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Abstract: Rangifer tarandus, known as caribou or reindeer, is a widespread circumpolar species which
presents significant variability in their morphology, ecology, and genetics. A genome was sequenced
from a male boreal caribou (R. t. caribou) from Manitoba, Canada. Both paired end and Chicago libraries
were constructed and sequenced on Illumina platforms. The final assembly consists of approximately
2.205 Gb, and has a scaffold N50 of 11.765 Mb. BUSCO (Benchmarking Universal Single-Copy
Orthologs) reconstructed 3820 (93.1%) complete mammalian genes, and genome annotation identified
the locations of 33,177 protein-coding genes. An alignment to the bovine genome was carried out,
indicating sequence coverage on all bovine chromosomes. A high-quality reference genome will be
invaluable for evolutionary research and for conservation efforts for the species. Further information
about the genome, including a FASTA file of the assembly and the annotation files, is available on our
caribou genome website. Raw sequence data is available at the National Centre for Biotechnology
Information (NCBI), under the BioProject accession number PRJNA549927.

Keywords: caribou; reindeer; Rangifer tarandus; genome; genome assembly

1. Introduction

Rangifer tarandus, known as caribou in North America and reindeer in Europe and Asia, is the most
widespread circumpolar ungulate species [1]. The species occurs in a variety of ecozones, including
High Arctic, taiga, mountains, and boreal, and as such are hugely variable in their morphology, ecology,
and genetics [1]. In Canada, caribou are declining due to a number of stressors, including anthropogenic
disturbances and climate changes [2,3]. Even though many caribou populations fluctuate over time,
the current declines appear to be surpassing the ability of many herds to recover [3]. Consequently,
caribou are a conservation concern in most of Canada [3,4].

Although recognized as one species across its vast circumpolar range, caribou has a complex
history and existed in multiple refugia during the Pleistocene leading to three main lineages—a
Beringian, a North American and a High Arctic lineage [5,6]. Currently, caribou are divided into
multiple subspecies, the number of which has been disputed but with nine listed in Banfield’s often
cited revision of their taxonomy [1]. Taxonomic clarification was provided by COSEWIC in 2011 [4]
given the considerable variability even within some of the designated subspecies. In Canada, caribou
are currently divided into 11 extant and 1 extinct Designatable Units (DUs) to ensure the conservation of
all caribou diversity [4]; however, further research is essential to clarify the delineation and evolutionary
history of caribou groups and to elucidate functional genomic regions underlying ecological adaptation.
To help achieve this goal, we have sequenced a high-quality caribou reference genome from a male
boreal caribou (R. t. caribou; COSEWIC DU6) from Snow Lake, Manitoba, Canada.
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2. Materials and Methods

Neck muscle tissue was collected from an adult male boreal caribou (R. t. caribou), which had
been killed on a road in Manitoba in October 2009. The tissue was stored in RNA later ICE (Thermo
Fisher Scientific, MA, USA). Phenol chloroform extraction [7] was performed using 0.2 g of tissue, and
eluted in Tris-ethylenediaminetetraacetic acid (TE) buffer at 100 µL. The DNA was shipped to Dovetail
Genomics for library preparation, sequencing and assembly.

Three Chicago libraries were prepared as described previously elsewhere [8]. Briefly, for each
library, ~500 ng of high molecular weight genomic DNA (gDNA; mean fragment length = 85 kb) was
reconstituted into chromatin in vitro and fixed with formaldehyde. Fixed chromatin was digested
with DpnII, the 5’ overhangs filled in with biotinylated nucleotides, and then free blunt ends were
ligated. After ligation, crosslinks were reversed and the DNA purified from protein. Purified DNA
was treated to remove biotin that was not internal to ligated fragments. The DNA was then sheared to
~350 bp mean fragment size and sequencing libraries were generated using NEBNext Ultra enzymes
and Illumina-compatible adapters (New England BioLabs, Ipswich, MA, USA). Biotin-containing
fragments were isolated using streptavidin beads before PCR enrichment of each library. The libraries
were sequenced on an Illumina HiSeq X (Illumina, San Diego, CA, USA). The number and length of
read pairs produced for each library was: 123 million, 2 × 101 bp for library 1; 66 million, 2 × 101 bp
for library 2; and 125 million, 2 × 101 bp for library 3. