
RESEARCH ARTICLE

Novel pedigree analysis implicates DNA repair

and chromatin remodeling in multiple

myeloma risk

Rosalie G. Waller1☯, Todd M. Darlington1☯, Xiaomu Wei2, Michael J. Madsen1,

Alun Thomas1, Karen Curtin1, Hilary Coon1, Venkatesh Rajamanickam1, Justin Musinsky3,

David Jayabalan2, Djordje Atanackovic1, S. Vincent Rajkumar4, Shaji Kumar4,

Susan Slager4, Mridu Middha5, Perrine Galia6, Delphine Demangel6, Mohamed Salama1,

Vijai Joseph3, James McKay7, Kenneth Offit3, Robert J. Klein5, Steven M. Lipkin2,

Charles Dumontet8, Celine M. Vachon4, Nicola J. Camp1*

1 University of Utah School of Medicine, Salt Lake City, Utah, United States of America, 2 Weill Cornell

Medical College, New York, New York, United States of America, 3 Memorial Sloan Kettering Cancer Center,

New York, New York, United States of America, 4 Mayo Clinic, Rochester, Minnesota, United States of

America, 5 Icahn School of Medicine at Mount Sinai, New York, New York, United States of America,

6 ProfileXpert, Lyon, France, 7 International Agency for Research on Cancer, Lyon, France, 8 INSERM

1052/CNRS 5286/UCBL, Lyon, France

☯ These authors contributed equally to this work.

* nicola.camp@hci.utah.edu

Abstract

The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-pen-

etrant, Mendelian-like causal variants. Its success, however, in complex traits has been

modest, largely due to challenges of genetic heterogeneity and complex inheritance models.

We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inher-

ited segments important for mapping regulatory risk. We apply this new Shared Genomic

Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subse-

quent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gam-

mopathy of undetermined significance–a precursor to MM) cases and 964 controls from a

jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-

wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this

region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a

gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2

Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in

ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling

complex. Our results provide compelling statistical and genetic evidence for segregating

risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for

risk-variant discovery more generally in complex traits.
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Author summary

Although family-based studies demonstrate inherited variants play a role in many com-

mon and complex diseases, finding the genes responsible remains a challenge. High-risk

pedigrees, or families with more disease than expected by chance, have aided discovery of

genes responsible for less complex diseases, but high-risk pedigrees have not reached their

potential in complex diseases. Here, we describe a method to utilize high-risk pedigrees to

discover risk-genes in complex diseases. Our method is appropriate for complex diseases

because it allows for genetic-heterogeneity, or multiple causes of disease, within a pedi-

gree. This method allows us to identify shared segments that likely harbor disease-causing

genes in a family. We apply our method in Myeloma, a heritable and complex cancer of

plasma cells. We identified two genes USP45 and ARID1A that fall within shared segments

with compelling statistical evidence. Exome sequencing of these genes revealed likely-

damaging variants inherited in Myeloma high-risk families, suggesting these genes likely

play a role in development of Myeloma. Our Myeloma findings demonstrate our high-

risk pedigree method can identify genetic regions of interest in large high-risk pedigrees

that are also relevant to smaller nuclear families and overall disease risk. In sum, we offer

a strategy, applicable across phenotypes, to revitalize high-risk pedigrees in the discovery

of the genetic basis of common and complex disease.

Introduction

Rare risk variants have been suggested as a source of missing heritability in the majority of

complex traits [1–3]. High-risk pedigrees (HRPs) are a mainstay for identifying rare, highly

penetrant, Mendelian-like, causal variants [4–11]. However, while HRPs have been successful

for relatively simple traits, genetic heterogeneity remains a major obstacle that reduces the

effectiveness of HRPs for gene mapping in complex traits [12,13]. Also challenging is mapping

regulatory variants, likely to be important for complex traits, necessitating interrogation out-

side the well-annotated, coding regions of the genome [14,15]. Localizing chromosomal

regions to target the search for rare, risk variants will be instrumental in mapping them.

Here we develop a HRP strategy based on our previous Shared Genomic Segment (SGS)

approach [16] that focuses on pedigrees sufficiently large to singularly identify segregating

chromosomal segments of statistical merit. The method addresses genetic heterogeneity by

optimizing over all possible subsets of studied cases in a HRP. Key to the utility of the method

is the derivation of significance thresholds for interpretation. These thresholds address the

genome-wide search and the multiple testing inherent from the optimization through use of

distribution fitting and the Theory of Large Deviations.

We apply this novel method to 11 MM HRPs, and use exome sequencing from a collabora-

tive resource of 55 multiplex MM or MM/MGUS pedigrees to perform subsequent targeted

searches at the variant level. MM is a complex cancer of the plasma cells with 30,330 new cases

annually (incidence 6.5/100,000 per year) [17]. Despite survival dramatically increasing from

25.8% in 1980 to 48.5% in 2012, MM remains a cancer with one of the lowest 5-year survival

rates in adult hematological malignancies [17]. MM is preceded by a condition referred to as

monoclonal gammopathy of undetermined significance (MGUS). Evidence for the familial

clustering of MM is consistently replicated [18–21], as is its clustering with MGUS [22–25].

Genetic pedigree studies in MM are scarce as it remains a challenge to acquire samples in pedi-

grees due to rarity and low survival rates. The Utah MM HRPs are one of only a few pedigree
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the ethical oversight committee for the UPDB. As a

result, access to these data requires review by the

RGE committee (contact Jahn Barlow, jahn.

barlow@utah.edu). Upon RGE approval, we will

provide the genotypes and pedigree structure in a

format ready to be used by the SGS software.

Exome variants within the shared segments

identified by the SGS analysis have been provided

in a variant call format (VCF) file in the Supporting

Information, along with an accompanying ID file

describing phenotype and pedigree membership.

