fibronectin (Bentzinger et al., 2013b), were also important to
satellite cell activation. Fibro/adipogenic progenitors (FAPs), the
effector cells of ECM remodeling, not only produce ECMproteins
but also support satellite cell activation and differentiation to
facilitate muscle regeneration (Joe et al., 2010; Uezumi et al., 2010;
Murphy et al., 2011; Uezumi et al., 2014). When the regenerative
process is impaired; however, FAPs drive fibro-fatty replacement
and fail to support satellite cell activation (Uezumi et al., 2014).
Therefore, the FAP activity and ECM remodeling must be
properly regulated. Macrophages regulate the accumulation
and activation of FAPs during acute skeletal muscle injury
repair. Pro-inflammatory macrophages limit the accumulation
of FAPs by secreting TNF-α to induce FAP apoptosis (Lemos
et al., 2015). Anti-inflammatory macrophages, on the other hand,
can promote activation of fibrogenic cells by producing a high
level of pro-fibrotic factors, including TGF-β1, PDGFα, and
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PDGFβ (Wang et al., 2016). Anti-inflammatory macrophages,
therefore, may contribute to the transient fibrosis during muscle
injury repair. The importance of macrophage regulation of FAP
activity and ECM remodeling is supported by the findings that
depleting macrophages or blocking macrophage recruitment
leads to muscle fibrosis (Lu et al., 2011a; Lemos et al., 2015).

3.5.4 Angiogenesis
Revascularization to restore blood supply is vital for tissue injury
repair. The exact regulatory roles played by macrophage
functional subtypes in this process remain elusive (Rahat et al.,
2014). There are mixed reports of the roles of infiltrating
macrophages in angiogenesis or vascular remodeling during
acute skeletal muscle injury repair, which could be due to the
different injury models used in these studies. One study showed
that the diminished macrophage infiltration caused by CCR2
deficiency delayed VEGF production and angiogenesis during the
repair of cardiotoxin-injured muscle (Ochoa et al., 2007). But
another study using the BaCl2 injury model showed that blocking
macrophage recruitment did not affect endomysial capillary
density (Lu et al., 2011b). It has also been shown in the
cardiotoxin injury model that macrophage depletion caused a
significant endothelial-to-mesenchymal transition of the
endothelial-derived progenitors, compromised blood vessel
formation, and increased collagen deposition (Zordan et al.,
2014). In addition, restorative macrophages have been shown
to stimulate interaction between angiogenic cells and myogenic
cells via oncostain M production to couple angiogenesis and
myogenesis during muscle regeneration (Latroche et al., 2017).
The roles of macrophages in angiogenesis during acute skeletal
muscle injury repair need to be further elucidated.

In summary, adequate macrophage infiltration is essential to
acute skeletal muscle injury repair. Infiltrating macrophages
actively interact with myogenic cells to regulate their
activation, proliferation, differentiation, and growth for proper
muscle regeneration. The sequential presence of pro- and anti-
inflammatory macrophages is crucial to the tightly-regulated,
satellite cell-mediated regenerative process. Insufficient
macrophage infiltration or disrupted pro-to anti-inflammatory
macrophage transition impairs muscle regeneration.

4 MACROPHAGES PLAY PLEIOTROPIC
ROLES IN CHRONICALLY INJURED
SKELETAL MUSCLES IN MUSCULAR
DYSTROPHY

Chronically injured skeletal muscle features chronic
inflammation, with continuous Ly6Chi monocyte and
macrophage infiltration and Ly6Chi-to-Ly6Clo switch. This
creates an asynchronous regenerative environment that
interrupts the spatiotemporal presence of pro- and anti-
inflammatory macrophages, leading to dysregulated muscle
regeneration. This hypothesis is supported by a study utilizing
a simplifiedmodel of repeated muscle injury (Dadgar et al., 2014).
In this study, skeletal muscle injury was induced twice, separated

