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Deep learning for semi-automated
unidirectional measurement of lung tumor
size in CT
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Abstract

Background: Performing Response Evaluation Criteria in Solid Tumor (RECISTS) measurement is a non-trivial task
requiring much expertise and time. A deep learning-based algorithm has the potential to assist with rapid and
consistent lesion measurement.

Purpose: The aim of this study is to develop and evaluate deep learning (DL) algorithm for semi-automated
unidirectional CT measurement of lung lesions.

Methods: This retrospective study included 1617 lung CT images from 8 publicly open datasets. A convolutional
neural network was trained using 1373 training and validation images annotated by two radiologists. Performance
of the DL algorithm was evaluated 244 test images annotated by one radiologist. DL algorithm’s measurement
consistency with human radiologist was evaluated using Intraclass Correlation Coefficient (ICC) and Bland-Altman
plotting. Bonferroni’s method was used to analyze difference in their diagnostic behavior, attributed by tumor
characteristics. Statistical significance was set at p < 0.05.

Results: The DL algorithm yielded ICC score of 0.959 with human radiologist. Bland-Altman plotting
suggested 240 (98.4 %) measurements realized within the upper and lower limits of agreement (LOA). Some
measurements outside the LOA revealed difference in clinical reasoning between DL algorithm and human
radiologist. Overall, the algorithm marginally overestimated the size of lesion by 2.97 % compared to human
radiologists. Further investigation indicated tumor characteristics may be associated with the DL algorithm’s
diagnostic behavior of over or underestimating the lesion size compared to human radiologist.

Conclusions: The DL algorithm for unidirectional measurement of lung tumor size demonstrated excellent
agreement with human radiologist.

Keywords: Lung Cancer, Response Evaluation Criteria in Solid Tumors 1.1, Semi-automated annotation,
Tumor Measurement, Deep learning
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Background
Response evaluation of cancer therapeutics is often a
prerequisite to various clinical decisions in cancer treat-
ment. Response Evaluation Criteria in Solid Tumor 1.1
(RECIST 1.1) is the predominant clinical guideline to de-
termine whether tumors in cancer patients responded to
treatment, stay the same, or worsened during cancer
therapeutics [1–4]. Application of RECIST guideline in-
volves a series of tumor size measurements, which is an
important surrogate marker of therapeutic efficacy. Con-
sistent and accurate measurements of tumor size are es-
sential with their direct impact on cancer treatment
management.
Performing RECISTS measurement is a non-trivial

task requiring a great deal of expertise and time by a
highly trained radiologist. Multiple reports have indi-
cated that the tumor size measurements using computed
tomography (CT) scans are subjected to intra- and inter-
observer variability with various environmental factors
causing the variability [5–12]. To address these chal-
lenges, researchers have attempted to develop systems to
assist with consistent lesion measurement through auto-
mated lesion segmentation or masking for CT images
[13–18]. Most studies used segmentation techniques
with probabilistic approaches to drawing lesion boundar-
ies. However, segmentation results are often non-
comparable to radiologist measurements as radiologists
use unidirectional measurement. Conversion of segmen-
tation results into unidirectional measurement poses
challenges as the task requires additional clinical reason-
ing to decide the start point, end point, and longest axis
of the measurement, Fig. 1. Performing segmentation
often takes longer than performing unidirectional meas-
urement by human radiologists; this incurs additional
costs on the acquisition of training data for any auto-
mated system for measurement.
In this study, we propose a new approach for applica-

tion of a deep learning (DL) algorithm on semi-
automated CT measurement of lung lesions. To the best
of our knowledge, this study was the first to propose
semi-automated measurement of tumor without involv-
ing segmentation or masking process. The purpose is to
develop a tool performing measurement comparable to
radiologist measurement, which has a potential to assist
radiologists with consistent RECIST annotation by im-
proving inter-observer measurement variability. We also
investigated how different lesion types challenge the pro-
posed application of the DL algorithm.

Methods
Image data sets
We reviewed 8 publicly open datasets with 146,403
cross-sectional lung CT images from various institutions
(Table 1) [19–27]. A total of 1,617 cross-sectional lung

CT images were included in this study after applying the
following inclusion criteria: (a) selected lesion should be
measurable under RECIST 1.1 (b) selected image file
contains complete Digital Imaging and Communications
in Medicine (DICOM) pixel data with no corruption (c)
lesion size should differ by 20 % when compared to the
previously selected images if selected from the same
patient (d) selected image has at least 5mm spacing to
the previously selected images if selected from the same
patient. Additionally, DICOM metadata relevant to
image processing (e.g. pixel spacing, window/level set-
tings) was inspected for all selected image files. In the
selected images, CT scanning parameters were as fol-
lows: tube voltage of 100, 120, 130, and 140 kV, and tube
current 30–543 mA, and slice thickness of 1.0–6.0 mm.

Reference RECIST measurements
Three experienced board-certified radiologists who
regularly perform treatment response evaluation par-
ticipated in training and evaluation of the proposed
DL algorithm, Fig. 2. Radiologist 1 (MD) selected CT
images for the study according to the eligibility cri-
teria. The 1,617 CT images selected by the Radiolo-
gist 1 were randomly assigned to training set,
validation set, and test set through dataset-wise block
randomization, Table 1. The following ratio was used
as suggested in the potentially relevant studies using
deep learning: 70 % training, 15 % validation, 15 % test
[28–30]. Radiologist 2 (SL) and Radiologist 3 (EL)
performed measurement on images from the training
and validation sets, resulting in the exclusion of add-
itional 18 images due to inter-observer variability re-
garding the RECIST measurability on the images
initially selected by Radiologist 1. As a result, the
training dataset included images deemed measurable
by all three radiologists. The test set was labeled by
Radiologist 1. For clarity, there was no overlap be-
tween training and test data. The radiologist who la-
beled the test dataset was ruled out during the
training process. The participating radiologists did not
have access to measurements performed by other ra-
diologists to prevent observer bias. The reference
measurements were performed between October 2018
to June 2019.

Semi-automated measurement using deep learning
algorithm
The DL network for automatic lesion measurement con-
sisted of three consecutive convolutional neural net-
works that labeled whether the size of a target lesion in
a given image frame was larger or smaller than 32 pixels.
We assumed that, if the DL network failed to classify,
the failure occurred because the lesion size approxi-
mated to 32 pixels.
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The training data preparation was performed by resiz-
ing each CT image so that its target lesion would have a
size of 32 pixels. The unidirectional measurements in
centimeters were converted into measurements in pixels
(Mpx). The images were then magnified by 32/Mpx times
using bicubic interpolation as a differentiable sampler
for the different magnifications [31, 32]. Each target le-
sion was cropped in a 128-by-128 pixel frame using the
center point of measurement as a frame center. The

training dataset was generated through image augmenta-
tion techniques including zooming in/out, horizontal/verti-
cal shifting of the target lesion in an image frame. Using the
various magnifications, the DL network was trained to pre-
dict whether a lesion in a 128-by-128 pixel frame is larger
or smaller than 32 pixels. The augmentation was also
intended to improve the resilience of classification by train-
ing the DL algorithm with target lesions off the center of
the image frame [33]. The convolutional neural network

Fig. 1 Challenges associated with lesion segmentation and its conversion to unidirectional RECIST measurement. a Automated lesion
measurement is challenged by the absence of visual distinction between beginning and ending points and their surrounding areas. b Lesion
boundaries are visually distinct and well-defined; both segmentation and conversion of segmentation into measurement can easily be automated
using existing techniques and tools. c Both segmentation and conversion of segmentation into measurement require a significant amount of
clinical reasoning, which poses challenges to the idea of automated measurement through segmentation
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was trained for 500 iterations with a batch size of 32; the
model with the highest validation accuracy was selected.
The training process was not stratified by the lesion charac-
teristics. A single DL classifier was utilized for both training
and inference throughout the study.
The proposed method was semi-automatic; the algorithm

was first given with an arbitrary point within a target lesion
to perform the RECIST measurements. Once the arbitrary
point was acquired, the algorithm utilized the point as a
frame center to cropped 128-by-128 pixel image frames
containing target lesion with various magnifications, Fig. 3.
Upon identification of magnification where the classifica-
tion failed, a numerical value of measurement was calcu-
lated using the magnification and DICOM pixel spacing
tag. The codes are available at https://github.com/
minjaewoo/Semiautomated-CT-Measurement.

