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ABSTRACT 

Increasing evidence suggests the involvement of metabolic alterations in neurological 

disorders, including Alzheimer’s disease (AD), and highlights the significance of the peripheral 

metabolome, influenced by genetic factors and modifiable environmental exposures, for brain 

health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-

free middle-aged participants of the population-based Rotterdam Study. We assessed the 

relation of metabolites with general cognition (G-factor) and magnetic resonance imaging 

(MRI) markers using linear regression and estimated the variance of these metabolites 

explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and 

medication using gradient boosting decision tree analysis. Twenty-one metabolites and one 

metabolite were significantly associated with total brain volume and total white matter 

lesions, respectively. Fourteen metabolites showed significant associations with G-factor, with 

ergothioneine exhibiting the largest effect (adjusted mean difference = 0.122, P = 4.65x10-7). 

Associations for nine of the 14 metabolites were replicated in an independent, older cohort. 

The metabolite signature of incident AD in the replication cohort resembled that of cognition 

in the discovery cohort, emphasizing the potential relevance of the identified metabolites to 

disease pathogenesis. Lifestyle, clinical variables, and medication were most important in 

determining these metabolites’ blood levels, with lifestyle, explaining up to 28.6% of the 

variance. Smoking was associated with ten metabolites linked to G-factor, while diabetes and 

antidiabetic medication were associated with 13 metabolites linked to MRI markers, including 

N-lactoyltyrosine. Antacid medication strongly affected ergothioneine levels. Mediation 

analysis revealed that lower ergothioneine levels may partially mediate negative effects of 

antacids on cognition (31.5%). Gut microbial factors were more important for the blood levels 

of metabolites that were more strongly associated with cognition and incident AD in the older 

replication cohort (beta-cryptoxanthin, imidazole propionate), suggesting they may be 

involved later in the disease process. The detailed results on how multiple modifiable factors 

affect blood levels of cognition- and brain imaging-related metabolites in dementia-free 

participants may help identify new AD prevention strategies. 
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INTRODUCTION 

Growing evidence implicates alterations of the peripheral metabolism in brain-related 

diseases including Alzheimer’s disease (AD) (1-3). Multiple studies have linked the blood levels 

of various metabolites, including amino acids (leucine, isoleucine, glutamine, valine), lipids 

(fatty acids, acylcarnitines, phosphatidylcholines, sphingomyelins, bile acids), and 

lipoproteins, with AD-related phenotypes such as cognition and brain imaging phenotypes, or 

the conversion from a cognitively normal state to AD (4-15).  

Highlighting the long pre-symptomatic phase of AD, structural and functional changes in 

various brain regions and alterations in neuropsychological markers emerge many years 

before the manifestation of the disease (16-19). In particular, brain atrophy (cortical thinning, 

reduction in hippocampal volume), and the presence of white matter hyperintensities as 

detected through magnetic resonance imaging (MRI) serve as distinctive neurodegenerative 

and vascular imaging markers associated with AD (20-22). Studying the metabolic changes 

linked with these features of AD early, before the onset of any symptoms might help to 

identify metabolites that are important in the etiology of the disease. 

Blood metabolomes reflect metabolic states as resulting from the interplay between genetics, 

gut microbiome, and exposome (23, 24). In recent studies, the gut microbiome and the 

exposome, which includes lifestyle factors, medication use, and further environmental 

exposures, emerged as important contributing factors to influence metabolite levels in 

addition to genetics (25-28). For example, by building a reference map of potential 

determinants of the human serum metabolome in an Israeli cohort (25), diet and gut 

microbiome were shown to play a crucial role in defining the metabolic repertoire within the 

systemic circulation. Metabolites co-metabolized by gut microbiota may not only serve as 

nutrients for microbial flora and the host, but also as signaling molecules to regulate host 

molecular pathways (29). 

As the gut microbiome and many factors of the exposome are modifiable in nature, their 

management provides an opportunity to stabilize metabolism and counteract disease-related 

metabolic alterations. However, to define targeted interventions and prevention strategies, a 

profound understanding is required of (i) the metabolites associated with early alterations in 

brain structure and cognitive function related to AD, and (ii) the extent to which these 
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metabolite levels are influenced (and thus potentially modifiable) by the gut microbiome and 

the exposome in pre-symptomatic participants. 

In this study, we first investigated the association of metabolites with general cognition and 

magnetic resonance imaging markers of AD in a dementia-free sample of the prospective 

population-based Rotterdam Study (RS). In a second step, we evaluated the contribution of 

genetic variation, gut microbiome, various lifestyle factors, medication use, and clinical 

features to define levels of identified metabolites in circulation and investigated the interplay 

of these factors in detail for selected examples, exploring their potential as targets for 

intervention and prevention.  

 

RESULTS 

For this study, the levels of 1,387 metabolites were determined in plasma samples from 1,082 

participants of the RSIII-2 cohort (i.e., the third cohort at second follow-up) of the Rotterdam 

Study using a non-targeted metabolomics approach (Metabolon HD4). To elucidate the 

connection of the peripheral metabolome with brain health and function, we first investigated 

the association of general cognition and MRI markers with the levels of 991 frequent 

metabolites in 1,068 participants (after data preprocessing) (see Methods; Supplementary 

Figure 1). For cognition, we replicated our findings in 874 participants of the older RSI-4 

cohort, an independent sample (first cohort) of the Rotterdam Study, for which metabolomics 

data from the same platform were available. The characteristics of participants from the RSIII-

2 (N = 1,068) and RSI-4 (N = 874) cohorts are summarized in Table 1. Participants of both 

cohorts were dementia-free at the time of blood sampling.  

Table 1: Population characteristics.  

Study characteristics  Rotterdam Study III 
(N = 1068) 

Rotterdam Study I 
(N = 874) 

Age in years (mean, SD) 62.54 (5.91) 76.25 (4.78) 
Sex (Female %) 598 (56) 506 (57.89) 
Body mass index in kg/m2 (mean, SD) 27.35 (4.30) 27.54 (4.23) 
Smoking status (%) 

  

  Never 350 (32.56) 250 (28.60) 
  Former 574 (54.42) 531 (60.75) 
  Current 140 (13.02) 93 (10.64) 
Educational attainment (%) 
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  Primary education 422 (39.62) 519 (59.93) 
  Further education 308 (28.92) 257 (29.67) 
  Higher education 335 (31.45)  90 (10.39) 
Hypertension (%) 497 (46.66)  506 (57.89) 
Total cholesterol (mmol/L) [Mean, SD] 5.578 (1.12) 5.56 (0.95) 
HDL cholesterol (mmol/L)  [Mean, SD] 1.507 (0.45)  1.44 (0.39) 
Use of lipid lowering drugs  (%) 286 (12)  186 (21.16) 
Diabetes (%) 65 (6.09) 62 (7.11) 

 

To explore the potential of modifying the cognition- and MRI markers-associated metabolites 

through interventions, we assessed how much metabolite levels were influenced by 

modifiable versus unmodifiable features as a second step. For this purpose, we estimated the 

portion of metabolite variance that is explained by the variation in the participants’ gut 

microbiome, lifestyle, clinical factors, medication, and genetics for all metabolites, and 

additionally investigated the pairwise association between each factor and metabolite. Details 

of the performed analyses are provided in the Methods section. A general overview over the 

steps is given in Supplementary Figure 2. 