Sporadic myeloma cases and unaffected controls

were obtained with approval from the database of

Genotypes and Phenotypes (dbGaP). Exome

sequences can be requested through dbGaP

(https://www.ncbi.nlm.nih.gov/gap) with the

following accessions: phs000348.v2.p1,

phs000748.v4.p3, phs000209.v13.p3, phs000276.

v2.p1, phs000179.v5.p2, phs000298.v3.p2,

phs000424.v6.p1, phs000653.v2.p1, phs000687.

v1.p1, phs000814.v1.p1, and phs000806.v1.p1.
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resources worldwide and contains unparalleled multi-generational high-risk pedigrees. Thus

far, no segregating risk variants have been identified for MM.

Results

Pedigree analysis strategy

We developed a gene mapping strategy, based on the SGS method [16,26], that accounts for

intra-familial heterogeneity and multiple testing. The basic SGS method identifies all genomic

segments shared identical-by-state (sharing without regard to inheritance) between a defined

set of cases using a dense genome-wide map of common single nucleotide polymorphisms

(SNPs), either from a genotyping platform or extracted from sequence data. If the length of a

shared segment is significantly longer than by chance, inherited sharing is implied; theoreti-

cally, chance inherited sharing in distant relatives is extremely improbable. Nominal chance

occurrence (nominal p-value) for shared segments is assessed empirically using gene-drop

simulations to create a null distribution, as follows. Null genotype configurations are generated

by assigning haplotypes to pedigree founders according to a publicly available linkage disequi-

librium (LD) map. These null genotypes are segregated through the pedigree structure to the

case set via simulated Mendelian inheritance according to a genetic (recombination) map.

(Gene-drops are performed independent of disease status.) The resulting genotype data in the

case set are representative of chance sharing. This basic method was shown to have excellent

power in homogeneous pedigrees [16].

In our new strategy, we address heterogeneity within pedigrees in a “brute-force” fashion

by iterating over all non-trivial combinations of the cases (subsets) in each pedigree. For each

subset, shared segments at every position throughout the genome are identified and nominal

p-values assigned. Across subsets, an optimization procedure is performed, at every marker

across the genome, to identify the segment with the most significant sharing evidence. All

shared segments selected by the optimization procedure, and their respective p-values, com-

prise the final optimized SGS results for a pedigree.

To perform significance testing and identify segments that are unexpected by chance

(hypothesized to harbor risk loci), we derive significance thresholds to account for the

genome-wide optimization. Acknowledging that the vast majority of observed sharing across a

genome is under the null (true risk loci are a very small minority of the genome), we use the

observed optimized results (Y = −log10(p), where p is the nominal p-value) to model the distri-

bution for optimized SGS results. We note that this approach may be slightly conservative

because signals for true risk loci are also included. We identified the gamma distribution as

adequate to represent the distribution (Fig 1). Based on the fitted distribution, Y*Γ(k, σ),

where k and σ are the shape and rate parameters, we apply the Theory of Large Deviations–

previously applied to successfully model genome-wide fluctuations in linkage analysis [27].

The significance threshold, T, accounts for multiple testing of optimized segments across the

genome, and is found by solving Eq 1:

mðXÞ ¼ ½C þ 2GX�aðXÞ ð1Þ

where T = 10−Xσ/2, X ¼ 2Y=s � w2
2k; mðXÞ is the genome-wide false positive rate required, C is

the number of chromosomes, α(X) is nominal probability of exceeding X, and G is the genome

length in Morgans. A criterion of μ(X) = 0.05 is used to define the genome-wide significant

threshold (false positive rate of 0.05 per genome), and μ(X) = 1 to define the genome-wide sug-

gestive threshold (false positive rate of 1 per genome).

In general, we found that the fitted distributions produced stable significance thresholds

after 100,000–300,000 simulations (Table 1). Typically, threshold determination requires
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1,000–3,000 CPU hours per pedigree, increasing with the number of subsets and separating

meioses between pedigree cases. For example, in pedigree UT-571744, 300k simulations

genome-wide (2,513,408 segments) took 1,275 CPU hours on tangent nodes featuring Intel

Xeon E5-2650 processors. Once significance thresholds are established, subset/segment com-

binations of potential interest are identified and additional simulations are restricted to those

combinations to gain the required p-value resolution. For these subsequent targeted simula-

tions, we use a marginalized LD map specific for the segment of interest, dramatically reducing

the analysis time. For example, in pedigree UT-571744, 600M simulations on one segment

took 325 CPU hours on tangent nodes featuring Intel Xeon E5-2650 processors. See S1 Fig for

an overview of the strategy pipeline.

Application to Utah, MM HRPs

We applied our new pedigree analysis strategy to 11 Utah MM HRPs using high-density

OMNI Express SNP array genotype data. Each pedigree was selected to contain excess MM

(4–37 MM total per pedigree), had 2–4 sampled MM cases with genotype data, and 8–23 meio-

ses per pedigree between the sampled cases. After quality control, a consistent set of 678,447

SNPs were used for all SGS analyses. The total number of shared segments for each pedigree

Fig 1. Adequacy of the gamma distribution. The gamma distribution provides an adequate fit for multiple types of pedigrees. For example, HRP UT-549917 has

k = 4.4 and σ = 3.6 with good visual density (a) and CDF (b) fit, with λ = 0.9. (Goodness of fit was estimated with λ, the median of empirical chi-squared distribution

divided by the median of the expected chi-squared distribution.) HRP UT-34955 has k = 2.8 and σ = 2.9 with good visual density (c) and CDF (d) fit, with λ = 1.0.

https://doi.org/10.1371/journal.pgen.1007111.g001

Table 1. Genome-wide significance thresholds. Fitted distributions are stable enough for threshold determination after 100,000 to 300,000 simulations.

