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Abstract

Motivation: Assigning RNA-seq reads to their transcript of origin is a fundamental task in transcript

expression estimation. Where ambiguities in assignments exist due to transcripts sharing se-

quence, e.g. alternative isoforms or alleles, the problem can be solved through probabilistic infer-

ence. Bayesian methods have been shown to provide accurate transcript abundance estimates

compared with competing methods. However, exact Bayesian inference is intractable and approxi-

mate methods such as Markov chain Monte Carlo and Variational Bayes (VB) are typically used.

While providing a high degree of accuracy and modelling flexibility, standard implementations can

be prohibitively slow for large datasets and complex transcriptome annotations.

Results: We propose a novel approximate inference scheme based on VB and apply it to an exist-

ing model of transcript expression inference from RNA-seq data. Recent advances in VB algorith-

mics are used to improve the convergence of the algorithm beyond the standard Variational Bayes

Expectation Maximization algorithm. We apply our algorithm to simulated and biological datasets,

demonstrating a significant increase in speed with only very small loss in accuracy of expression

level estimation. We carry out a comparative study against seven popular alternative methods and

demonstrate that our new algorithm provides excellent accuracy and inter-replicate consistency

while remaining competitive in computation time.

Availability and implementation: The methods were implemented in R and Cþþ, and are available

as part of the BitSeq project at github.com/BitSeq. The method is also available through the BitSeq

Bioconductor package. The source code to reproduce all simulation results can be accessed via

github.com/BitSeq/BitSeqVB_benchmarking.

Contact: james.hensman@sheffield.ac.uk or panagiotis.papastamoulis@manchester.ac.uk

or Magnus.Rattray@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-seq is a technology with the potential to identify and quantify

all mRNA transcripts in a biological sample (Mortazavi et al.,

2008). Some of these transcripts come from different isoforms or

alleles of the same genes or from closely related homologous genes,

and consequently they may share much of their primary sequence.

Currently, popular RNA-seq technologies generate short reads that

must be aligned to the genome or transcriptome to quantify
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expression levels. In some cases the observed reads could originate

from several different transcripts and there may be few reads that

are useful to distinguish these transcripts. It is therefore a challeng-

ing statistical problem to uncover the expression levels of closely

related transcripts. A recent assessment confirms this by showing

significant variability between results obtained using different com-

putational pipelines (SEQC/MAQC-III Consortium, 2014).

Probabilistic latent variable models, in particular mixture models

(Jiang and Wong, 2009; Glaus et al., 2012; Katz et al., 2010; Li and

Dewey, 2011; Li et al., 2010; Nariai et al., 2013; Trapnell et al.,

2013; Turro et al., 2011) provide a popular and effective approach

for inferring transcript expression levels from RNA-seq data. Such

models can be used to deconvolve the signal in the read data, assign-

ing reads to alternative, pre-defined transcripts according to their

probability of originating from each. The term mixture model derives

from the interpretation of the data as being derived from a mixture

of different transcripts, the mixture components, with each read orig-

inating from one component. Although reads originate from only

one component they may map to multiple related components, result-

ing in some ambiguity in their assignment. Transcript expression lev-

els are model parameters (mixture component proportions) that have

to be inferred from the mapped read data. Due to their probabilistic

nature these models can fully account for multiple mapping reads,

complex biases in the sequence data, sequencing errors, alignment

quality scores and prior information on the insert length in paired-

end reads. Mixture models have been successfully applied to infer the

proportion of different gene isoforms or allelic variants in a particu-

lar sample (Jiang and Wong, 2009; Katz et al., 2010; Turro et al.,

2011), for inferring gene and isoform expression levels (Li et al.,

2010; Li and Dewey, 2011; Mortazavi et al., 2008; Roberts and

Pachter, 2013; Trapnell et al., 2013) and for transcript-level differen-

tial expression calling (Glaus et al., 2012; Trapnell et al., 2013).

Inference in latent variable models such as these can be carried out

by maximum likelihood (ML) or Bayesian parameter estimation. In

ML the choice of parameters that maximizes the data likelihood is ob-

tained through a numerical optimization procedure. In the case of

mixture models a popular choice of algorithm is the Expectation

Maximization (EM) algorithm, as first applied to this model and ex-

pressed sequence tag data by Xing et al. (2006) and later to RNA-seq

data by Li et al. (2010). For Bayesian inference the most popular ap-

proach is Markov chain Monte Carlo (MCMC) and for the case of

mixture models a Gibbs sampler is most often used (Glaus et al.,

2012; Katz et al., 2010; Li and Dewey, 2011). An advantage of

Bayesian inference is that one obtains a posterior probability over the

model parameters rather than just a point estimate. This provides a

level of uncertainty in the inferred transcript expression levels as well

as information about the covariation between estimates for closely

related transcripts. The uncertainty information can be usefully propa-

gated into downstream analysis of the data, e.g. calling differentially

expressed transcripts from replicated experiments (Glaus et al., 2012).