 

General cognition and brain MRI markers are associated with distinct blood metabolites in 

a population-based cohort 

Analyzing the relationship of 991 metabolites with general cognition, we observed significant 

associations (false discovery rate (FDR) < 0.05) of 14 metabolites with cognition while 

adjusting for age, sex, body mass index (BMI), and lipid-lowering medication use (model 1) 

(Figure 1, Table 2, Supplementary Table 1). Higher levels of ergothioneine (adjusted mean 

difference = 0.122, P = 4.65x10-7), uridine (0.093, P = 1.0x10-4), 2-deoxyuridine (0.083, P = 

5.48x10-4), and two chemically uncharacterized metabolites (X – 11849, X – 11847) were 

associated with better cognition. Moreover, lower levels of seven sulfated xenobiotic 

metabolites (4-vinylguaiacol sulfate, o-cresol sulfate, 3-acetylphenol sulfate, 3-hydroxy-2-

methylpyridine sulfate, 2-naphthol sulfate, 4-vinylcatechol sulfate, 3-methylcatechol sulfate) 

and two uncharacterized metabolites (X – 25420, X – 24418) showed association with better 

general cognition. These metabolites fall into three main sets of correlated metabolites 

(Supplementary Figure 3), namely (i) sulfated xenobiotics (0.47 < r < 0.79), (ii) the nucleotides 

2’-deoxyuridine and uridine (r = 0.37) and ergothioneine (r = 0.27), and (iii) the 
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uncharacterized metabolites X – 11849, X – 11847 (r = 0.86). After adjustment for education 

(model 2) (Supplementary Table 1), the associations for 12 out of the 14 metabolites 

remained significant (FDR < 0.05).  

Table 2: Metabolites associated with general cognition. 

 Discovery cohort (RSIII-2) Replication cohort (RSI-4) 
Metabolite Beta SE P-Value FDR Beta SE P-Value 
ergothioneine 0.122 0.024 4.65x10-7 4.61x10-4 0.073 0.028 9.60x10-3 
4-vinylguaiacol sulfate -0.114 0.024 3.85x10-6 1.91x10-3 -0.137 0.029 1.75x10-6 
o-cresol sulfate -0.107 0.024 1.00x10-5 3.32x10-3 -0.148 0.028 1.83x10-7 
X - 11849 0.104 0.024 1.41x10-5 3.48x10-3 0.016 0.028 5.62x10-1 
3-acetylphenol sulfate -0.098 0.024 4.41x10-5 7.28x10-3 -0.079 0.028 5.02x10-3 
X - 25420 -0.104 0.025 3.73x10-5 7.28x10-3 -0.059 0.030 5.04x10-2 
3-hydroxy-2-methyl-
pyridine sulfate 

-0.097 0.024 5.22x10-5 7.40x10-3 -0.090 0.028 1.40x10-3 

X – 11847# 0.095 0.024 7.07x10-5 8.75x10-3 0.002 0.028 9.31x10-1 
uridine 0.093 0.024 1.00x10-4 1.10x10-2 0.020 0.028 4.77x10-1 
2-naphthol sulfate -0.094 0.024 1.11x10-4 1.10x10-2 -0.103 0.028 2.46x10-4 
4-vinylcatechol sulfate -0.091 0.024 2.16x10-4 1.95x10-2 -0.103 0.028 2.81x10-4 
3-methylcatechol 
sulfate#  -0.087 0.024 3.53x10-4 2.92x10-2 -0.091 0.028 1.37x10-3 

X - 24418 -0.086 0.024 4.08x10-4 3.11x10-2 -0.052 0.028 6.66x10-2 
2'-deoxyuridine 0.083 0.024 5.48x10-4 3.88x10-2 0.061 0.028 2.79x10-2 

Results from model 1 (covariates: age, sex, BMI, and lipid lowering medication); # indicates metabolites not 
significant in model 2 (covariates: model 1 + education) 
 

Testing MRI markers for total brain volume, total hippocampal volume, and white matter 

lesions, we observed significant association between 21 metabolites with total brain volume 

and one metabolite (S-adenosylhomocysteine (adjusted mean difference = 0.123, P = 1.73x10-

4) with total white matter lesions. None of the metabolites was significantly associated with 

total hippocampal volume (Figure 1, Supplementary Table 2). Among the significant 

metabolites, higher levels of three sphingomyelins, glycerophosphorylcholine (GPC), 6-

bromotryptophan, argininate, and X – 11787 were associated with higher brain volume. In 

contrast, lower levels of caffeine, theophylline, paraxanthine, 1,3,7-trimethylurate, 1,3-

dimethylurate, cyclo(leu-pro), (S)-3-hydroxybutyrylcarnitine, 3-hydroxyhexanoylcarnitine, 3-

hydroxyoleoylcarnitine, 3-hydroxysebacate, N-lactoyltyrosine, two metabolite signals of 

glutamine conjugates of C6H10O2 (2), and X – 26107 showed association with higher brain 

volume. These metabolites can be assigned to one of four main sets of highly correlated 

metabolites (Supplementary Figure 3), with (i) six metabolites related to the caffeine pathway 

(0.46 < r < 0.92), (ii) three sphingomyelins and glycerophosphorylcholine (GPC) (0.24 < r < 
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0.77), (iii) seven metabolites including three hydroxylated acylcarnitines and a hydroxylated 

dicarboxylic fatty acid (0.41 < r < 0.85), and (iv) arginate, N-lactoyltyrosine, X – 11787, and S-

adenosylhomocysteine (SAH) (associated with white matter lesions) (0.24 < r < 0.42). 6-

bromotryptophan moderately correlated (r = 0.32) with 2-deoxyuridine, which was associated 

with cognition.  

In sex stratified analyses, only one metabolite (4-vinylguaiacol sulfate) was significantly (FDR 

< 0.05) associated with cognition in males (adjusted mean difference = -0.143, P = 2.73x10-5), 

and only three metabolites (1,3,7-trimethylurate, caffeine, sphingomyelin (d18:1/20:1, 

d18:2/20:0)) showed significant association (FDR < 0.05) with total brain volume in female 

participants. These findings are most likely explained by the reduced statistical power in the 

stratified analyses. 