Pedigree 100k 200k 300k 1M

260 6.36x10-6 6.35x10-6 6.28x10-6 6.25x10-6

576834 3.50x10-6 3.53x10-6 3.53x10-6 3.51x10-6

571744 3.80x10-6 3.83x10-6 3.75x10-6 3.80x10-6

34955 5.67x10-6 5.60x10-6 5.61x10-6 5.61x10-6

https://doi.org/10.1371/journal.pgen.1007111.t001
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across all subsets ranged from 638,525 to 6,765,500 (larger pedigrees with more subsets pro-

ducing larger numbers of segments). After optimization, Y = −log10(p) for 6,697 to 10,369 seg-

ments were fit to gamma distributions for each pedigree, and used to determine genome-wide

significant and suggestive thresholds (Eq 1). The genome-wide significant thresholds ranged

from 6.2×10−5 to 7.8×10−7 and genome-wide suggestive from 8.2×10−4 to 2.1×10−5 (S1 Table).

A genome-wide significant, 1.8 Mb shared segment (p = 3.3x10-6) was observed in pedigree

UT-571744. All three genotyped MM cases, separated by 20 meioses, share the segment (Fig

2A and Table 2). The segment is located at chromosome 6q16 (98.49–100.24 Mb; hg19) and

includes 9 genes: POU3F2, FBXL4, FAXC, COQ3,PNISR, USP45, TSTD3,CCNC, and PRDM13
(Fig 2B).

We also identified two HRPs, UT-576834 and UT-260, with overlapping borderline,

genome-wide suggestive, shared segments at 1p36.11 (Fig 3). A 8.9 Mb (24.39–33.30 Mb,

Fig 2. Significant SGS, pedigrees, and segregating SNVs. In pedigrees, MM cases are fully shaded and MGUS cases are half shaded. Numbers indicate multiple

individuals. a) Utah pedigree, 571744, sharing the genome-wide significant SGS. The pedigree is trimmed to allow for viewing (37 MM confirmed cases are known in this

pedigree, 3 were ascertained and genotyped). + indicates the genotyped MM cases that are SGS carriers, − indicates genotyped and non-carriers, no carrier status indicates

not genotyped. Note–the genealogy extends beyond SEER cancer registry data. MGUS status is unknown in this pedigree. b) Genomic region of significant SGS. c)

INSERM pedigree carrying the stop gain SNV marked by “c” in box e. 1 MM and 2 MGUSs carry the SNV. d) Mayo Clinic pedigree carrying the missense SNV marked by

“d” in box e. 1 MM and 1 MGUS carry the SNV, but 2 unaffected siblings do not carry the SNV. e) Risk candidate gene, USP45, has 2 segregating SNVs in the ubiquitin C-

terminal hydrolase 2 (UCH) domain.

https://doi.org/10.1371/journal.pgen.1007111.g002
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p = 3.0×10−4) segment was observed in 3 of the 4 genotyped MM cases in UT-576834, shared

across 12 meioses (Fig 3B and Table 2). A nested 1.2 Mb shared segment (26.22–27.38 Mb;

p = 2.1×10−4) segregated to 3 MM cases separated by 16 meioses in UT-260 (Fig 3A and

Table 2). The overlapping segment contains 30 genes (Fig 3D).

Exome follow-up of shared segments in HRPs

Whole-exome sequencing (WES) data was interrogated, targeted to the identified SGS region,

to identify potential risk variants in the pedigree sharers in the HRP and in a broader set of 44

pedigrees. WES data was available for: 28 cases from the 11 extended Utah HRPs; and 126

exomes from 44 densely clustered MM/MGUS families from Mayo Clinic Rochester, Weill

Cornell, Memorial Sloan Kettering Cancer Center, International Agency for Research on Can-

cer, and INSERM France (S2 Table). Prioritization was used to identify variants that were: in

the target segment; rare (alternate allele frequency, AAF<0.001 in the non-Finnish, European,

gnomAD individuals), potentially deleterious (variant impact predicted to be high or moder-

ate); and observed recurrently in the appropriate segment sharers (if observed in the segment

discovery pedigree).

At 6q16, no rare, potentially deleterious coding risk variants were shared by the 3 UT-

571744 MM cases in the 1.8 Mb genome-wide significant segment, indicating non-coding reg-

ulatory variants may be responsible for MM risk in this pedigree. However, two, rare coding

and potentially deleterious single nucleotide variants (SNVs) were identified in two MM/

MGUS families (Fig 2C–2E and Table 2). Both SNVs are in the hydrolase domain of USP45: a

stop gain (p.Gln691�) shared by 3 sibling cases (1 MM and 2 MGUS) in an INSERM family

(PET-Nice 0909) and a missense SNV (p.Gln621Glu) shared by 2 siblings (1 MM and 1

MGUS) but not their 2 screened unaffected siblings in Mayo family 485. Coverage of these

positions in ExAC sequence data is high (> 99% of the 60,706 ExAC samples had at least 10x

read coverage) and neither variant was observed. Collating the SGS evidence in UT-571744

(genome-wide rate of μ = 0.042) with the sequence findings, correcting for 11 SGS pedigrees,

the 45 pedigrees interrogated for sequence variants, and the 9 genes in the SGS region, we esti-

mate the rate of observing all these findings at the 6q16 region by chance is very low (π =

0.0026, see Methods) and study-wide significant.

Table 2. Significant or overlapping SGSs and segregating SNVs.