A Bayesian method, BitSeq, was proposed in which inference

was carried out using a collapsed Gibbs sampler (Glaus et al.,

2012). The method was shown to perform well, especially for the

task of inferring the relative expression of different gene isoforms

and for ranking transcripts according to their probability of being

differentially expressed between conditions. However, for typical

modern RNA-seq datasets with hundreds of millions of read-pairs

the Gibbs sampler can be inconveniently slow, creating a computa-

tional bottleneck in applying a Bayesian approach. As the volume of

data continues to grow and gene models are becoming more com-

plex as more alternative transcripts are discovered, more efficient

inference algorithms are required so that Bayesian methods can be

used to provide practical computational tools.

An alternative approach to Bayesian inference is to use determin-

istic approximate inference algorithms such as Variational Bayes

(VB) (reviewed in Bishop, 2006). While MCMC algorithms are at-

tractive due to their asymptotic approximation guarantees, VB often

provides a much faster method to obtain a good approximation to

the posterior distribution. For models where Gibbs sampling can be

applied there is typically a closely related VB Expectation

Maximization (VBEM) algorithm. In this contribution, we show

how VB can be used to massively speed up inference in the BitSeq

model for transcript expression-level inference. We show that the

mean transcript expression level estimates are very close to those ob-

tained with MCMC. We use a recent formulation of VB (Hensman

et al., 2012) which is shown to provide a greater speed up when

compared with a more standard VBEM algorithm. Our new algo-

rithm is implemented in the most recent version of the BitSeq, allow-

ing the method to be applied to much larger RNA-seq datasets in

equal computing time.

An alternative VB method, TIGAR, was recently proposed for the

same problem using a standard VBEM algorithm (Nariai et al., 2013).

The assumptions made in our approximation are similar to those used

in TIGAR, but the empirical comparisons herein show that our pro-

posed method performs better in terms of computation time and

required memory, while also providing improved accuracy on real and

simulated data. The improvement in terms of reduced computational

cost is due to our adoption of a novel VB method. Furthermore, we in-

vestigate the effects of the variational assumption in this problem, and

compare empirically to results using the gold standard, MCMC.

The article is organized as follows. In Section 2, we review

the original BitSeq probabilistic model and describe our new infer-

ence algorithm, BitSeqVB, explaining the principles underlying our

improved optimization scheme. In Section 3, we benchmark our

new method against the original BitSeq algorithm and six popular

alternative methods using realistic simulated data and real human

RNA-Seq data. We consider accuracy in terms of expression estima-

tion, relative with-gene transcript proportions and between-replicate

consistency. We also compare the computation time required for all

methods and compare the new VB algorithm to more standard

MCMC and VBEM inference algorithms.

2 Methods
Our probabilistic model of RNA-seq follows Stage 1 of Glaus et al.

(2012), and is similar to that used by RSEM. We summarize our no-

tation in Table 1. The probabilistic model is shown using standard

directed graphical notation in Figure 1. Here we have focused on the

Table 1. Summary of notations

N Number of reads in the dataset

M Number of transcripts in the transcriptome

rn The nth read

R The collection of reads

T The transcriptome

Tm The mth transcript

hm Proportion of transcript Tm in the sample

znm Binary: znm¼ 1 if read n comes from transcript m

zn Allocation vector of the nth read

Z Collection of all allocation vectors

/nm Approximate posterior probability of znm¼ 1

cnm Re-parameterization of /nm
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mixture part of the analysis, assuming that the model which associ-

ates reads to transcripts [i.e. pðrn jTmÞ] is known. Following BitSeq

(Glaus et al., 2012), we compute this part of the model a priori,

with parameters estimated from uniquely aligned reads. We consider

RNA-seq assays independently, computing an approximate poster-

ior for the transcript proportions h in each assay. Subsequent ana-

lysis such as differential expression can be done using the estimated

distributions of each assay.