 

Figure 1: Association of metabolites (from left to right) with general cognition, total brain volume, total 
hippocampal volume, and total white matter lesions. Red circles indicate beta estimates for 
metabolites that are significant at FDR < 0.05. Note: N-lactoyltyrosine is the updated annotation of a 
metabolite that was annotated as 1-carboxyethyltyrosine in the original data set. This correction was 
provided by Metabolon. 
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Metabolite signatures of cognition and MRI markers are concordant 

While the set of metabolites significantly associated with cognition (n = 14) and MRI markers 

(n = 22) did not overlap, the patterns of effects as visualized in the forest plots in Figure 1 

suggest similarities in the observed effects. We tested the overall concordance of metabolite 

signatures across these related phenotypes by assessing the correlation of the regression 

coefficients for cognition and MRI markers, including all metabolites that showed nominal 

association (P < 0.05) to one of the compared phenotypes. Regression coefficients for the 

metabolite associations of cognition significantly correlated with the coefficients from the 

association with total brain volume (Supplementary Figure 4B; r = 0.33, P = 4.66x10-11), with 

total hippocampal volume (Supplementary Figure 4C; r = 0.27, P = 1.15x10-7), and with white 

matter lesions (Supplementary Figure 4D; r= -0.49, P = 5.39x10-24).  

Out of 105 metabolites that nominally associated (P < 0.05) with cognition, 49 also showed 

nominal association to at least one of the three MRI phenotypes (Supplementary Figure 4A). 

3-acetylphenol sulfate was the only metabolite that showed significant association with 

general cognition (adjusted mean difference = -0.098, P = 4.41x10-5) and nominal association 

with all three MRI phenotypes (total brain volume (-0.029, P = 9.59x10-3), hippocampal volume 

(-0.069, P = 7.89x10-3), white matter lesions (0.092, P = 2.24x10-3)). Moreover, out of the 14 

metabolites significantly associated with cognition, concordant effects were observed for 

ergothioneine between cognition, hippocampal volume, and white matter lesions, for uridine, 

2’-deoxyurdine, X – 11847, and X – 11849 between cognition, hippocampal volume, and total 

brain volume but not white matter lesions. Conversely, the uncharacterized metabolites X – 

24418 and X – 25420 did not show any effects in the association with MRI phenotypes.  

 

Metabolite associations with cognition replicate in an independent cohort and overlap 

with AD metabolite signature 

We replicated the findings obtained from the association of metabolites with general 

cognition in this study (RSIII-2 cohort) in participants from the RS1-4 cohort. Among the 14 

metabolites associated with general cognition (FDR < 0.05), nine metabolites showed 

significant association (P < 0.05) in the replication analysis with concordant direction of 

association (Table 2).  
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We additionally compared the regression coefficients of metabolites associated with general 

cognition in RSIII-2 (P < 0.05) to the regression coefficients observed for the association of 

these metabolites with incident AD diagnosis in the RSI-4 cohort and found a significant 

correlation between the signals (r = -0.73, P = 1.03x10-13) (Figure 2, Supplementary Table 3). 

Among the cognition-related metabolites (P < 0.05), beta-cryptoxanthin and imidazole 

propionate showed the largest effects with incident AD diagnosis (beta-cryptoxanthin: -0.210, 

P = 2.54x10-4; imidazole propionate: 0.199, P = 5.11x10-4). 

 

 

Figure 2: Concordance of metabolite signatures between cognition in the RSIII-2 cohort and incident 
AD diagnosis in the older RSI-4 cohort, comparing the regression coefficients of metabolites nominally 
associated (P < 0.05) with general cognition with their coefficients for incident AD (cox regression). 
Colors indicate the classes of metabolites.  
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To investigate which unmodifiable and potentially modifiable factors influence the blood 

levels of the 36 metabolites that associated with general cognition or MRI markers, we 

estimated how much of each metabolite’s variance is explained by genetic (single nucleotide 

polymorphisms (SNPs)), lifestyle (BMI, alcohol consumption, smoking, and education), clinical 

(diabetes, blood pressure), medication (n = 31), and microbial features (based on 16S rRNA 

sequencing data) in the RSIII-2 cohort (see Methods; Supplementary Table 4). For genetic 

factors, we chose a conservative approach by only considering SNPs that showed genome-

wide significant associations (P = 5.0x10-8) with metabolite levels in the RSIII-2 cohort. For 

comparison with genetics-based explained variance (EV), SNP-based heritability estimates are 

provided in Supplementary Table 5. 

Among the metabolites associated with general cognition, lifestyle features explained 

considerable parts of the variance of nine metabolites, including 2-naphthol sulfate (28.6 %), 

o-cresol sulfate (21.0 %), 4-vinylguaiacol sulfate (11.3 %), 4-vinylcatechol sulfate (7.8 %), and 

ergothioneine (4.7 %) (Figure 3A). Genetics explained 1.2 % of the variance of 2-deoxyuridine 

and 0.9 % of X – 24418. While clinical factors did not account for the variance observed for 

any of the 14 cognition-associated metabolites, medication did explain part of the variance 

for six metabolites, with the highest value being observed for ergothioneine (3.6 %). Gut-

microbiota also explained part of the variance for six of the cognition-associated metabolites, 

including 3-hydroxy-2-methylpyridine sulfate (5.4 %), 4-vinylguaiacol sulfate (4.3 %), and 

ergothioneine (3.9 %). Interestingly, we observed higher influence of the gut microbiome for 

the metabolites that showed largest effect sizes in the analysis of incident AD diagnosis in the 

older RSI-4 cohort. For example, the gut microbiome explained more than 5 % of the variance 

in measured blood levels (Supplementary Tables 3 and 4, Supplementary Figure 5) of various 

bile acids and the cognition-related metabolites (P < 0.05) imidazole propionate (11.3 %) and 

beta-cryptoxanthin (5.1 %).  

For metabolites associated with total brain volume or white matter lesions, lifestyle (11 

metabolites, EV range 0.20 – 8.8 %), medication use (15 metabolites, range 0.20 – 17.7 %) and 

clinical factors (13 metabolites, EV range 0.6 – 16.2 %) were the major factors influencing the 

metabolites’ variance in our study. Gut microbiota explained part of the variance of four 

metabolites (EV range 0.7 – 5.1 %). Genetic factors explained some of the variance of three 

metabolites (EV range 1.5 – 2.9 %) (Supplementary Table 4, Figure 3B). 
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Figure 3: Explained variance (EV) of general cognition- (A) and MRI marker-associated (B) metabolites 
by genetics, microbiota, lifestyle, clinical variables, and medication use.  Note: N-lactoyltyrosine is the 
updated annotation of a metabolite that was annotated as 1-carboxyethyltyrosine in the original data 
set. This correction was provided by Metabolon. 

 

Next, we compared the influences on the cognition- and MRI-related metabolites with those 

observed for all profiled metabolites (Figure 4) and tested whether the associated metabolites 

were enriched in the set of metabolites with EV > 0 for any factor. Out of the 991 tested 

metabolites, genetics explained some variance (maximal 67.0 %) for 130 metabolites. Gut-

microbiota contributed to the levels of 148 metabolites, explaining up to 34.7 % of the 

variance. Lifestyle factors explained up to 29.6 % of the variance for 333 metabolites, clinical 

features explained up to 18.4 % for 188 metabolites, and medication use explained up to 40.3 
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% for 430 metabolites. Among the five tested feature groups, EV values (EV > 0) of metabolites 

for clinical features showed a strong positive correlation (FDR < 0.05) with those for 

medication use (r = 0.660) and lifestyle factors (r = 0.202) (Supplementary Figure 6).  

For the 36 cognition- and MRI-related metabolites, significant enrichment (considering the 

EVs of all 991 studied metabolites) was observed for the influence of lifestyle factors and 

clinical features, with 20 metabolites being explained to some extent by lifestyle factors (P = 

6.48x10-3) and 13 metabolites by clinical features (P = 1.48x10-2). We did not observe 

significant enrichment for medication use or genetics (medication use: 21 metabolites, P = 

8.56x10-2; genetics: 5 metabolites, P = 0.803). With 10 cognition- or MRI-related metabolites, 

for which the variance was partially explained by gut microbiota, the enrichment narrowly 

missed the significance threshold (P = 5.15x10-2).  

 

Figure 4: Explained variance of metabolites by gut microbiome, medication use, clinical factors, 
lifestyle, and genetics (A). Red dots represent metabolites associated with general cognition or with 
magnetic resonance imaging markers (FDR < 0.05). (B) Overlap of metabolites explained (EV > 0) by 
the five tested classes of features. 

 

Associations of cognition- and MRI-associated metabolites with individual level features  

To further disentangle the determinants of metabolites associated with cognition and MRI 

phenotypes, we checked their association with lifestyle factors, clinical features, medication 

use, and gut microbiota in univariate regression analyses. The complete results are provided 

in Supplementary Tables 6 - 9.  
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Out of the 14 metabolites associated with general cognition, 13 metabolites showed 

significant association (FDR < 0.05) with different lifestyle factors (Supplementary Figure 7, 

Supplementary Table 6). In particular, smoking was associated with higher levels of the 

sulfated metabolites (2-naphthol sulfate, o-cresol sulfate, 3-hyroxy-2-methylpyridine sulfate, 

3-methylcatechol sulfate, 4-vinylcatechol sulfate, 4-vinylguaiacol sulfate, 3-acetylphenol 

sulfate) and X – 25420 and with lower levels of uridine and 2’-deoxyuridine (i.e., matching the 

association pattern of worse cognition). Ergothioneine was associated with all tested factors 

except smoking; thereby, higher blood levels of ergothioneine, which were linked to better 

cognition, were associated with higher alcohol intake and higher education, and with lower 

BMI.  

Among the tested clinical factors and medications, diabetes and antidiabetic medication were 

the factors with the highest number of associations (Supplementary Figure 7, Supplementary 

Tables 7 and 8). Higher levels of five out of the seven sulfates (including 3-methylcatechol 

sulfate) and lower levels of 2’-deoxyuridine were significantly associated with diabetes and, 

with the exception of o-cresol sulfate, also with antidiabetic medication. Interestingly, higher 

levels of 3-methylcatechol sulfate, which were associated with worse cognition, were 

associated with lower systolic and diastolic blood pressure. Conversely, higher levels of 

ergothioneine linked to better cognition were associated with lower blood pressure. Antacids, 

thyroid therapy, and psychoanaleptics were associated with lower blood levels of 

ergothioneine, with largest effect being observed for antacid use (-0.45, P = 4.27x10-9). 

While smoking was the major lifestyle factor associated with metabolites linked to cognition, 

alcohol intake and BMI showed the highest number of associations observed for the 

metabolites linked to MRI phenotypes, with 20 out of the 22 metabolites being associated to 

BMI and/or alcohol intake (Supplementary Figure 8, Supplementary Table 6). Thereby, higher 

levels of seven metabolites, of which six are known to be linked to coffee intake and the 

caffeine pathway (e.g., cyclo(leu-pro), caffeine, theophylline, 1,3-dimethylurate), and lower 

levels of five metabolites (sphingomyelin (d18:2/18:1), S-adenosylhomocysteine (SAH), 

argininate, N-lactoyltyrosine, X – 11787) were associated with higher alcohol intake. Six 

metabolites that were associated with alcohol intake were also associated with BMI. Thereof 

three metabolites were associated in the opposite effect direction (N-lactoyltyrosine, 

argininate, SAH) and three coffee-related metabolites in the same direction. Regarding clinical 
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factors and medication, most associations were observed for diabetes, hypertension, and 

antidiabetic medication (Supplementary Figure 8, Supplementary Tables 7 and 8). The 

association patterns largely overlapped and resembled the effect directions of worse brain 

health and higher BMI, i.e., the patterns were characterized by lower levels of sphingomyelins 

(sphingomyelin (d18:2/24:2)) and GPC and higher levels of N-lactoyltyrosine, SAH, X – 26107, 

and acylcarnitines carrying hydroxylated lipids (e.g., 3-hydroxyhexanoylcarnitine). Except five 

metabolites linked to the caffeine pathway, all MRI-associated metabolites were associated 

with some medication, of which the association of antidiabetic therapy and N-lactoyltyrosine 

showed the lowest P-value (adjusted mean difference = 1.54, P = 2.84x10-36). Three of these 

metabolites were influenced by seven or more drug types ((S)-3-hydroxybutyrylcarnitine, 

sphingomyelin (d18:2/24:2), N-lactoyltyrosine), with N-lactoyltyrosine showing associations 

with antidiabetic, thyroid, and cardiac therapies, statins and other lipid lowering agents, ACE 

inhibitors, betablockers, diuretics, calcium blockers, and antithrombotic agents.  

Out of the 36 metabolites associated with general cognition and MRI phenotypes, 22 

metabolites showed significant association (FDR < 0.05, considering all profiled metabolites (n 

= 991) and microbial features) with specific gut microbiota (Supplementary Table 9, 

Supplementary Figure 9). Ergothioneine showed significant associations with 12 microbial 

genera. Increased levels of ergothioneine were associated with a higher abundance of genus 

Lachnospiraceae ND3007 (), genus NK4A214, genus Fusicatenibacter, genus Romboutsia, 

genus Erysipelotrichaceae UCG-003 and genus UCG-003. Moreover, higher abundance of 

genus DTUO89 was associated with higher levels of sulfate-containing metabolites in our 

study (3-acetylphenol sulfate, o-cresol sulfate, 4-vinylguaiacol sulfate, 4-vinylcatechol sulfate, 

3-methylcatechol sulfate, 3-hydroxy-2-methylpyridine sulfate). Also, higher abundance of 

genus Lachnospiracea UCG-010 showed association with lower levels of three of the sulfated 

metabolites (3-acetylphenol sulfate, 4-vinylcatechol sulfate, and 3-hydroxy-2-methylpyridine 

sulfate). Among the MRI marker-associated metabolites, higher levels of (S)-3-

hydroxybutyrylcarnitine, 3-hydroxyhexanoylcarnitine, and two glutamine conjugates of 

C6H10O2 were associated with increased abundance of genus Ruminococcus Torques group. 