Family Cases Me Position Len p-value Gene Conseq Impact AAF

UT-571744 3 20 6:98,489,655–100,243,996 1.8 3.3x10-6‡

PET-Nice 0909 3(2) 3 6:99,891,443 USP45 p.Gln691� SG None

Mayo 458 2(1) 2 6:99,893,787 USP45 p.Gln621Glu MS None

UT-576834 3 12 1:24,389,214–33,298,821 8.9 3.0x10-4

UT 260 3 16 1:26,224,634–27,384,988 1.2 2.1x10-4

UT-576834 3 12 1:27,023,162^ ARID1A p.Ser90Gly MS 0.0002

Cornell MM12 2 4 1:27,089,712‘ ARID1A p.Met890Val MS 0.0001

Legend: Cases–number of MM and MGUS cases (number of MGUS) with genotype or exome DNASeq data who share the SGS region or carry the SNV; Me–meioses;

Position–build HG19, ^rs752026201, ‘rs140664170; Len–length in mega-bases; p-value for SGS (significant and suggestive genome-wide thresholds were 3.8x10-6 and

8.5x10-5 for UT-571744, 3.5x10-6 and 4.6x10-5 for UT-576834, and 6.2x10-6 and 1.2x10-4 for UT 260)
‡genome-wide significant; Conseq–exome-variant consequence; SG–stop gain variant, MS–missense variant; AAF–alternate allele frequency based on the non-TCGA,

non-Finnish, European gnomAD individuals. “None” indicates the region has good coverage, but the variant has not been observed in gnomAD, while an AAF = 0

indicates the variant has been observed in another ethnicity.

https://doi.org/10.1371/journal.pgen.1007111.t002
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Pedigree exomes in the 1.2 Mb segment at 1p36.11 revealed two, rare and potentially delete-

rious SNVs. The first in discovery pedigree UT-576834: a missense SNV (rs752026201, p.

Ser90Gly, AAF = 0.0002 in gnomAD) in ARID1A (Fig 3E) shared by 3 of the 4 Utah MM

cases, concordant with the segment sharing pattern. A second rare, missense SNV in ARID1A
(rs140664170, p.Met890Val, AAF = 0.0001 in gnomAD) was found to be carried by a pair of

MM cousins in Weill-Cornell family 12 (Fig 3C and 3E, and Table 2). No rare, potentially dele-

terious coding risk variants were shared by the 3 MM cases in UT-260. Based on the ExAC

data, ARID1A is extremely intolerant to missense variants and loss of function (LoF) SNVs

[28].

Pathway follow-up of candidate genes

Our SGS findings and pedigree WES identify USP45 and ARID1A as candidate genes for

inherited MM risk. We further investigated shared segments and WES for evidence supporting

the complexes USP45 and ARID1A are involved in. Here we further expanded our WES to:

186 MM/MGUS cases (early onset MM/MGUS or familial MGUS) from our collaborative

group, 733 sporadic MM cases from dbGaP [29], and 964 controls [30].

USP45 is an essential DNA repair regulator, de-ubiquitylating ERCC1 to allow for DNA

translocation of the ERCC1-ERCC4 endonuclease [31,32]. This endonuclease is a part of the

global genome nucleotide-excision repair (GG-NER) incision complex, a 22 protein complex

essential to removing lesions from DNA and cancer prevention [33–36] (S3 Table). We

reviewed SGS results in the Utah HRPs at the location of these 22 genes and identified a

genome-wide suggestive segment in pedigree UT-34955 (S2 Fig). This HRP identified a 0.8

Mb segment at 19q13 (45.71–46.51 Mb; hg19), containing 31 genes including ERCC1 and

ERCC2 (S2 Fig and S4 Table). The segment is shared by 3 MM cases separated by 16 meioses

(p = 6.6×10−5). No rare, coding variants were identified from the WES in the 3 MM cases in

UT-34955, nor in the remaining 44 pedigrees/families. We interrogated the 23 GG-NER genes

in our 919 MM/MGUS exomes. This identified a ClinVar-annotated pathogenic, missense

SNV in ERCC4 (p.Arg799Trp) in one early-onset MM case and one sporadic MM case, and a

stop-gain SNV in ERCC3 (p.Arg574Ter), in the same domain as a ClinVar-annotated patho-

genic variant, in a second early-onset MM case (S4 Table). Further, burden testing in all MM

cases vs controls was significant in 2 of the 23 GG-NER genes: GTF2H1 and DDB1 after cor-

recting for multiple testing (S3 Table). The occurrence of two significantly burdened genes (at

α = 0.0022) from 23 genes is unexpected (p = 0.0011, Binomial(23,0.0022)).

ARID1A is a member of the SWI/SNF chromatin remodeling complex, a 15 gene complex

involved in DNA transcription regulation [37] (see S5 Table). Members of this complex are

mutated in >20% of malignancies [38–40], but are extremely intolerant to LoF and missense

variation [41] (S5 Table). We reviewed SGS results in the Utah HRPs at the location of these

15 genes and identified a borderline genome-wide suggestive segment in pedigree UT-549917

shared by 4 MM cases across 21 meioses (p = 2.17×10-5, S3 Fig and S6 Table). This 1.5 Mb seg-

ment at chr3p21.1-p21.2 (52.01–53.56 Mb; hg19) contains 32 genes including PBRM1 from

the SWI/SNF complex. No coding variants were identified in this gene in UT-549917, nor in

the remaining 44 pedigrees/families. Burden testing was significant for 7 of the 15 genes in

the complex after correcting for multiple testing: ARID1A,ARID1B, SMARCA4,ACTL6A,

Fig 3. SGS with multiple lines of evidence. a/b) Utah pedigrees carrying the overlapping SGSs on chr1p36.11-p35.1. + indicates the genotyped MM cases that are SGS

carriers, − indicates genotyped and non-carriers, no carrier status indicates not genotyped. c) Weill Cornell pedigree with a segregating, missense SNV in ARID1A
indicated by “c” in box e. d) Genomic region of overlapping SGS. Dark black genes fall in both regions. e) 2 rare and segregating, missense SNVs were observed in whole-

exome sequencing. SNV “b” is carried by the cases indicated with + in box b. SNV “c” in carried by the cases in box c.

https://doi.org/10.1371/journal.pgen.1007111.g003
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SMARCD3, SMARCC2, and SMARCE1 (S5 Table). The occurrence of seven significantly bur-

dened genes (at α = 0.0033) from 15 genes is unexpected by chance (p = 2.7×10−14, Binomial

(15,0.0033)).