2.1 The generative model
Transcript fragment proportions

The generative model for an RNA-seq assay is as follows. We as-

sume that the experiment produces of collection of RNA fragments,

where the abundance of fragments derived from transcript Tm in the

assay is hm. Fragments are then sequenced in these proportions, so

that the prior probability of any fragment corresponding to tran-

script Tm is hm. Introducing a convenient allocation vector zn for

each read, we can write

pðZjhÞ ¼
YN
n¼1

YM
m¼1

hznm
m ; (1)

where znm 2 f0;1g is a binary variable which indicates whether the

nth fragment came from the mth transcript (znm ¼ 1) and is subject

to
PM

m¼0 znm ¼ 1. We use Z to represent the collection of all alloca-

tion vectors. We note that both h and Z are variables to be

inferred, with h the main object of interest. h can be transformed

later into some more convenient measure, for instance reads per

kilobase of length per million sequenced reads (RPKM) (Mortazavi

et al., 2008), though it is more convenient from a probabilistic

point of view to work with h directly. The variables Z are some-

times known in the machine learning literature as latent variables.

Although not of interest directly, inference of these variables is es-

sential to infer h.

Read model

An important part of the model is the likelihood term pðrnjTmÞ
which is the probability of generating the nth read from the mth

transcript. Writing the collection of all reads as R ¼ frngN
n¼1, the

likelihood given a set of alignments Z is

pðRjT;ZÞ ¼
YN
n¼1

YM
m¼1

pðrnjTmÞznm ; (2)

where Tm represents the mth transcript and T represents the tran-

scriptome. The values of pðrnjTmÞ for all alignments can be com-

puted before performing inference in h since we are assuming a

known transcriptome. For paired-end reads, the mates originate

from a single fragment and their likelihood is inferred jointly.

Denoting rn ¼ ðrð1Þn ; r
ð2Þ
n Þ, the likelihood of alignment is computed as

PðrnjTmÞ ¼ PðljTmÞPðpjl;TmÞ
Y

i¼1;2

P rðiÞn jseqmlp

� �
; (3)

where l is the length of a fragment, p is its position and seqmlp

denotes the underlying reference sequence. The fragment length

distribution can be pre-defined or inferred empirically. The

position likelihood, Pðpjl;TmÞ, can be either uniform or account

for different biases using an empirical model as in Glaus et al.

(2012). The last term,
Q

i¼1;2 PðrðiÞn jseqmlpÞ describes the probability

of observed read sequences based on quality scores and base dis-

crepancy between read and reference. For detailed description of

the alignment likelihood estimation please refer to Glaus et al.

(2012).

Identifying noisy reads

Our model is similar to previous work (Glaus et al., 2012), but does

not contain a variable identifying reads as belonging to a ‘noise’

class. To circumvent the explicit formulation of a model with this

variable, we introduce a ‘noise transcript’ which we append to the

list of known transcripts. The generative probability of any read

from this transcript, pðrnjT0Þ, is again calculated according to the

model described in Glaus et al. (2012). Due to the conjugate rela-

tionships between the variables in our model and those of Glaus et

al. (2012), the models are the same, subject to a slight reformulation

of the prior parameters.

Prior over h

The final part of our model is to specify some prior belief in

the vector h. To make our approximations tractable, it is necessary

to use a conjugate prior, which in this case is a Dirichlet

distribution

pðhÞ ¼ CðâoÞ
YM
m¼1

Cðao
mÞ

YM
m¼1

hao
m�1

m (4)

where ao
m represents our prior belief in the values of hm and

âo ¼
PM

m¼1 ao
m. We use a weak but proper prior ao

m ¼ 1; m ¼ 0 . . .

M which corresponds to a single ‘pseudo-count’ read (or read-pair)

for each transcript.

2.2 Approximate inference
We are interested in computing the posterior distribution for the

mixing proportions, pðh jR;TÞ /
P

Z pðR jT;ZÞpðZ j hÞpðhÞ. For

very small datasets, it is possible to perform exact Bayesian inference

in this model, however for any realistically sized problem, exact in-

ference is impossible due to the combinatorial explosion of the num-

ber of possible solutions. Our proposed solution is to use a collapsed

version of Variational Bayes (VB). VB involves approximating the

posterior probability density of all the model parameters with an-

other distribution q,

qðh;ZÞ � pðh;ZjR;TÞ: (5)

The approximation is optimized by minimising the Kullback-Leibler

(KL) divergence between qðh;ZÞ and pðh;ZjR;TÞ (Bishop, 2006).