Statistical analysis
Reliability of measurements by the DL algorithm was
assessed with the intraclass correlation coefficient (ICC)
between automatically and manually obtained measure-
ments for images from the test set. The ICC was calcu-
lated using a two-way random-effects model that
characterized absolute agreement to account for both
lesion-wise effect (target effect) and radiologist-wise ef-
fect (rater effect) for evaluation comparable to the

previous studies on inter-observer variability in CT
measurement [11, 34].
Bland-Altman plotting with 95 % limits of agreement

was produced by averaging lesion size between the hu-
man reader and DL algorithm to demonstrate the agree-
ment between the measurements produced by the
human reader and DL algorithm [35]. The percentage
differences in measurement between the human and al-
gorithm were visualized in a histogram, Fig. 4.
Additional statistical analyses were performed to iden-

tify the effect of lesion invasion type on variability be-
tween the human radiologist and the DL algorithm.
Bonferroni’s method was used for pairwise comparison
of measurement difference by type of tumor invasion.
Statistical significance was set at p < 0.05.

Results
Characteristic of data sets
Mean ages of patients in the training, validation, and test
sets were 66.9, 66.1, and 67.1, respectively, Table 1.
Gender information extracted from DICOM metadata
suggested more male (62 %) than female (38 %) represen-
tation in selected CT images. Average lesion sizes anno-
tated by the human radiologists for training, validation,
and test sets were 3.08 cm, 3.26 cm, and 2.99 cm, respect-
ively, Table 2. As intended, Radiologist 1 annotated 244

Fig. 2 Flow diagram illustrating data collection procedures and inclusion criteria. The inclusion criteria were designed to ensure heterogeneity of
lesion patterns in the collected data. Each radiologist independently performed the measurements. The participating radiologists were blind to
the measurements performed by other radiologists
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images from the test set. Radiologist 2 and Radiologist 3
performed measurements on training and validation sets,
which resulted in 903 and 470 images annotated by Radi-
ologist 2 and Radiologist 3, respectively. The difference in
the number of images annotated by each radiologist was
mainly attributed to different measurement pace between
the radiologists. The proposed data augmentation resulted
in a total of 142,254 images for training. The augmented

training data included 71,127 images with lesion size
smaller than 32 pixels and 71,127 images with lesion size
larger than 32 pixels within a 128-by-128 pixel frame.

DL algorithm performance
The DL algorithm achieved an ICC score of 0.959 (95 %
CI: 0.947, 0.967) with Radiologist 1 when performing
measurements on the same set of 244 CT images,

Fig. 3 Overview of deep learning algorithm to perform unidirectional lesion measurement. In the shown example, the input image was augmented into
16 images at various magnifications, using the arbitrary input point (stained in red, pointed by arrow) in the target lesion. The neural network classified
each augmented image whether the containing lesion size is larger or smaller than 32 pixels within a 128-by-128 pixel frame. Upon identification of a
magnification inducing classification failure, the magnification and pixel spacing information were used to determine the final measurement
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Table 2. Bland-Altman plotting revealed a mean percent
difference (systematic difference) of 2.97 % between hu-
man and DL algorithm; overall, the algorithm marginally
overestimated the size of lesion by 2.97 % compared to
human radiologists. Bland-Altman upper and lower
limits of agreement (LOA) were realized at 24.3 and −
20.7 %. The plot also revealed a total of 6 measurements
outside the lower and upper LOA. Although previous
studies reported that the percent differences marginally
outside the LOA are not unusual among human ob-
servers [12], some percent differences were unusually
high and possibly indicated the algorithm failure. We
have identified 4 lesions that caused unusually high
measurement difference between the DL algorithm and
human radiologist; there were two lesions above upper
LOA with 48.5 and 70.6 % measurement difference, and
two lesions below lower LOA with 45.4 and 48.6 %
measurement difference. The lesions that caused the
outlier measurement difference between human and DL
algorithm were presented and compared in Fig. 5. For
technical details on how the start point, end point, and

longest axis were determined for the presented measure-
ments by DL algorithm, see Supplemental Material 1.
The Bland-Altman analysis indicated no heteroscedas-

ticity issue; the visualization suggested no evidence of in-
creasing measurement difference between human and
DL algorithm with an increase in average measurement.
A benchmark to test the performance of the DL algo-
rithm indicated that performing a single measurement
by the algorithm takes on average of 2.2 s per lesion
when tested on NVIDIA Jetson TX2 platform, whereas
the participating radiologists spent on average of 17.8 s
per lesion.