Discussion

We developed a novel strategy to identify segregating chromosomal segments shared by sub-

sets of cases in HRPs. It focuses on extended HRPs that are singularly powerful to identify sig-

nificant genetic segregation. Our strategy allows for genetic heterogeneity within such

pedigrees and provides formal significance thresholds for valid interpretation. Previously,

extended HRP have not delivered on their potential in complex traits because in common,

complex traits, HRPs are likely enriched for multiple susceptibility variants and may capture

both familial and sporadic cases in their branches. Our optimization strategy over subsets is

attractive because it allows for heterogeneity without prior knowledge of genetic similarities or

deep phenotyping. This new statistic also identifies the sharers and clearly delimits the shared

region, making follow-up interrogation straight-forward. This is a distinct advantage over

standard linkage analysis and previous pairwise SGS methods where neither sharers or the

region are defined [42].

Application of the method to extended MM pedigrees demonstrated the utility of this new

method and illustrated that the segments identified were used successfully to narrow the search

for risk variants in smaller pedigrees, allowing for an overall strategy that can utilize both large

pedigrees and smaller families together for discovery (Table 2, Fig 2 and Fig 3). Post-hoc, addi-

tional value can be gained from demographic and/or clinical data on the sharing subsets shed-

ding light on other shared characteristics that may aid future mapping. Also, we note that in

the absence of any significant findings, genome-wide SGS results can be used as genomic

annotations of segregation evidence for more heuristic approaches.

While we identified several rare, potentially deleterious coding variants of interest, several

of the SGS discovery pedigrees had no coding variants that satisfied prioritization criteria. We

believe this will be characteristic of complex traits and that regulatory variants will also play a

substantial role. Mutations with strong causal likelihood found in other disease cohorts may

focus the search for regulatory variation to particular genes within a shared segment, as with

USP45 in MM. In the absence of such compelling evidence, a return to pedigree segregation

methods will provide identification of statistically compelling regions which can concentrate

efforts to identify and characterize regulatory risk variants. Future work will include targeted

sequencing of the promising MM SGS identified to investigate non-coding variants that may

play a role in MM risk in these families. Our proposed method is a new analytic tool with the

potential to reinvigorate the use of extended HRPs in the identification of risk variants that

contribute to common, complex disease.

Multiple myeloma is a malignancy of the plasma cells that has been shown to be familial

[43]. Consistent with a role for genetics, case-control studies have been successful in identify-

ing association signals for 17 low-risk variants [44–48]. However, despite consistent evidence

for familial clustering, our study is the first to explore high-risk MM pedigrees. Using the

unique genealogical database available in Utah, we identified and studied extended MM HRPs.

We identified a genome-wide significant segment containing USP45, an important regulator

of DNA repair (Fig 2 and Table 2), and a genome-wide suggestive segment harboring other

genes in the GG-NER incision complex (ERCC1 and ERCC2). Exome sequencing in a collabo-

rative resource of high-risk families and early-onset cases revealed four rare, potentially delete-

rious coding variants; two novel variants in USP45 segregating in two pedigrees and two

variants in early-onset cases in ERCC3 and ERCC4, the latter annotated as pathogenic in
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ClinVar. Burden testing including sporadic MM, and comparing to controls, identified signifi-

cant enrichment for variants in MM cases in 2 of the 23 GG-NER genes in the protein endonu-

clease regulation complex.

In particular, the functional literature supports USP45 as a candidate cancer risk gene.

USP45 has been shown to deubiquitylate ERCC1, a catalytic subunit of the ERCC1-ERCC4

DNA repair endonuclease (ERCC4 also known as XPF) [31]. This endonuclease is a critical

regulator of DNA repair processes [34]. The complex repairs recombination, double strand

break, and inter-strand crosslink by cutting DNA overhangs around a lesion, degrades 3’ G-

rich overhangs in telomere maintenance, and plays a role in cancer prevention and in tumor

resistance to chemotherapy [31,34]. Mouse models have shown USP45 knockout cells have

higher levels of ubiquitylated ERCC1 and that cells are hypersensitive to UV radiation and

DNA inter-strand cross-links, repair of UV-induced DNA damage, and ERCC1 translocation

to DNA damage is impaired [31]. Hence, the deubiquitylase activity of USP45 is important for

maintaining the DNA repair ability of ERCC1-ERCC4. In total, these observations implicate

the GG-NER incision complex and specifically the interaction of USP45 and the disruption of

the ERCC1-ERCC4 role in DNA repair as a mechanism of potential importance in MM risk.

Our strategy also identified shared segments overlapping at chr1p36.11 in two Utah pedi-

grees containing ARID1A (Fig 3 and Table 2) and a borderline genome-wide suggestive seg-

ment in a third pedigree harboring another gene in the SWI/SNF complex (PBRM1). For the

SWI/SNF complex, exome sequencing revealed two rare, potentially deleterious variants in

ARID1A segregating in two pedigrees. Burden testing provided further evidence for enrich-

ment of variants in ARID1A specifically, and in 7 of the 15 genes in the complex. As a compo-

nent of the SWI/SNF chromatin remodeling complex, ARID1A facilities gene activation by

assisting transcription machinery gain access to gene targets [49]. Based on the patterns of

mutations in tumor cells, ARID1A likely functions as a tumor-suppressor [50]. Members of

the SWI/SNF chromatin remodeling complexes are mutated in 20% of malignancies [38], but

are extremely intolerant to LoF and missense variation [41] (S5 Table). Blockage of chromatin

remodeling may sustain cancer development [39]. Aberrant chromatin remodeling contrib-

utes to the pathogenesis of ovarian clear-cell carcinoma [50]. It has previously been shown that

ARID1A is intolerant to variation (LoF and missense mutations) [28], consistent with its

prominent somatic role in multiple tumors [38,50,51], including hematological malignancies

[52–54]. These observations implicate the SWI/SNF chromatin remodeling complex, and spe-

cifically ARID1A in MM risk.