To make the VB approach tractable, some factorizations need to be

assumed in the approximate posterior. In the case of the current

Fig. 1. Graphical model of the RNA-seq mixture problem. Given a known

Transcriptome T and some observed reads R, the inference problem is for h

through the latent variables Z
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model, we assume that the posterior probability of the transcript

proportions factorizes from the alignments:

qðh;ZÞ ¼ qðhÞqðZÞ: (6)

Further factorizations in qðZÞ occur due to the simplicity of the

model, revealing qðZÞ ¼
QN

n¼1 qðznÞ. We write the approximate dis-

tribution for qðZÞ using the parameters /nm:

qðZÞ ¼
YN
n¼1

YM
m¼1

/znm
nm : (7)

We need not introduce parameters for qðhÞ since it will arise impli-

citly in our derivation in terms of /.

The objective function

Approximate inference is performed by optimization: the param-

eters of the approximating distribution are changed so as to mini-

mize the KL divergence. Whilst the KL divergence is not

computable, it is possible to derive a lower bound on the marginal

likelihood, maximization of which minimizes the KL divergence (see

e.g. Bishop, 2006). Here we derive a lower bound which is depend-

ent only on the parameters of qðZÞ, with the optimal distribution for

qðhÞ arising implicitly for any given qðZÞ. First we construct a lower

bound on the conditional log probability of the reads R given the

transcript proportions h and the known transcriptome T:

ln pðRjT; hÞ ¼ ln

ð
pðRjZ;TÞpðZjhÞdZ

�EqðZÞ½ln pðRjZ;TÞ þ ln pðZjhÞ � ln qðZÞ�

¼
XN
n¼1

XM
m¼1

/nmðln pðrnjTmÞ þ ln hm � ln /nmÞ

¼ L1ðhÞ;

(8)

where the first line follows from Jensen’s inequality in a similar fash-

ion to standard VB methods. We have denoted this conditional

bound L1ðhÞ, which is still a function of h. To generate a bound on

the marginal likelihood, pðR jTÞ, we need to remove this depend-

ence on h which we do in a Bayesian fashion, by substituting L1ðhÞ
into the following Bayesian marginalization:

pðRjTÞ ¼
ð

pðRjT; hÞpðhÞd h

�
ð

expfL1ðhÞgpðhÞd h :

(9)

Solving this integral and taking the logarithm gives us our final

bound which equates to

ln pðRjTÞ�L ¼
XN
n¼1

XM
m¼1

/nmðln pðrnjTmÞ � ln /nmÞ

þln CðâoÞ � ln Cðâo þNÞ �
XM
m¼1

ðln Cðao
mÞ � ln Cðao

m þ /̂mÞÞ;

(10)

where /̂m ¼
PN

n¼1 /nm and we also have that the approximate pos-

terior distribution for h is a Dirichlet distribution with parameters

ao
m þ /̂m.

2.3 Optimization
Having established the objective function as a lower bound on the

marginal likelihood, all that remains is to optimize the variables of

the approximating distribution qðZ; hÞ. The dimensionality of this

optimization is rather high and potentially rather difficult.

Optimization in standard VB is usually performed by an EM like al-

gorithm, which performs a series of convex optimizations in each of

the factorized variables alternately. In our formulation of the prob-

lem, we only need to optimize the parameters of the distribution

qðZÞ, which we do by a gradient-based method. Taking a derivative

of (10) with respect to the parameters / gives

@L
@/nm

¼ lnpðrn jTmÞ � ln/nm � 1þ wðao
m þ /̂mÞ; (11)

where w is the digamma function. To avoid constrained optimiza-

tion we re-parameterize / as c:

/nm ¼
ecnm

XM
m0¼1

ecnm0

(12)

and it is then possible to optimize the variables c using a standard

gradient-based optimizer.

2.4 Geometry
Information geometry concerns the interpretation of statistical ob-

jects in a geometric fashion. Specifically, a class of probability distri-

butions behaves as a Riemannian manifold with curvature given by

the Fisher information. Amari (1998) showed that the direction of

the steepest descent on such a manifold is given by the natural

gradient:

~rL ¼ G�1rL ; (13)

where G is the Fisher information matrix. Since we are performing

optimization of the distribution qðZÞ, we can make use of the nat-

ural gradient in computing a search direction (Honkela et al., 2010).

For our problem, we assume that the N�M matrix Z has been

transformed into a NM vector, and the Fisher information corres-

ponding to cnm, cn0m0 is given by

G½m; n;m0;n0� ¼
/nm � /2

nm; if n ¼ n0 and m ¼ m0

�/nm/nm0 ; if n ¼ n0 but m 6¼ m0

0; otherwise:

8>><
>>:

(14)

We note that this structure is block-diagonal, and that each block

can be easily inverted using the Sherman–Morrison identity, giving

an analytical expression for G�1rL, and thus making the natural

gradient very fast to compute (see Hensman et al. (2015) for more

details). One can draw comparisons with a Newton method, where

G would be replaced with a Hessian, though in the proposed case

the system is much cheaper to compute.