Likewise, higher levels of sphingomyelins were linked to higher abundance of genus 

Clostridium sensus Stricto 1, genus Coprococcus, and genus Faecalibacterium, and lower 

abundance of genus Veillonella, genus Rothia, genus Atopobium, genus Phocea, genus 
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Sellimonas, genus UC5-1-2E3. Levels of the caffeine-related metabolites (caffeine, 1,3,7-

trimethylurate 1,3-dimethylurate, paraxanthine, theophylline) were associated with 16 

microbial genera (Supplementary Figure 9).  

 

Ergothioneine mediates the association between antacid medication and cognition  

Ergothioneine robustly associated with general cognition and incident AD and was influenced 

by features of various factors of the exposome and the gut microbiome (Supplementary 

Figure 10). In particular, we found a strong effect for the association between antacid 

medication and the blood levels of this metabolite. Considering recent reports of associations 

between the use of proton pump inhibitors (PPIs), a common class of antacid medication, and 

dementia, we investigated the potential mediating role of ergothioneine. As result of the 

mediation analysis performed in the RSIII-2 cohort, we found evidence for 31.5 % (CI: 15.5 – 

71 %) of the total effect of antacid medication on cognition (-0.235, P < 2x10-16) being 

mediated by ergothioneine (Figure 5, Supplementary Table 10). 

 

 

Figure 5: Mediation analysis for the relationship of antacid use, ergothioneine, and general cognition. 

 

As a second example, we further investigated our findings regarding the seven sulfated 

xenobiotics that associated with general cognition and smoking status. As expected, blood 

levels of those xenobiotics were consistently higher among current smokers (n = 180) 

compared to never (n = 350) and former smokers (n = 574) (Supplementary Figure 11). 

Stratification of the association between general cognition and these metabolites based on 

Ergothioneine

Antacid General 
cognition

Proportion Mediated ~ 31.5% CI: 15.5% - 71% 

Total effect: Beta = -0.235, P < 2x10-16

Direct effect: Beta = -0161, P = 0.016 
Indirect effect: Beta = -0.074, P < 2x10-16
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smoking status showed that the associations for 3-methylcatechol sulfate, 3-vinylcatechol 

sulfate, 3-acetylphenol sulfate, and 3-hydroxy-2-methylpyridine sulfate remained significant 

in the group of current smokers. 4-vinylcatechol sulfate, 4-vinylguaiacol sulfate, and o-cresol 

sulfate showed significant associations with cognition in former smokers. In case of 3-hydroxy-

2-methylpyridine sulfate, of which the variance was more explained by gut microbiota (EV 5.4 

%) than by lifestyle (3.7 %), the association with cognition was still significant within the 

stratum of never smokers.  

 

DISCUSSION 

In our study, we observed significant association of 14 metabolites with general cognition and 

22 metabolites with MRI markers in participants without dementia. Nine of the 14 metabolite 

associations with cognition were replicated in an independent dementia-free sample, which 

included older participants. Thereby, the effects that we saw for cognition correlated 

significantly with those of incident AD diagnosis in the replication cohort (RSI-4) and with 

effects for the imaging markers (total brain volume and hippocampal volume) in the discovery 

cohort (RSIII-2), confirming that the metabolite signature derived for cognition in participants 

prior to the onset of any symptoms of dementia is of relevance to understand early metabolic 

changes in AD etiology. 

In the investigated population-based cohort, the variance of the circulating metabolites 

associated with cognition or MRI markers were mainly driven by lifestyle and clinical factors 

as well as medication use. Genetics and the gut microbiome explained less of the variance for 

these metabolites in our discovery cohort. To further disentangle the complex relationship of 

the cognition- and MRI marker-associated metabolites with potentially modifiable factors of 

the exposome or the gut microbiome, we provide a thorough overview of metabolite 

associations with the single lifestyle, medication, clinical, and gut microbial features available 

in our cohort. Integrating the information of association studies on AD-relevant 

endophenotypes with associations related to metabolite origin may improve our 

understanding of disease etiology and may help to prioritize and identify targets for 

prevention, as demonstrated for selected examples in the following.  
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Ergothioneine, a naturally occurring, sulfur-containing amino acid, showed the strongest 

association with cognition with higher blood levels relating to better general cognition in our 

study. Considering the previously reported cytoprotective function of ergothioneine (30), this 

result suggests a neuroprotective role for this metabolite. While little is known about the 

transport of ergothioneine from blood to brain, recent studies based on brain samples showed 

that lower levels of ergothioneine in brain associated with worse cognition, cognitive decline, 

and AD diagnosis (31, 32). In our study, we observed that gut microbiota, medication use, and 

lifestyle factors explain part of the inter-individual variation of ergothioneine in blood. As 

dietary data was not available for the RSIII-2 samples, we were not able to assess the influence 

of food directly. However, ergothioneine has been previously reported to be mainly derived 

from external food sources (including mushrooms)  (33), with diet explaining around 14% of 

the variation of ergothioneine (25). In addition to diet, several factors may contribute towards 

the levels of ergothioneine in blood, including age (34), and genetics (35). In our study, we 

newly found significant associations of antacids, psychoanaleptics, thyroid therapy, systolic 

and diastolic blood pressure with lower levels of ergothioneine. In contrast, alcohol intake and 

higher education were found associated with higher levels of this metabolite in blood. When 

investigating the relationship of antacid intake with ergothioneine levels further, we found 

evidence for a mediating role of ergothioneine in the association of antacid with general 

cognition in our data. Antacids such as proton pump inhibitors are commonly prescribed 

medications to lower acid concentration in the stomach (36). For proton pump inhibitors, 

various observational studies reported negative associations with phenotypes of 

neurodegenerative diseases (37-39). Our results suggest that the reduction of ergothioneine 

as one possible mechanism explaining harmful effects of this medication on 

neurodegenerative diseases. Thereby, it remains unclear whether these medications affect 

the absorption of ergothioneine from diet or whether they influence the gut microbiome 

which may have influence on ergothioneine levels in blood. In our study, we also observed 

significant associations of six microbial genera with lower levels of ergothioneine and 6 

microbial genera with higher blood levels of ergothioneine. Among the genera whose higher 

abundance were associated with lower levels of ergothioneine include genus Clostridium 

innocuum group, Sellimonas, Hungatella, Eisenbergiella, Enterobacter, Flavonifractor. Among 

these six genera, five belong to the phylum Firmicutes whose increased abundance has been 

reported in mild cognitive impairment (MCI), the prodromal phase of AD (40). Clostridium 
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innocuum is a pathogenic bacteria associated with western high-fat and high-sugar diet (41). 

Higher abundance of genus Sellimonas and Hungatella have been linked to depression (42), 

and Sellimonas to atherosclerotic cardiovascular disease (43), whereas both depression and 

cardiovascular disease are risk factors for AD and cognitive decline (44, 45). Further evidence 

suggests that infection with Enterobacter may contribute to progression of 

neurodegeneration (46, 47). Moreover, we found an inverse association of Enterobacter with 

glycerophosphorylcholine, of which higher levels were associated with higher brain volume in 

our study. In summary, these pieces of evidence point towards an important role of 

ergothioneine for maintaining cognitive function and highlight the potential of intervention 

and prevention schemes targeting the management of ergothioneine. 