This study has limitations. First, the method is applicable only to extended HRPs that are

singularly effective for identifying segregating segments (15 meioses between cases is optimal

[16]). The method is not directly applicable to the many smaller family-based resources that

have been gathered in the complex trait field and may therefore result in findings from single

large pedigrees that are private and difficult to replicate. However, as illustrated in our exam-

ple, in a collaborative setting containing both extended HRPs and smaller families, the

approach can be mutually beneficial. Second, our observation of two borderline genome-wide

suggestive overlapping segments at 1p36 led to our identification of ARID1A as a potential can-

didate risk gene and illustrates the potential for discoveries using overlapping subthreshold

evidence. However, it raises analytical questions of how to systematically identify such seg-

ments. This segment would have been ignored based on strict individual-pedigree thresholds

and highlights an important area for further methodological development. Third, as in all fam-

ily-based genetic studies our method is susceptible to inaccurate pedigree structures and

poorly matched control populations. However, relationship and ethnicity checks are standard

protocol and mitigate the possibility of error. Finally, this study is observational and cannot

describe causation. We have identified two complexes, several genes and specific variants as
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compelling candidates involved in MM risk, but further functional studies will be required to

determine and characterize the mechanisms involved in risk.

In conclusion, we have developed a strategy for gene mapping in complex traits that

accounts for heterogeneity within HRPs and formally corrects for multiple testing to allow for

statistically rigorous discovery. We applied this strategy to MM, a complex cancer of plasma

cells, and identified multiple shared segments containing genes in nucleotide excision repair

and SWI/SNF chromatin remodeling. Exome follow-up supported these segments in both the

Utah large HRPs and smaller families from other sites. Our study offers a novel technique for

HRP gene mapping and demonstrates its utility to narrow the search for risk-variants in com-

plex traits.

Methods

Ethics statement

Human subjects research was performed with informed written consent, under protocols

approved by ethics committees for: University of Utah (protocol 29801), Memorial Sloan Ket-

tering (protocols 06–107 and 00–069), Comité de Protection des Personnes-SUD EST IV (pro-

tocols ID-RCB N˚ 2007-A00644-49 and DGS2007-0547), Mayo Clinic (protocols 489–04,

2128–05 and 1465–04), International Agency for Research on Cancer (protocol 12–19), and

Weill-Cornell (protocol 0010004608).

SGS analysis in Utah, Myeloma HRPs

HRPs and genotyping. All participants were studied with informed consent under proto-

cols approved by the University of Utah IRB. Using the statewide Utah Cancer Registry

(UCR), all living individuals with MM in Utah were invited to participate and peripheral

blood was collected for DNA extraction. Participants were linked in the Utah Population Data-

base (UPDB), a unique resource that integrates UCR records with a 5M person genealogy.

HRPs were defined as pedigrees containing statistical excess of MM (p<0.05), based on sex

and cohort-specific rates in Utah. Eleven of the HRPs identified in the UPDB contained 3 or 4

MM cases with DNA (total MM cases per pedigree ranged from 4 to 37) with 8 to 23 meioses

between studied MM cases. DNA from the 28 cases was genotyped on the Illumina Omni

Express high-density SNP array.

Quality control. Only bi-allelic SNPs were considered. Genotypes and individual call-

rates were used to ensure high quality data. PLINK was used to remove SNPs with< 95% call

rate across individuals [55]. The final SNP set contained 678,447 single nucleotide variants.

After SNP removal for low call rates, individuals were removed based on< 90% call rate across

the genome, or if they failed the PLINK sex check. One MM case was removed. The QC’ed

SNP data were transformed to match strand orientation of the 1000Genomes. PLINK relation-

ship estimates were assessed against pedigree structure from the UPDB to identify any poten-

tial issues with pedigree structure. None were found.

Probability of sharing a segment. SGS analysis identifies contiguous SNPs that are

shared identical-by-state (IBS) by cases in a HRP and assigns an empirical probability of

chance ancestral sharing [26]. First, a set of cases in a HRP are defined and all segments of

contiguous SNPs shared IBS are identified. All shared segments > 20 SNPs are considered.

Lengths shorter than 20 are commonly shared between unrelated individuals. Second, popula-

tion-based data (here we used CEU and GBR data from the 1000Genomes Project [56]) are

used to estimate a graphical model for linkage disequilibrium (LD) [57], providing a probabil-

ity distribution of chromosome-wide haplotypes in the population. Third, pairs of haplotypes

are randomly assigned to pedigree founders according to the haplotype distribution. Founders
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are individuals whose parents are not specified in the pedigree. For chromosome-wide haplo-

type simulations the full chromosome LD model is used. Fourth, Mendelian segregation and

recombination are simulated to generate genotypes for all pedigree members. The Rutgers

genetic map [58] is used for a genetic map for recombination, with interpolation based on

physical base pair position for SNPs not represented. Steps two through four create one simu-

lated data set, a random sample from the null hypothesis. This process is repeated hundreds of

thousands to millions of times for each subset.

Each shared segment in the real data (step one) is compared to the simulated segments at

the precise genomic location. The number of times the null segment equals or encompasses

the observed segment is counted and divided by the total number of simulations to generate

the empirical nominal p-value for the observed shared segment. The simulations continue

until a p-value has been estimated to a required resolution, or until it surpasses a defined sig-

nificance threshold. To facilitate this in an efficient manner, we follow-up specific segments

using marginal distributions from the LD model, established using standard graphical model-

ing methods [59]. The marginalized LD model encompassing only the region of interest, but

capturing relevant LD to accurately simulate genotypes from this region alone. This reduction

in markers vastly increases the speed in which simulations are generated. The graphical model

estimation, marginalization, and simulation processes are computationally efficient requiring

time and storage that is linear with the number of SNPs being considered.