by 4 or 10 days. Concurrent accumulation of both pro- and anti-
inflammation macrophages was observed in injured muscle,
along with the development of persistent inflammation and
fibrosis and the impairment of muscle regeneration. The
asynchronous microenvironment in chronically injured muscle
is much more complex than this simplified model, which may
drive macrophages to play very different roles. The most studied
muscle disease caused by chronic injury is Duchene Muscular
Dystrophy (DMD). DMD is a genetic disease caused by a
defective dystrophin gene on the X chromosome, which leads
to muscle membrane instability, muscle necrosis, secondary
muscle inflammation and fibrosis, muscle weakness, and
premature death (Hoffman et al., 1987; Emery, 1993). The
most commonly used animal model for studying DMD is
mdx mice.

4.1 Chronic Inflammation in Mdx Mice Is
Predominated by Macrophage Infiltration
Mdx ormdx5cvmice display a mild phenotype compared to DMD
patients. But they do show persistent inflammation and
progressive fibrosis in the diaphragm (Stedman et al., 1991;
Goldspink et al., 1994; Hartel et al., 2001; Beastrom et al.,
2011). Muscle inflammation in the mdx mice starts around
age 3 weeks, persists into 2–3 months, and then subsides
spontaneously in the limb muscles but the not the diaphragm.
Progressive fibrosis mainly occurs in the diaphragm, which
impairs respiratory function, resembling dystrophic muscles in
human DMD patients (Stedman et al., 1991; Dupont-
Versteegden and McCarter, 1992; Zhou et al., 2006; Huang
et al., 2011). Muscle inflammation in mdx mice is also
predominated by macrophage infiltration (Zhou et al., 2006)
(Figure 2).

4.2 Macrophages Play Pleiotropic Roles in
Dystrophic Muscles of Mdx Mice
Like in acute injury, muscle recruitment of Ly6Chi inflammatory
monocytes/macrophages in mdx is also mediated by CCR2, and
intramuscular Ly6Chi-to-Ly6Clo macrophage switch also occurs
(Mojumdar et al., 2014; Zhao et al., 2017). Correspondingly,
macrophages in the mdx leg muscles are more pro-inflammatory
at 4 weeks while more pro-regenerative at 12 weeks (Villalta et al.,
2009). Macrophages in mdx muscles appear pathogenic in
general, as blocking Ly6Chi inflammatory monocyte/
macrophage infiltration via removal of splenic source of
Ly6Chi monocytes by splenectomy or via genetic ablation or
pharmacological inhibition of CCR2 reduced muscle damage and
fibrosis and improved muscle function in both leg and diaphragm
muscles before 3 months of age (Mojumdar et al., 2014; Zhao
et al., 2017; Rizzo et al., 2020). Similarly, toll-like receptor 4
(TRL4) deficiency in mdx mice, which also reduced macrophage
infiltration at 6 and 12 weeks of age, decreased muscle fibrosis
(Giordano et al., 2015). Macrophages may influence muscle
inflammation, necrosis, regeneration, and fibrosis by
producing pro-inflammatory, anti-inflammatory, pro-
regenerative, and pro-fibrotic cytokines and growth factors,
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such as iNOS, TNF-α, IL-1β, IL-6, IL-10, IGF-1, TGF-β, and
osteopontin (Zhou et al., 2006; Villalta et al., 2009; Tidball and
Villalta, 2010; Villalta et al., 2011; Lemos et al., 2015; Capote et al.,
2016; Ji et al., 2020).