As a second example, lower levels of seven sulfated xenobiotics, including o-cresol sulfate, 

were associated with better general cognition in our study. Out of these metabolites, three 

sulfates also showed association with MRI phenotypes. In general, o-cresols, which are related 

to the metabolism of toluene as contained in smoke, glues, and cleaners, are very specific 

biomarkers for toluene exposure (48, 49). Thus, not surprisingly, the variance in the blood 

levels of o-cresol sulfate (and most of the correlated sulfates except 3-acetylphenol sulfate 

and 3-hydroxy-2-methylpyridine sulfate) was mostly explained by lifestyle factors, with 

smoking being the main driver of these metabolites and their association to cognition in our 

study, as shown in a sensitivity analysis. However, interestingly, the two sulfated, smoking-

associated metabolites 4-vinylguaiacol sulfate and 4-vinylcatechol sulfate, which weakly 

correlated with the MRI-associated coffee-related metabolites, showed association with 

cognition both in former and current smokers. Also, the association of 3-hydroxy-2-

methylpyridine sulfate with general cognition remained significant in never smokers. These 

findings suggest relevance of those metabolites for AD pathogenesis beyond reflecting 

smoking behavior, which has been recognized as an important modifiable risk factor of AD 

previously (50, 51).  

N-lactoyltyrosine, which belongs to a class of pseudopeptides, formed by lactic acid and an 

amino acid (52), was associated with brain health in our study, with higher levels being linked 

to lower brain volume. N-lactoyl amino acids received some attention in diabetes research 

recently (53, 54); while higher levels of N-lactoyl amino acids (including N-

lactoylphenylalanine, N-lactoyltyrosine, and N-lactoylleucine) associate with decreasing 
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glycemic control and incident diabetes, for N-lactoylphenylalanine it has been shown that it 

reduces appetite in mice (53) and mediates the effect of metformin on appetite and weight 

reduction in humans (55, 56). Also, in the RSIII-2 cohort, the N-lactoyl amino acids are the 

metabolites most strongly associated with antidiabetic therapy, confirming these previous 

findings. Besides N-lactoyltyrosine, further metabolites that associated with MRI markers, 

such as glycerophosphorylcholine and hydroxylated acylcarnitines, resembled the association 

patterns observed for diabetes and BMI despite adjustment for BMi in the model, emphasizing 

the shared risk profiles between diabetes and AD. Interestingly, the typical markers of 

glycemic control such as glucose or 1,5-anhydroglucitol were not found associated with MRI 

markers in our study.  

While the gut microbiome was not prominent in explaining the variance of the cognition and 

MRI marker-associated metabolites, some of the metabolites that were mainly driven by gut 

microbiota have been found associated with AD or AD risk previously (57-62), including bile 

acids (e.g., deoxycholate) and indole-derived metabolites (e.g., indoleacetate), or with 

incident AD in the RSI-4 replication cohort, in particular, imidazole propionate and beta-

cryptoxanthin. In the younger RSIII-2 discovery cohort, these metabolites showed nominal 

significance with general cognition but did not survive correction for multiple testing. These 

observations suggest that gut microbiome-related metabolites might play a more important 

role later in the disease process. Nonetheless, the generally observed good concordance of 

metabolite effects related to cognition in the younger RSIII-2 cohort with the metabolite 

signature of incident AD diagnosis in the older RSI-4 cohort in our study, highlights the 

involvement of the gut microbiome and the identified microbiome-related metabolites also in 

asymptomatic phases of AD development, suggesting these metabolites and their related 

microbiota as promising targets for modification through interventions. 

 

Limitations 

While building on rich data from a population-based cohort, our study has several limitations. 

First, dietary information was not available for the time of blood collection. As diet is known 

to be an important lifestyle factor defining the levels of many metabolites, this lack of data 

clearly limits the insights about the impact of the exposome. Also, the impact of physical 

activity could not be investigated in this study. While the MRI measurement was also not 
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available exactly at the time of blood and feces collection, we addressed this issue by adjusting 

for the time difference in our analyses. Second, the estimation of explained variance strongly 

depends on the features used as input. For example, applying a less strict threshold for the 

inclusion of genetic variants will result in overall higher estimates for the genetic contribution 

for all metabolites. With the chosen approach the EVs for genetics were similar to those 

previously reported by Bar et al. (25). Also, metabolites driven by gut-microbiota showed 

similar number of metabolites between our study (n = 148) and Bar et al. 2020 (n = 182) and 

similar EV percentages (e.g., cinnamoylglycine (current study = 24% versus Bar et al., 24%), 3-

phenylpropionate (31 % versus 26 %), p-cresol sulfate (32 % versus 42 %), and p-cresol 

glucuronide (22 % versus 41 %) (25). Differences in the EV of metabolites by lifestyle factors 

and clinical variable with earlier studies (25, 63) can be attributed to the difference in the 

inclusion of various features in these types of predictors. Finally, clinical features and 

medication use are inherently connected. As a consequence, we cannot differentiate between 

the effects of the two factors on metabolite levels within the setting of a population-based 

cohort as used in our work. In general, we cannot infer causality through any of the analyses 

performed in this study.  

 

Conclusion 

In conclusion, our study provides compelling evidence that, lifestyle factors play a major role 

in shaping blood metabolites associated with general cognition and MRI markers in dementia-

free participants. The overall concordance of the associations between metabolites and 

cognition with metabolite signatures of incident AD in an independent sample pinpoints the 

relevance of the identified metabolites for the disease. Among the potential determinants of 

these metabolites, smoking emerged as an important lifestyle factor affecting plasma levels 

of metabolites associated with cognition, while alcohol intake, BMI, diabetes and diabetes 

medication were linked to MRI marker-associated metabolites. With the example of antacid 

medication, for which we showed a negative effect on the blood levels of the presumably 

neuroprotective metabolite ergothioneine, we demonstrated the potential of our approach 

and the here derived association catalogues for studying the complex interplay between 

cognition and MRI phenotypes with metabolism and its influences through genetics, gut 
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microbiome, and exposures (lifestyle, medication) to come up with new targets and strategies 

for disease prevention and early interventions.   

 

METHODS  

Study population 

Rotterdam Study 

The Rotterdam Study (RS) is a prospective population-based study located in the Ommoord 

district of Rotterdam, The Netherlands. In 1990, the study was initiated with the inclusion of 

7,983 subjects aged 55 years or older (RS-I). From 2000 to 2001, the cohort was expanded 

with the addition of 3,011 participants ≥ 55 years of age (RS-II). The cohort was further 

extended with the inclusion of 3,932 participants with age 45 years or older during 2006-2008 

(RS-III). All study participants were extensively interviewed and physically examined at their 

baseline visits and after every 3 to 6 years. The study has been approved by the Medical Ethical 

Committee of Erasmus Medical Center and by the Ministry of Health, Welfare, and Sport of 

the Netherlands. Written Informed consents were also obtained from each study participant 

to participate and to collect information from their treating physicians (64). In the current 

work, we included data from participants of the second follow-up of the RS-III cohort (RSIII-2) 

for which gut microbiota, metabolomics, and genetic data were available. We replicated our 

findings of general cognition in the fourth follow-up of the RS-I cohort (RSI-4).  