Heterogeneity optimization. We systematically perform SGS analysis on each subset of

cases in a HRP. If required, the number of subsets can be limited by meioses or subset size.

This may be necessary for common traits with large full sets. A lower limit of 10 meioses is a

good rule of thumb for reducing the computational burden of subset assessment. At each

marker position across the genome, the optimized segment is the one minimizing the p-value

across all subsets considered. All segments selected by the optimization procedure, and their

respective p-values, comprise the final optimized SGS results.

Significance threshold determination. A transformation, Y = −log10(p) is performed to

the optimized genome-wide SGS p-value vector. The results are fit to a gamma distribution

using the MLE method. Y*Γ(k, σ) (k shape, σ rate parameterization). The Theory of Large

Deviations has previously been used in pedigree studies to model extreme values in a genome-

wide genetic setting [27], and it has been shown that for a statistic following a Gaussian distri-

bution, the number of segments where the statistic exceeds a threshold W has mean:

mðWÞ ¼ ½C þ 2rGW2�aðWÞ; ð2Þ

where α(W) is the pointwise significance level of exceeding W, C is the number of chromo-

somes considered, ρ reflects the recombination rate (ρ = 1 for general pedigrees), and G is

genetic length in Morgans. Lander & Kruglyak demonstrated that the same equation extends a

statistic following the chi-squared distribution:

mðXÞ ¼ ½C þ 2rGX�aðXÞ; ð3Þ

based on the distributional relationship between the chi-squared and Normal distributions

W2 = X. Here, we use the distributional relationship between the gamma and chi-square distri-

butions, our estimated k and σ gamma parameters, where T = 10−Xσ/2, X ¼ 2Y=s � w2
2k, and

the genetic length of the genome (matched to that used in the gene-drop) to utilize Eq 3 and

derive μ(X) thresholds. Solving for μ(X) = 0.05 and μ(X) = 1 produced significance and sugges-

tive thresholds, respectively. These thresholds are remarkably stable after a few hundred thou-

sand simulations. For pedigrees with very large numbers of meioses (>50) between the full

case-set, a larger number of simulations may be required.
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Software availability. The SGS program is available for download at http://

healthsciences.utah.edu/huntsman/labs/camp/analysis-tool/shared-genomic-segment.php.

The main architecture is written in Java. Probability assessments can be multi-threaded, but

the largest parallelization gains are achieved by running independent analyses across

chromosomes.

Targeted sequencing

Participants. WES data were interrogated in the regions defined by the shared segments

of interest. WES data was available on 964 controls [30] and 1,063 MM or MGUS cases includ-

ing: 28 MM from the 11 Utah HRPs; 70 MM and 46 MGUS from 44 densely clustered families

(each containing at least 2 MM or at least 1 MM and 1 MGUS); 186 genetically-enriched MM/

MGUS (148 MM and 38 MGUS) including early-onset and MGUS clustering in families; and

733 sporadic MM cases from dbGaP [29]. Of the 44 densely clustered, MM/MGUS high-risk

families, 25 were ascertained by INSERM, France (36 MM, 38 MGUS), 9 by Mayo Clinic, Min-

nesota (10 MM, 8 MGUS, 10 unaffected family members), 6 by Memorial Sloan Kettering

Cancer Center, New York (14 MM), 3 by International Agency for Research on Cancer, France

(8 MM), and 1 by Weill Cornell, New York (2 MM). Most of the families had both MM and

MGUS cases (32 families total) and 12 families only had MM cases sequenced. Six families had

at least one unaffected relative sequenced. (See S2 Table) All individuals in the Utah HRPs and

all but three of the densely clustered families were of non-Finish European descent.

Joint calling analysis. To perform joint calling of all of the exome sequences, we utilized

the calling pipeline developed at the Icahn School of Medicine at Mt. Sinai, based on GATK

Best Practices [60]. Briefly, FASTQ files were aligned to genome build 37 using bwa version

0.7.8, indels were realigned using GATK, duplicates were removed using Picard MarkDupli-

cates, and base quality scores were recalibrated using GATK. HaplotypeCaller was then used

to generate individual GVCF files for each individual, and GenotypeGVCFs was used to gener-

ate the final joint calling. The jointly-called VCF was annotated with SNPEff and loaded into a

GEMINI (GEnome MINIng) database for ease of querying [61]. Some additional functional

annotations available in the GEMINI suite include CADD, ANNOVAR, conservation, loca-

tion, and if the variant was listed in OMIM.

Variant prioritization. A GEMINI query was developed to identify variants which were:

high or medium impact; AAF< 0.001 in the non-Finnish, European, gnomAD individuals;

and within the shared segments of interest. Genes harboring segregating variants in at least

two high-risk pedigrees (the discovery pedigree and/or the 44 high-risk pedigrees from collab-

orating sites) were considered candidate susceptibility genes. These criteria were selected to

maintain findings that were unlikely by chance.

Framework for joint assessment of pedigree findings (SGS and sequencing). Here we

present a framework to provide an estimate for a study-wide rate of observing SGS regions

and sequence variants. These approximations are presented to provide some statistical per-

spective of the observed findings to guide interpretation.

The first stage is SGS analyses in the Utah pedigrees. As described above, SGS results are

assessed against significance thresholds which account for the multiple testing across the

genome and the optimization over subsets. This step is a formal statistical assessment and pro-

vides a fully corrected rate (μ) of observing an SGS region per pedigree; for example, μ = 0.05

indicates a region that would be expected to be observed once in 20 genomes by chance, and is

referred to as genome-wide significant (see “Significance threshold determination”, above).