Effect of invasion type on performance
Bland-Altman analysis suggested different diagnostic be-
havior between the DL algorithm and human radiologist
when performing measurements. Overall, the algorithm
tended to overestimate the size of lesion by 2.97 % com-
pared to the human radiologist. Further comparisons
stratified by tumor characteristics indicated that invasion
type may be associated with diagnostic behavior of the

Fig. 4 Bland-Altman plot and histogram illustrating measurement difference between human radiologist and DL algorithm. Each data point in
Bland-Altman plot represent measurement difference between human radiologist and DL algorithm over the same lesion, calculated by the

following formula: 2� measurementDL�measurementhumanð Þ
ðmeasurementDLþmeasurementhumanÞ . The limits of agreement are represented in the dotted line, calculated by the following formula:

� 1:96 � SD. The horizontal solid lines represent systematic difference in Bland-Altman plot and histogram

Table 2 Reader statistics and inter-observer variability between human radiologist and DL algorithm

Reader Image Use Number of Annotated Images Average Measurement (cm)

Radiologist 1 Test 244 2.99 ± 0.93 (1.57–4.91)

Radiologist 2 Training 734 3.17 ± 0.96 (1.51–5.00)

Validation 159 3.21 ± 0.98 (1.50–4.99)

Radiologist 3 Training 395 2.92 ± 0.88 (1.49–4.94)

Validation 85 3.35 ± 0.89 (1.56–4.79)

DL Algorithm Test 244 3.07 ± 0.91 (1.37–5.44)

Radiologist 1 & DL Algorithm ICC: 0.959 (95% CI: 0.947, 0.967)

Note – Average Measurement ± Standard Deviation. Numbers in parentheses represent range consisting of (minimum observed value – maximum observed
value). ICC denotes intraclass correlation coefficient. The ICC score is based on a two-way random-effects model. CI denotes confidence interval.
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DL algorithm resulting in overestimation or underesti-
mation of lesion size. Specifically, a lesion-wise effect on
the difference in diagnostic behavior between the human
radiologist and DL algorithm was identified for the fol-
lowing invasion type classification: (A) Parietal pleura/
chest wall invasion (B) Mediastinal pleural invasion (C)
Endobronchial invasion less than 2 cm distal to the car-
ina (D) Invasion associated collapse (atelectasis) (E) Per-
ipheral invasion surrounded by lung (F) Diaphragm
invasion, Fig. 6 [36]. The Bonferroni pairwise compari-
son suggested that the measurements by the algorithm
are more likely to be overestimated compared to human
radiologist when measuring (B) tumor invading medias-
tinal pleural and (D) tumor associated collapse (atelec-
tasis) or obstructive pneumonia, as compared to when
measuring (C) endobronchial tumor less than 2 cm dis-
tal to the carina and (F) tumor invading diaphragm.

Discussion
This was the first study to perform semi-automated mea-
surements without masking or segmentation process. The

proposed algorithm facilitated the use of unidirectional
measurement throughout its training process, which sig-
nificantly reduced the cost of data acquisition. It yielded
output comparable to a human radiologist’s standard
RECIST measurement used in daily clinical practice. The
proposed methodology has the potential to assist other
anatomic measurements in the images with metadata con-
taining information on pixel spacing.
The inter-observer agreement rate between the DL al-

gorithm and human radiologist was 0.959 when evalu-
ated using ICC. Its performance is consistent with the
previously published study by McErlean in which 17 ra-
diologists measured the same 320 lesions to evaluate
inter-observer variability and achieved ICC scores of
0.943 and 0.967 among fellow and junior attending radi-
ologists, respectively [11]. The proposed DL algorithm
achieved an ICC score comparable to junior attending
radiologists from the study when measuring the same
set of 244 lesions. In a study by Tang et al., a convolu-
tional neural network-based method for semi-automated
RECISTS measurement was proposed and assessed using

Fig. 5 Example of outlier measurement differences from Bland-Altman plot. a The lesion underestimated by DL algorithm was subject to
controversy on whether its spiculations should be included in the measurement or not. b The lesion was underestimated by DL algorithm with no
clear clinical reasoning behind the measurement. c The lesion was overestimated by DL algorithm as the central density was included in the
measurement d The lesion was overestimated by DL algorithm as the algorithm was interfered by two separate lesions sharing the same field of view
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a mean difference between DL algorithm and radiolo-
gists in the unit of pixels (mean difference: 3.33 pixels;
standard deviation: 4.93 pixels) [18]. Our model achieved
a mean pixel difference and standard deviation of 2.85
and 2.51, which are 14 and 51 % lower than the perform-
ance suggested by the study, respectively. However, the
score using pixel difference may not be a reliable meas-
ure as the score is largely affected by the composition of
the dataset; when a percent measurement difference be-
tween readers is fixed, having a larger number of larger
lesions may inflate the performance score of DL algo-
rithm. For example, given a pixel spacing of 0.1 and a le-
sion size of 5 cm, the measurement difference of 5 pixels
accounts only 10 % measurement difference between
two readers. On the contrary, given a pixel spacing of
0.1 and a lesion size of 2 cm, the measurement differ-
ence of 5 pixels accounts 25 % measurement difference
between two readers. In this study, we primarily used
Bland-Altman plotting based on percent measurement
difference to address the issue.
Bland-Altman plotting suggested that the proposed al-