 

Assessment of lifestyle, clinical factors, and medication intake 

In the RS cohorts, information about lifestyle, clinical factors, and medication intake was 

collected using structural interviews, medical records, and pharmacy data during multiple 

visits. Information about lifestyle factors such as smoking, alcohol consumption, and 

educational attainment was collected based on structured home interviews. Smoking data 

was classified as never, former, or current smokers. Educational attainment was assessed at 

the baseline visit of the RS cohort and categorized into four groups based on the UNESCO 

classification: (1) primary education, (2) lower/intermediate general education or lower 

vocational education, (3) intermediate vocational education or higher education, and (4) 

higher vocational education or university level (65). In our study, we combined the education 
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categories one and two into primary education. Alcohol consumption was assessed as part of 

dietary interviews. Alcohol intake in grams per day was calculated based on the number of 

drinks multiplied by the average amount of ethanol in one drink of the alcoholic beverage. 

Details of alcohol consumption assessment are described elsewhere (66).  Body mass index 

(BMI) was calculated based on height and weight (kg/m2) which were assessed in participants 

in standing positions without shoes and heavy outer garments. Medical history (clinical 

factors) and medication intake were compiled based on various sources, including general 

practitioner records, pharmacy prescription records or a physical examination at the study 

center. Blood pressure was recorded at the time of the patients’ visit to the study center at 

the right upper arm in a seated position; the mean of two measurements was recorded. 

Glucose levels were measured after overnight fasting (8–14 h); diabetes was defined as fasting 

serum glucose levels ≥ 7.0 mmol/L, non-fasting serum glucose levels ≥ 11.1 mmol/L, and/or 

the use of antidiabetic medication (ATC-code A10) (67). 

 

Genotyping and imputations  

Blood from the RS participants was collected during the baseline visit of RS-III. DNA was 

extracted from blood and genotyping was performed using the 550K, 550K duo, or 610K 

Illumina arrays. During the genotyping quality control for genetic variants, we applied 

exclusion criteria, including call rate < 95%, Hardy-Weinberg equilibrium P < 1.0x10-6, and 

Minor Allele Frequency (MAF) < 1%. Sample exclusion criteria included excess autosomal 

heterozygosity, call rate < 97.5%, ethnic outliers, and duplicates or family relationships. 

Genotypes were imputed using the Markov Chain Haplotyping (MACH) package and the 

minimac software (68) to the 1000 genome phase 1 version 3 reference panel (69). Among 

the 1,068 participants with metabolomics data (after preprocessing), genotyping information 

was available for 925 participants. 

 

Metabolomics profiling  

We profiled blood plasma samples of 1,082 participants of the RS-III cohort (second follow-

up) using the untargeted Metabolon HD4 platform. The resulting data set includes 1,387 

metabolites of different classes (lipids, amino acids, xenobiotics, nucleotides, cofactors and 

vitamins, peptides, carbohydrates, energy-related metabolites, and uncharacterized 

metabolites). The details of the analytical methods and data extraction procedure of the 
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Metabolon HD4 approach has been described elsewhere and is briefly summarized in 

Supplementary Materials. Based on the batch-normalized data as provided by Metabolon, 

following additional preprocessing steps were performed: First, 14 participants for which the 

proportion of missing values across metabolites was greater than 5 times the standard 

deviation (SD) of the mean missingness in all participants were excluded. Then, metabolites 

with missingness greater than 70 % were excluded. For the remaining metabolites, the 

coefficient of variance (CV) of the 64 aliquots of the NIST Standard Reference Material (SRM) 

1950 sample, which were measured throughout the experiment, was determined and 

metabolites with CV greater than 30% were excluded, leaving 1,111 metabolites after the 

quality control steps. For the present work, we only used data on the 991 frequent metabolites 

(missingness less or equal 30 %). After log2 transformation, we impute the missing values in 

our metabolomics data set by applying the K-nearest neighbor (KNN) based imputation 

method which has been shown to provide robust imputation for metabolomics data 

previously (70). A detailed flowchart of quality control and preprocessing steps and 

percentage of major classes of metabolites is provided in the flowchart diagram in 

Supplementary Figure 1. 

 

Gut microbiome profiling  

Detailed information regarding the collection of fecal samples in the RS-III cohort and the 

subsequent sequencing procedures have been described previously (71). This sequence data 

was subjected to a new 16S rRNA profiling pipeline. In short, raw reads were demultiplexed 

using a custom script to separate sample fastq files based on the dual index. Primers, barcodes 

and heterogeneity spacers were trimmed off using tagcleaner v0.16 (72). Trimmed fastq files 

were loaded into R (v4.0.0) with the DADA2 (73) package version 1.18.0. Quality filtering was 

performed in DADA2 using the following criteria: trim=0, maxEE=c(2,2), truncQ=2, 

rm.phix=TRUE. Filtered reads were run through the DADA2 Amplicon Sequence Variant (ASV) 

assignment tool to denoise, cluster and merge the reads. ASVs were assigned a taxonomy 

from the SILVA version 138.1 rRNA database (74) using the RDP naïve Bayesian classifier (75). 

The resulting data tables were combined into a phyloseq object using Phyloseq (76). 

To remove spurious and likely false-positive ASVs, both an abundance and prevalence filter 

was applied to the data. ASVs had to contain at least 0.005 % of the total reads to remain in 

the dataset as well as to be present in at least 1 % of the samples and were otherwise 
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removed. At this step in the pipeline, samples were also removed based on several other 

criteria such as being a possible sample swaps, >= 8 days in the mail, known duplicates, or 

poor QC statistics. For this step, samples with less than 4.5K reads OR those which lost more 

than 50% of reads in the last steps of the DADA2-QC (i.e., those with lots of reads but 

distributed really in scarce ASV) were removed from the data. Also, samples with 4.5K-6K 

reads which lost more than 20% of reads in the last steps of the DADA2-QC were excluded. 

Alpha diversities were calculated based on this filtered phyloseq object. Additionally, a 

phylogenetic tree was constructed based on the center sequences of each ASV using the 

phangorn package, and the result was added to the phyloseq object (77). Finally, ASV IDs were 

recoded to numerical IDs, ordered on ASV abundance within the population. 

 

Assessment of general cognition 

A neuropsychological assessment battery was introduced in the Rotterdam Study between 

2002 and 2005 for evaluating the cognitive function. This battery of tests included the Stroop 

test (reading, color naming, and interference tasks), a letter-digit substitution task (LDST), a 

categorical Word Fluency Test (WFT), Purdue Pegboard (PPB) tests for both hands individually 

and combined, and a 15-word verbal learning test based on Rey's recall of words (15-WLT). A 

composite measure of overall cognitive function known as ‘G-factor’ was calculated using 

principal component analysis, as detailed in previous publications (78). This G-factor consists 

of scores from the Stroop interference test, LDST, verbal fluency task, PPB test, and 15-WLT 

delayed recall score.  