The second stage is prioritization of genes based on observed sequence variants in pedi-

grees. For this step, we interrogated the region defined by the SGS analysis; both in the Utah
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pedigree that generated the region, and in an independent set of (smaller) pedigrees from our

collaborators (44 pedigrees). We prioritized genes where at least two rare (AAF�0.001),

HIGH/MED impact sequence variants were observed in the same gene in two pedigrees; each

variant shared by multiple cases in each pedigree. In ExAC exomes, 3,563,315 variants have

VEP annotation for HIGH or MED impact severity variant [28]. These arise from 60,706 indi-

viduals (121,412 chromosomes) across 26,724 genes [28]. Additionally, ~99% are < 0.01, and

~72% are not seen in the 1000G (i.e. frequency<0.001) [28]. From these ExAC observations

we can estimate that on average there are 0.0008 HIGH/MED variants observed with

AAF< 0.001 per chromosome per gene (= (3,563,315×0.72) / (121,412×26,724)).

In the pedigree that defined an SGS region (i.e., where segregation of the region to n cases

has already been defined), sequencing in the n cases amounts to sequencing (n+1) different

chromosomes and thus (n+1) chances to observe a variant of interest. However, only 1/(n+1)

times will the variant reside by chance on the segregating chromosome. Hence, the probability

of observing a segregating variant of interest is (n+1)×0.0008×1/(n+1), which is 0.0008. In the

independent set of 44 small pedigrees, the simplest structure is a sib-pair. In a sib-pair there

are 4 parental chromosomes to observe a variant of interest, and the chance probability it is

inherited to both siblings is 0.25, which also leads to an overall occurrence of sharing of 0.0008

(= 4×0.0008×0.25). More distant relatives lead to less likely chance sharing. Hence, we can

conservatively model the number of segregating rare, MED/HIGH impact severity variants, V,

observed by chance in 45 pedigrees by a Binomial distribution, V~Bin(45, 0.0008). Based on

this distribution, the probability of observing at least two rare, HIGH/MED impact segregating

variants in the same gene is ø = P(V�2) = 6.2×10−4. We can use a simple Bonferroni adjust-

ment to account for the G genes in the SGS region.

Finally, for N SGS pedigrees in the initial stage, there are N opportunities to discover SGS

regions. Hence, the overall rate of an SGS finding plus sequence variant findings within the

SGS region can be approximated by π = N × μ × ø × G. Where π�0.05, this indicates study-

wide significance accounting for chance findings across both stages and all multiple testing.

Assuming a genome-wide significant SGS result (μ = 0.05), and N = 11 SGS pedigrees, π
remains below 0.05 for G<147. Hence, in general, our protocol to define a candidate gene as

one with 2 segregating rare (AAF�0.001), HIGH/MED sequence variants within a significant

SGS region will generally lead to discoveries that are unexpected by chance (provided the SGS

contains less than 147 genes). In particular, for our most significant chromosome 6 SGS find-

ing (μ = 0.042 and G = 9) the overall combined study-wide rate is π = 0.0026

(11×0.042×0.00062×9).

Burden testing. Based on the candidate genes generated from the pedigree findings

(USP45 and ARID1A), burden testing was performed on jointly called and processed WES

from 1,063 MM/MGUS cases and 964 unaffected controls for the 23 genes in the GG-NER

incision complex (including USP45) and 15 genes in the SWI/SNF chromatin remodeling

complex. The GEMINI software [61] was used to perform a c-alpha test [62] with 1,000 per-

mutations. Only variants with AAF< 0.05 and high or moderate predicted impact were

included in the analysis.

Supporting information

S1 Fig. SGS analysis workflow. Overview of the strategy pipeline. Genotypes can be generated

from a high-density SNP array, or by extracting SNVs from whole-genome sequencing. CEU

and GBR genotypes (unrelated individuals only) from the 1000Genomes Project are generally

used as population controls. Dotted boxes represent steps done per-pedigree. Dash-dot boxes

represent steps done on all subsets of cases within a pedigree. Dashed box contains step
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repeated for each simulation. Abbreviations: SNP–single nucleotide polymorphism; SGS–

shared genomic segment; LD–linkage disequilibrium; PED–pedigree file (contains relation-

ships and genotypes).

(EPS)

S2 Fig. Genome-wide suggestive segment contains ERCC1. a) Utah pedigree carrying the

genome-wide suggestive SGS at chr19q13.32. + indicates the genotyped MM cases that are

SGS carriers,—indicates genotyped and non-carriers, no carrier status indicates not geno-

typed. b) Genomic region captured by the SGS. ERCC1 and ERCC2 are contained.

(EPS)

S3 Fig. Shared segment containing PBRM1. a) Pedigree Utah 549917 carries a genome-

wide suggestive SGS at chr3p21.2-p21.1. + indicates the genotyped MM cases that are SGS car-

riers,—indicates genotyped and non-carriers, no carrier status indicates not genotyped. b)

Genome region captured by the SGS including PBRM1, a component of the SWI/SNF chro-

matin remodeling complex.

(EPS)

S1 Table. Genome-wide thresholds and segments.

(PDF)

S2 Table. Whole-exome sequenced families. Total MM, MGUS, and controls in each pedi-

gree and from each site.

(PDF)

S3 Table. GG-NER Incision Complex genes. Burden testing results (based on 1,063 MM/

MGUS cases and 964 unaffected controls), SGS and prioritized SNV results, and intolerance to

missense and loss of function variants (based on ExAC population data).

(PDF)

S4 Table. Evidence for endonuclease regulation of DNA repair.

(PDF)

S5 Table. SWI/SNF Complex genes. Burden testing results (based on 1,063 MM/MGUS cases

and 964 unaffected controls), SGS and prioritized SNV results, and intolerance to missense

and loss of function variants (based on ExAC population data).

(PDF)

S6 Table. Evidence for SWI/SNF chromatin remodeling.

(PDF)

S1 File. Phenotype and pedigree membership details of samples used to explore sequence

variants in SGS regions.

(TXT)

S2 File. Exome variants (meeting requirements in Methods section, Variant Prioritization)

within the shared segments.

(VCF)
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