In mdx limb muscles, the pro-inflammatory macrophages
appear to contribute to muscle damage, as depleting
macrophages by an F4/80 neutralizing antibody reduced leg
muscle necrosis at 4 weeks of age (Wehling et al., 2001). The
anti-inflammatory macrophages appear more pro-regenerative
than pro-degenerative, which may contribute to the remarkable
spontaneous improvement of limb muscle pathology after
3 months of age (Zhou et al., 2006; Beastrom et al., 2011).
This hypothesis is supported by a study showing that
depletion of macrophages locally in mdx leg muscles from 10
to 12 weeks of age exacerbated dystrophic changes with decreased
myofiber formation and increased fat deposition and fibrosis
(Madaro et al., 2019). Macrophage depletion impaired
proliferation and differentiation of myogenic progenitors and
caused adipogenic conversion of satellite cells (Madaro et al.,
2019). The Ly6Chi macrophages in the mdx leg muscles at
8–10 weeks of age, however, contribute to fibrosis (Juban et al.,
2018). They produce latent TGF-β1 due to a high level of latent-
TGF-β-binding protein 4 (LTBP4) synthesis, and the latent TGF-
β1 is subsequently activated by FAP-derived TGF-β-activating
enzymes to promote fibrosis (Juban et al., 2018). Activation of
AMPK, which promotes the pro-inflammatory to anti-
inflammatory phenotype switch of macrophages (Mounier
et al., 2013; McArthur et al., 2020), downregulated LTBP4
expression and TGF-β1 production, leading to decreased
fibrosis and improved muscle function (Juban et al., 2018).

Macrophages in the mdx diaphragm might be different from
those in the mdx limb muscles, as the diaphragm undergoes
persistent inflammation and progressive fibrosis, while the limb
muscles do not (Stedman et al., 1991; Dupont-Versteegden and
McCarter, 1992; Zhou et al., 2006; Huang et al., 2011). One study
showed that intramuscular fibrocytes, a subset of collagen-
producing Ly6Clo macrophages, were more pro-inflammatory

and pro-fibrotic in the mdx5cv diaphragm than in the mdx5cv

quadriceps at 14 weeks of age (Wang et al., 2016). But the
comprehensive comparison of macrophages between
diaphragm and limb muscles is still lacking.

4.3 Blocking Monocyte/Macrophage
Recruitment by Targeting CCR2 Signaling
Provides Transient Benefits in Mdx Mice,
Potentiating a Role of Skeletal
Muscle-Resident Macrophages
Since macrophages contribute to muscular dystrophy pathology,
blocking their recruitment becomes a potential strategy to
ameliorate the disease. Blocking macrophage infiltration by
genetic ablation or pharmacological inhibition of CCR2 indeed
improved muscle pathology and function in the mdx diaphragm
at early stages (6 and 12 weeks) (Mojumdar et al., 2014).
However, the beneficial effects are transient and lost at late
stages. CCR2 deficiency in mdx5cv mice reduced diaphragm
muscle damage and fibrosis and improved diaphragm muscle
regeneration and function at 14 weeks but not 6 months (Zhao
et al., 2017). Analysis of macrophage recruitment revealed that
CCR2 deficiency diminished intramuscular Ly6Chi macrophages
at all stages, but reduced Ly6Clo macrophages only at the early
stages (4 and 9 weeks) but not the late stages (14 weeks or
6 months) (Zhao et al., 2017). The recovery of Ly6Clo

macrophages and the concurrent progression of diaphragm
muscle dystrophy at the later stages suggest that the Ly6Clo

macrophages are also pathogenic. Therefore, targeting Ly6Chi

macrophages alone is not sufficient, and the Ly6Clo macrophages
must also be targeted simultaneously. To achieve this, one
question must be answered first: where do these Ly6Clo

macrophages originate from in the absence of CCR2?
In the absence of CCR2, intramuscular Ly6Clo macrophages

may originate from Ly6Clo monocyte recruitment and/or resident
macrophage expansion. Since the chemotaxis of Ly6Clo blood
monocytes requires CX3CR1 (Charo and Ransohoff, 2006), and

FIGURE 2 | (A) Pie chart showing percentages of macrophages (MPs), neutrophils (Neu), and other cells among intramuscular CD45+ cells in mdx5cv mice at
different ages. (B) Pie chart showing percentages of Ly6Chi and Ly6Clo subpopulations among intramuscular macrophages in mdx5cv mice at different ages.
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the development of Ly6Clo blood monocyte requires Nur77
(Hanna et al., 2011), additional targeting of these two
molecules in the mdx/Ccr2−/−mice would help answer whether
Ly6Clo blood monocytes are recruited in the mdx/Ccr2−/− mice,
and whether this recruitment contributes to the recovery of
Ly6Clo macrophages. Lineage tracing would help determine
whether resident macrophage expansion occurs, and whether
resident macrophages also regulate muscular dystrophy.