The optimization of the variational parameters then proceeds as

follows. Following random initialization, a unit step is taken in the

natural gradient direction. Subsequent steps are subject to conjugate

gradients (Honkela et al., 2010). If the conjugate gradient step

should fail to improve the objective we revert to a VBEM update,

which is guaranteed to improve the bound. For more details, see

Hensman et al. (2012).

2.5 Truncation
The optimization described above has N�M free parameters for

optimization, one to align each read to each transcript. However,

for most read-transcript pairs, pðrn jTmÞ will be negligibly small. We

follow Glaus et al. (2012) in truncating the values of pðrn jTmÞ to

zero for reads which do not suitably align. Examining the objective

3884 J.Hensman et al.



function (10) we see that we can also set /nm to zero for these trun-

cated alignments (using the convention that 0lnð0Þ ¼ 0) and thus

also cnm ¼ �1 for the same. This truncation dramatically reduces

the computational load of our algorithm, reducing the dimensional-

ity of the optimization space as well as reducing the number of oper-

ations needed to compute the objective.

2.6 The approximate posterior
Having fitted our model, we may wish to propagate the posterior

distribution through a second set of processing, for example to iden-

tify differentially expressed transcripts as in BitSeq stage 2 (Glaus et

al., 2012). Whilst it may be desirable to solve both stages together in

a Bayesian framework, the size of the problem generally forbids this,

therefore we propose the use of either a moment-matching or sam-

pling procedure to propagate qðhÞ through further analysis. The ap-

proximate posterior qðhÞ is a Dirichlet distribution, whose

marginals have the following useful properties:

E½hm� ¼
ao

m þ /̂m

âo þN
; (15)

var½hm� ¼ ðao
m þ /̂mÞðâo þN � ao

m � /̂mÞC; (16)
cov½hm; hm

0 � ¼ �ðao
m þ /̂mÞðao

m0 þ /̂m0 ÞC; (17)

with C ¼ ðâo þNÞ�2ðâo þN þ 1Þ�1. This approximate posterior is

somewhat inflexible, in that it cannot express arbitrary covariances

between the transcripts. This arises from the factorizing assumption

amongst the assignment of reads to transcripts: reads are assigned

independently in the variational method and their dependence can-

not be modelled. This is reflected in the results section where we

show empirically that the VB approximation leads to an underesti-

mation of the variance. Nonetheless, this simplifying assumption

leads to very accurate expression estimates much faster than

MCMC.

3 Results and discussion

The proposed BitSeqVB algorithm was compared with Cufflinks

(Trapnell et al., 2010), RSEM as well as the corresponding MCMC

sampler RSEM-PME (Li and Dewey, 2011), BitSeqMCMC (Glaus

et al., 2012), eXpress (Roberts and Pachter, 2013), Casper (Rossell

et al., 2014), Sailfish (Patro et al., 2014), Tigar2 (Nariai et al.,

2014) and Kallisto (Bray et al., 2015). We note that both MCMC

samplers (RSEM-PME and BitSeqMCMC) use similar collapsed

Gibbs algorithms but are initialized differently: RSEM-PME starts

from the ML solution found by RSEM while BitSeqMCMC starts

from a random initialization and therefore requires more iterations

to find a good solution.

We used two main ways for benchmarking: analysis on synthetic

data allowed comparison with a known ground truth under a var-

iety of generative scenarios; analysis on high-quality replicated

human data focused on inter-replicate consistency following the

evaluation of Rossell et al. (2014). We find BitSeqVB to have excel-

lent inter-replicate consistency and accuracy, closely approximating

the original MCMC algorithm, while also being competitive with

other methods in terms of run-time. We subsequently analyze in

more detail the approximation to the posterior used in the BitSeqVB

method. For comparison with other methods, we used default set-

tings where appropriate: both MCMC sampling methods use 1000

posterior samples as default. However, this number refers to effect-

ive samples (Gelman et al., 2003) in BitSeqMCMC and not to single

iterations as in RSEM-PME. We turned off creating of unnecessary

output files in RSEM. The experiments were conducted on a four

core workstation. All the details of the experiments can be found at

the aforementioned URL.