gorithm generally yielded comparable measurements to
a human radiologist with 240 (98.4 %) measurements re-
alized within or around the upper and lower limits of
agreement (LOA). Among the 4 (1.6 %) measurements
outside the LOA, we observed that 2 deviating measure-
ments (Fig. 5a and c) potentially subject to controversy
among human observers, with some radiologists accept-
ing the measurements and others rejecting them. The
first lesion underestimated by the DL algorithm (Fig. 5a)
was subject to controversy on whether its spiculations

should be included in the measurement or not. This par-
ticular case highlighted the inherent difficulty in measur-
ing lung lesion as well as lesion in other organs, as there
is no clear consensus existing with regard to how the
spiculations should be taken into account in lesion
measurement. In the second underestimated lesion
(Fig. 5b), the clinical reasoning behind the underestima-
tion by the DL algorithm is unclear. The first overesti-
mated measurement by DL algorithm (Fig. 5c) appeared
to include the central density in its measurement while
the density was not included in the measurement by the
human radiologist. The controversy was associated with
whether the central density should be seen as a blood
vessel or part of the target lesion. In the second overesti-
mated lesion (Fig. 5d), the algorithm failed to recognize
two separate lesions sharing the same field of view and
combined them into a single measurement.
As demonstrated, the Bland-Altman plotting indicated

that the algorithm tends to marginally overestimate the
size of tumor compared to the human radiologist. Further
statistical test was performed to assess whether the algo-
rithm’s diagnostic behavior of under or overestimation is
associated with the tumor types. It was observed that
some tumor invasion types may induce the DL algorithm
to over or underestimating the lesion size compared to
the human radiologist. For example, the algorithm is likely
to overestimate when measuring mediastinal pleural inva-
sion (Fig. 6, Invasion Type b), compared to when measur-
ing diaphragm invasion (Fig. 6, Invasion Type f) with the
difference in its diagnostic behavior statistically significant.
The lesion size measurement of some invasion types

Fig. 6 DL algorithm’s measurement error by tumor invasion type. The measurement error was calculated by using the following formula:
2� measurementDL�measurementhumanð Þ
ðmeasurementDLþmeasurementhumanÞ . The invasion types were classified as follows: a Parietal pleura/chest wall invasion. b Mediastinal pleural invasion.

c Endobronchial invasion less than 2 cm distal to the carina. d Invasion associated with collapse (atelectasis). e Peripheral invasion surrounded by
lung. f Diaphragm invasion. Box plots show the distribution of percent measurement errors stratified by invasion type. Bonferroni multiple
comparison was performed, with statistical significance defined as *P < 0.05
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requires different clinical reasoning highly prone to inter-
observer variability. The systematic difference between the
algorithm and human radiologist attributed by the lesion-
wise characteristics may or may not be due to inter-
observer variability between the trainer and tester
radiologists.
This study had some limitations. First, this was a semi-

automated method as the algorithm requires an arbitrary
point within target lesion as an input. Given the recent
advancements in automated detection of lung cancer, fu-
ture studies may want to address the limitation by ex-
ploring a hybrid model that detects a lesion, identifies an
arbitrary point inside the lesion, and performs measure-
ment using the input point. Second, it has been well
documented that methods utilizing neural networks are
subject to a well-recognized challenge of their black-box
nature [37, 38], which make it harder to fully explain the
algorithm’s measurement behavior. A further study util-
izing techniques from interpretable machine learning
may be explored to address the challenge [39, 40]. Lastly,
the presented study was designed with an emphasis on
internal validity by comparing the algorithm with one
radiologist who was ruled out during the training
process. Future study designs may aim at generalizability
by training and comparing the algorithm with multiple
groups of radiologists using external validation data set.

Conclusions
This study proposed and validated a deep learning algo-
rithm for semi-automated CT measurement of lung lesions.
The DL algorithm yielded unidirectional measurements
comparable to those of human radiologist and presented an
excellent agreement. The DL algorithm was designed to
work with any image with known patient-to-detector dis-
tance and the corresponding pixel spacing information, in-
dicating a potential for its application in other anatomic
measurements.
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