5 RESIDENT MACROPHAGES MAY PLAY
ACTIVE ROLES IN SKELETAL MUSCLE
INJURY REPAIR
Following the identification of skeletal muscle-resident
macrophages in the steady state, one question arises as to
what roles these cells play during injury repair. One early
study in rats suggests that muscle resident macrophages do
not phagocytose degenerating muscle fibers; they instead act as
sentinels activated by damage-associated molecular patterns
(DAMPs) during injury to facilitate the recruitment of
circulating leukocytes (McLennan, 1993). However, this is
contradicted by a recent study showing that resident
macrophages in skeletal muscle sense and cloak tissue
microlesions to prevent excessive tissue damage under
physiological and disease conditions (Uderhardt et al., 2019).
Early depletion of resident macrophages in mdx mice leads to
premature onset of muscle disease featured by increased
neutrophil infiltrates (Uderhardt et al., 2019), suggesting that
resident macrophages may protect muscle from inflammatory
damage at the early stage in this chronic disease model. The
contradictory roles might be partially attributed to the existence
of different subsets of muscle resident macrophages. Studies of
resident macrophages in heart seem to support this hypothesis:
following myocardial injury, the CCR2+ subset promotes
recruitment of neutrophils (Li et al., 2016) and monocytes
(Bajpai et al., 2019), while the CCR2- subset inhibits
monocytes recruitment (Bajpai et al., 2019). A subset-specific
analysis is yet to be done in acutely and chronically injured
skeletal muscle.

Following acute skeletal muscle injury, macrophage
infiltration is required for the injury repair, suggesting that
resident macrophages fail to compensate for the pro-
regenerative functions of the inflammatory macrophages (Lu
et al., 2011b). During chronic injury in the mdx5cv/Ccr2−/−

mice, however, macrophage-mediated inflammation is only
compromised at the early stages but recovers at the later
stages (Zhao et al., 2017), suggesting that resident macrophage
expansion may occur with time to compensate for the lack of
recruited inflammatory macrophages. Whether this is true
requires further studies. Despite of the scattered evidence, the
roles of resident macrophages and their functional subsets in both
acute and chronic skeletal muscle injuries are largely unexplored.

Studies to specifically target resident macrophages are to be
conducted to understand the functions of these cells in muscle
inflammation, fibrosis, and regeneration.

6 CONCLUSION

Recent years have seen increasing evidence that macrophages
actively regulate diverse physiological and pathological
processes. This extraordinary ability relies on their high
plasticity in response to tissue environmental changes.
Following acute skeletal muscle injury, infiltrating
macrophages respond to the changes in intramuscular
microenvironment, switching their functional phenotypes in
a spatiotemporal manner to promote injury repair. The
sequential presence of differentially activated macrophages
has been proven vital for well-coordinated, satellite cell-
mediated muscle regeneration. In a chronic disease such as
DMD, the spatiotemporal activation of macrophages is
disrupted, and some macrophages become detrimental,
resulting in aberrant muscle regeneration and contributing to
the disease progression. Macrophage manipulation, either by
blocking their accumulation or by modulating their function,
will be likely beneficial to the treatment. To this end, further
understanding of the origins, functions, and activation
mechanisms of macrophages is required. Advanced
technologies, such as lineage tracing and single-cell
transcriptome analysis, will continue to help generate
valuable insights. It is worth noting that most of the
knowledge reviewed here is from animal studies. The
knowledge of macrophage contribution to the homeostasis
and injury repair in human skeletal muscle is still lacking.
Nevertheless, the knowledge gained from animal studies is
instructive, which may facilitate future studies of human
skeletal muscle. This line of research may eventually develop
macrophage-based therapies to promote skeletal muscle injury
repair.
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