3.1 Inference accuracy on synthetic data
RNA-seq reads from M¼48 009 transcripts of the UCSC/hg19 tran-

scriptome annotation (Kent et al., 2002) were simulated using the

Spanki software (Sturgill et al., 2013). The expression is evaluated

in three different measures: transcript expression accuracy (Theta),

transcript within-gene relative proportion accuracy (WGE-True)

and inter-replicate consistency (WGE-Inter). The first two measures

(Theta and WGE-TRUE) compare the resulting estimates against the

ground-truth. On the other hand, WGE-Inter compares the consist-

ency of within-gene estimates across independent repetitions of the

same experiment. This implies that an algorithm yielding constant

estimates independent of any data could achieve WGE-Inter ¼ 0,

but it would obviously do very poorly on WGE-True. Thus, a good

score on WGE-Inter is necessary but not sufficient for a method to

perform well in practice. For further details of the evaluation meas-

ures see supplementary material (Section 5).

A ground truth was generated using four different models of

transcript expression, according to the following scenarios:

1. estimated expression levels from real data using BitSeqMCMC

(� 56 million reads per replicate)

2. randomly selected expression levels according to a uniform dis-

tribution defined on the set (10, 200) (� 7:8 million reads per

replicate)

3. a high-dimensional mixture of Poisson Generalized Linear mod-

els, which was recently used to model the heterogeneity in RNA-

seq datasets (Papastamoulis et al., 2014b) (� 5:5 million reads

per replicate)

4. estimated expression levels from real data using RSEM (� 18

million reads per replicate)

For each scenario five replicates are generated according to a

Negative Binomial model. Full details of the four scenarios are

described in the Supplementary Material. Finally, the resulting

reads-per-kilobase (RPK) values were fed into Spanki. Next, the

simulated reads were aligned to the reference annotation using

Bowtie2 and/or Tophat2. In particular, BitSeq, RSEM, eXpress and

Tigar require transcriptomic alignments so Bowtie2 (version 2.0.6)

(Langmead and Salzberg, 2012) was used, while Cufflinks and

Casper work with genomic alignments using Tophat2 and Bowtie2.

On the other hand, Sailfish and Kallisto produce their own align-

ments using k-mers mapping and pseudo-alignments, respectively.

The corresponding mapping rate for genomic or transcriptomic

alignments was 96%. The same amount of reads pseudo-aligned

when using Kallisto, whilst Sailfish mapped a smaller portion of

k-mers (� 63%).

Figure 2 displays the mean absolute error (MAE) according to

the three criteria, after performing the following normalization:

X
m2methods

MAEðcÞm ¼ 1;

8c 2 fTheta;WGE� Inter;WGE� Trueg, to make all criteria

equally weighted for each scenario. Moreover, the ‘Theta’ and

‘WGE-True’ metrics were averaged across the five replicates, while

‘WGE-Inter’ was averaged across all ten combinations of pairs of

replicates. The methods were ranked with respect to their average

across the three criteria. RSEM-PME, BitSeqMCMC and BitSeqVB

are ranked as best when considering all three criteria. RSEM has

similar accuracy in terms of the ground truth expression (Theta
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http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv483/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv483/-/DC1


and WGE-True) but has lower inter-replicate consistency (WGE-

Inter). Conversely, Casper achieves good performance with

respect to inter-replicate consistency (WGE-Inter) but is less accur-

ate in comparison to the ground truth values (WGE-True and

Theta). The ranking of methods with respect to run-time is shown in

Figure 3. Note that the run-time calculation excludes the align-

ment procedure, but includes all other computations (including

computing alignment probabilities in BitSeq’s case). An exception is

made for Sailfish and Kallisto, where alignment is not required,

making these by far the fastest methods. Timings which include

the time required for alignment are provided in Supplementary

Figure S12.

The plots of inter-replicate consistency between pairs of replicates

are shown in the supplementary material (Figs. 2, 4, 6 and 8). As seen

there, Kallisto, RSEM, Sailfish, Tigar2, Cufflinks and eXpress, pro-

duce estimates close to the boundary of the parameter space. This is

also obtained for RSEM-PME except for scenario 2. This behaviour is

avoided when using BitSeqMCMC, BitSeqVB and Casper.

The accuracy of BitSeqVB is very close to the two sampling

methods BitSeqMCMC and RSEM-PME, but it is consistently faster

that these approaches, being about 10 times faster than

BitSeqMCMC and 2 times faster than RSEM-PME on average

(RSEM-PME is significantly faster than BitSeqMCMC because is

uses many fewer iterations of MCMC). BitSeqVB has similar speed

to the Cufflinks method in most cases whilst exhibiting much better

accuracy.

We conclude that the proposed VB algorithm is competitive in

speed while exhibiting both high accuracy and good inter-replicate

consistency.