 

MRI features 

MRI scanning has been performed within the Rotterdam Study using a 1.5-T MRI unit 

equipped with a dedicated eight-channel head coil (Signa HD platform, GE Healthcare, 

Milwaukee, USA). Brain volumetric measurements, including brain volume, white matter 

hyperintensity volume, and intracranial volume, were estimated through automated 

segmentation (79, 80). Left and right hippocampal volumes were obtained using FreeSurfer 

(version 5.1) and averaged to determine total hippocampal volume. Participants with 

significant strokes that could potentially affect segmentation were excluded from the MRI 

marker analysis. Further details regarding MRI scanning and preprocessing can be found 

elsewhere (81).  
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Statistical analysis  

Association of metabolites with general cognition and MRI markers  

To evaluate the association of metabolites with general cognition and MRI markers, we 

performed linear regression analysis. In the association analyses between general cognition 

and metabolites, we adjusted the models for age, sex, BMI, and lipid-lowering medication. 

Among the MRI markers, we selected total brain volume, total hippocampal volume, and total 

white matter lesions as brain markers of neurodegeneration and vascular health. Natural log 

transformation and z-transformation (µ = 0, SD = 1) was applied before the linear regression 

analysis. In the linear models, we adjusted for age at blood collection, the time difference 

between blood collection and MRI scan, sex, BMI, lipid-lowering medications use, and 

intracranial volume. We also calculated False Discovery Rate (FDR) by Benjamini Hochberg 

(82) to determine the statistical significance threshold of associations (FDR < 0.05) between 

metabolites and general cognition as well as MRI markers. To identify the sex-specific 

association of metabolites with general cognition and MRI markers, we also performed the 

regression analysis in sex-stratified samples. 

 

Association of metabolites with gut microbial and exposomal features 

To perform the association analyses between gut microbiota and circulating metabolites, we 

performed the central log transformation (CLR) on each of the taxonomic levels of the gut 

microbiome dataset including phylum, class, order, family, genus, and species using the 

microbiome package (83). Moreover, we applied z-transformation on the metabolomics 

profiles (µ=0, SD=1). We performed linear regression analysis to evaluate the association 

between the transformed plasma levels of metabolites and gut microbial taxa correcting for 

effects of age, sex, BMI, medication use (proton pump inhibitors, metformin, lipid-lowering 

medication, and antibiotics), lifestyle factors (smoking, alcohol intake) and technical 

covariates such as DNA extraction batch, sequencing batch and time of feces in the mail. We 

also performed linear regression analysis to evaluate the association of individual features 

included in medication use (31 medications), lifestyle (BMI, alcohol consumption in gram per 

day, smoking, education level) and clinical factors (diabetes, hypertension, diastolic blood, 

diastolic blood pressure), where metabolites were used as outcome variable. All these 
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analyses were adjusted for age at blood collection for metabolomics and sex. We applied the 

significance threshold of 5% FDR in each set of tested features separately. 

 

Explained variance of metabolites  

In order to calculate the explained variance (EV) of plasma levels of 991 metabolites by 

genetics, gut microbiota, medication use, lifestyle, and clinical features, we used the Gradient 

Boosting Decision Tree (GBDT) based machine learning algorithm from LightGBM (V.2.1.2).  

Bar et al. (25) have systematically performed comparison of GBDT and linear based models 

and reported the high predictive power of GBDT compared to linear models such as LASSO 

(25). In order to calculate the EV of metabolites based on various features, we therefore 

adopted the approach described in Bar et al. (25). For each group of features, we calculated 

the EV of each metabolite by using five-fold cross validation. The coefficient of determination 

(R2)*100 was interpreted as percentage EV of a metabolite. In the EV calculation for gut 

microbiota, we used following parameters: learning_rate = 0.005, feature_fraction = 0.2, 

min_data_in_leaf = 15, metric = l2, early_stopping_rounds = None, n_estimators = 2000, 

bagging_fraction = 0.8, bagging_freq = 1. To estimate the variance explained by the remaining 

features (genetics, medication use, lifestyle  and clinical features), we used the parameters as 

predetermined in the LightGBM package: learning_rate = 0.01, max_depth = 5, 

feature_fraction = 0.8, num_leaves = 25, min_data_in_leaf = 15, metric = L2, 

early_stopping_rounds = None, n_estimators = 200, bagging_fraction = 0.9, bagging_freq = 5.  

The genetic, medication, clinical, and lifestyle components were defined as follows:  

Genetics: We used data on single nucleotide polymorphisms (SNPs) for the calculation of 

percentage EV by genetics. In order to select the SNPs for EV calculation, we adopted a two-

step approach. First, we performed a genome-wide association study (GWAS) for all 991 

metabolites to prioritize variants with marginal significance of association with metabolites (P 

< 5x10-8). GWAS was performed using the HASE software (84). In the summary statistics of the 

GWAS, we retained variants with imputation quality R2 > 0.3 and minor allele frequency (MAF) 

> 0.05. Furthermore, we performed clumping of SNPs on the summary statistics using the 

PLINK 1.9 software (85) with a p-value threshold of 5.0x10-8 and linkage disequilibrium (LD) 

threshold (r2) of 0.2 in the 500KB region. We observed, in total, 415 independent SNPs 

reaching a significance p-value threshold of 5.0x10-8 for 991 metabolites. We extracted the 

dosage information from the genotype imputed data for the prioritized SNPs in the RS 
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participants. In the second step, we used the GBDT to calculate the percentage EV of 

metabolites by genetic features. In calculating the percentage EV of each metabolite, we only 

used genetic variant features associated with that particular metabolite (P <5 x10-8) informed 

by GWAS summary statistics and clumping. We only considered metabolites explained by 

genetic features with a coefficient of determination (R²) greater than zero and a false 

discovery rate (FDR) < 0.05 for the p-values of the Spearman correlation coefficient from the 

GBDT model. In addition, we calculated heritability estimates (H2) for all 991 metabolites 

based on the Massively expedited genome-wide heritability analysis (MEGHA) method (86). 

Due to the small sample size for heritability calculations, we retained heritability estimates of 

metabolites greater than zero. 

Medication use: We defined medication intake features based on the intake of medications 

(Yes/No) information for 31 general medications for which data was recorded in the RS-III 

cohort at the second follow-up. We included only those medications reported to be used by 

at least 1 % of our participants (N = 1,068).  

Gut microbiota: ASV information of all six taxonomic levels including phylum (n = 10), class (n 

= 17), order (n = 38), family (n = 62), genus (n = 190), and species (n = 151) were used in 922 

participants.  

Lifestyle: In the EV calculation for lifestyle factors, we considered BMI, alcohol consumption 

in grams per day, smoking (current, former, never), and education level (lower, middle, high). 

Lifestyle information was available for 1,054 participants with metabolomics data available.  

Clinical factors: Common clinical information including diabetes, hypertension, diastolic 

blood, diastolic blood pressure was used. Full information on clinical parameters was available 

for 1,054 participants with metabolomics data.  
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