3.2 Replicate consistency in human data
A recent study (Rossell et al., 2014) used the mean absolute error be-

tween pairs of replicates of the same ENCODE experiment to assess

the accuracy of transcript expression estimation methods. For this

purpose, the relative within gene expression estimates are used

(WGE-Inter). Here, we provide an extended version of this analysis

to benchmark against BitSeqMCMC and six other methods.

In total, five ENCODE datasets (Tilgner et al., 2012) consisting

of 2�76 bp reads were selected, corresponding to the following

pairs of replicates: (SRR307897, SRR307898), (SRR307901,

SRR307902), (SRR307907, SRR307908), (SRR307911,

SRR307912), (SRR307915, SRR307916). All methods were applied

assuming the same UCSC/hg19 transcriptome annotation as in the

previous section. According to the alignment rates shown in

Figure 4a, all methods work with almost the same number of

mapped reads when Bowtie2 is used. This is not the case for

Bowtie1 which for some reason fails on this dataset.

Figure 4b illustrates the ranking of methods in terms of the MAE

criterion, averaged across the five datasets. We conclude that

BitSeqMCMC has best inter-replicate consistency, closely followed

by BitSeqVB, while Casper comes next. Sailfish, RSEM, Tigar2 and

Cufflinks exhibit almost two times larger MAE, while eXpress is al-

most 2.5 times worse according to this measure. Based on these five

samples there is a partial order: BitSeqMCMC � BitSeqVB �
fCasper; Kallistog � RSEM� PME � fRSEM; Sailfishg � fCufflinks;

Tigar2g � eXpress, where � denotes ‘is better in every experiment’.

Excluding BitSeq (MCMC and VB) and Casper, we see that many

methods produced estimates close to the boundary of the parameter

space, as seen in Figure 5. This means that many transcripts are esti-

mated as weakly or non-expressed in one replicate while being
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highly expressed in the other. This problem appears to affect meth-

ods using ML estimation (RSEM, Sailfish, Cufflinks, eXpress) or

Bayesian methods using a very weak prior (Tigar2). Casper ensures

consistency with a strong prior, but this may degrade the accuracy

of absolute estimates relative to BitSeq because of stronger regulari-

zation. We note that Casper uses MAP parameter estimation, find-

ing the mode of the posterior distribution, while the BitSeq methods

estimate the mean of the posterior distribution. Using the posterior

mean may avoid spurious values where the mode is a long way from

the mass of the posterior without the need for an overly strong prior.

Finally, note that the coherency of inter-replicate consistency esti-

mates in our simulation study (Supplementary Figs S2, S4, S6 and

S8) with the one reported here.

The run-time for each method is displayed in Figure 4c.

BitSeqVB is comparable to the fastest methods (except for Kallisto

which is by far the fastest method) while being ranked as second in

terms of the MAE criterion. We conclude that BitSeqVB offers

perhaps the best trade-off in accuracy and runtime on these

datasets.

Finally, we mention that the BitSeqMCMC performance here is

in stark contrast with the performance reported in Rossell et al.

(2014). The reason for this is that in Rossell et al. (2014) reads

were aligned using Bowtie1 whereas we are using Bowtie2. As seen

in Figure 4a, Bowtie1 can exhibit very low alignment rates for

these samples. Interestingly, this behaviour is not present when

Bowtie1 is combined with Tophat for genome mapping. The low

alignment rates of Bowtie1 means that methods have available

only a tiny fraction of the useful data, leading to less accurate re-

sults. This explains the weak agreement of same transcript esti-

mates between pairs of replicates reported for BitSeq in Rossell et

al. (2014) and is a reminder that it is very important to check the

alignment rates.
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Fig. 5. Scatterplots of within gene estimates for one pair of replicates (SRR307907 and SRR307908) from the ENCODE data. The blue color corresponds to a

smoothed color density representation of the scatterplot

Fast and accurate approximate inference of transcript expression 3887

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv483/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv483/-/DC1


3.3 Analysis of the variational Bayes approximation
To examine the properties of the variational approximation, we

focused on ENCODE dataset SRR307907 (Tilgner et al., 2012).

This contained 30.8 million reads, each 76 bp. The reads were again

mapped to the same UCSC/hg19 reference transcriptome resulting

in 23.7 million mapped reads.

Our main potential concern in using the VB method is the qual-

ity of approximation to the posterior. Figure 6a shows a comparison

of the variational posterior with a ground truth computed by

MCMC with a very large sampling time. We conclude that the VB

method consistently provides very accurate estimates of the poster-

ior mean across the whole range of expression levels. The estimates

of posterior variance are less consistent and for a fraction of tran-

scripts the variances are underestimated (Fig. 6b). It appears that VB

only estimates the Poisson variance associated with random sam-

pling of reads (Fig. 6d), whereas the true posterior variance is larger

for some transcripts due to the uncertainty in assigning multi-

mapping reads (Fig. 6c). If estimation of the expression level is all

that is required, then it would seem that the VB method suffices.

However, downstream methods which make use of uncertainty in

the transcript quantification [such as the differential expression ana-

lysis proposed in BitSeq stage 2 (Glaus et al., 2012)] may suffer from

the poor approximation in terms of posterior variance. This can po-

tentially be addressed by augmenting the VB method with a more

accurate approximation as done in a recent study that proposed a

new VB algorithm with improved variance estimates and a

tighter lower bound on the log-marginal likelihood (Papastamoulis

et al., 2014a).

3.4 Convergence comparison
We further investigate convergence properties of MCMC and VB in

terms of mean expression. RNA-seq data was obtained from

ENCODE experiment SRX110318, run SRR387661, generating

124.8 million 76bp read-pairs. We mapped the reads using Bowtie 2

to a reference transcriptome using 8713 transcripts of chromosome

19 from Ensembl human cDNA, release 70 (Flicek et al., 2013).

As the true expression levels are unknown, we used a long run of

MCMC as the ground truth for mean expression estimates. Running

the inference methods for a certain number of iterations, we record

the run time and calculate Root Mean Square Error (RMSE) of esti-

mated expression. The convergence of our variational method

(BitSeqVB) and the original Gibbs sampling procedure

(BitSeqMCMC) is shown in Figure 7. We also include a standard

implementation of VB (similar to Nariai et al. (2013)) but using the

BitSeq model (denoted VBEM). It is straightforward to derive this

algorithm from our VB algorithm derivation since standard VBEM

is obtained as a special case of steepest descent VB learning

(Hensman et al., 2012). Our implementation of VB converges first

in about 2 min. Surprisingly, some runs of collapsed MCMC con-

verge to better estimates even faster than standard VB, which takes

around 10 min. However, as MCMC is a stochastic method, an esti-

mate that is consistently better than the results obtain by VB is only

obtained after 900 min.

4 Conclusion

We have presented a new Variational Bayes method for inference of

transcript expression from RNA-seq data. Building on previous

work in BitSeq, we have presented a fast approximate inference

method. The mean of the posterior distribution of expression levels

was very well estimated in substantially less time than the original

MCMC algorithm. The method is therefore suitable when point esti-

mates of expression are sufficient, especially if time and computa-

tional resources are limited. We have compared both the original

BitSeq algorithm and our new method with the majority of

available methods for transcript expression estimation and conclude

that BitSeqVB is highly competitive both in terms of expression esti-

mation and run-time. We also note that an existing VBEM algo-

rithm implementation, TIGAR, does not provide a significant

improvement over Gibbs sampling in terms of computational

time in our examples, as well as having a very high memory

requirement.

The newest method considered here, Kallisto, is found to be ex-

tremely fast and perform with very good accuracy compared with

other ML approaches. This speed-up is achieved through avoiding

full alignment and simplifying the likelihood computation through

using a pseudo-alignment approach. However, the method still pro-

duces estimates at the boundary in our between-replicate compari-

sons similar to all ML methods. It would therefore be

very interesting to apply a Bayesian algorithm, such as the fast

VB method proposed here, using the same likelihood model as

Kallisto.

Finally, we suggest some areas for future development. The

fast and consistent convergence of the VB method makes it useful

for quick examination of the data before the Gibbs sampler is run.

Further, since it provides an excellent approximation to the mean

Fig. 7. Convergence comparison of Collapsed MCMC with standard VB algo-

rithm and VB with Fletcher-Reeves conjugate gradient optimization.

Expression estimates obtained by very long run of MCMC are used as a

ground truth and average root mean square error over 10 runs was calcu-

lated, two standard deviations are used as error bars. The VB methods with

several randomized initial conditions showed negligible differences in

convergence
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Fig. 6. A comparison of the first two moments of the approximate posterior

expression in counts per transcript: (a) posterior mean (R2 correlation is

0.999) (b) posterior standard deviation: the VB method significantly under-

estimates the posterior variance (r2). (c), (d) posterior mean-variance relation-

ship in MCMC and VB respectively. Shading represents the number of

transcripts in each region
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of the posterior, it could be used to e.g. reduce the burn-in time for

the Gibbs sampler, or as the initial stage of a more sophisticated

approximating technique, as in Papastamoulis et al. (2014a).
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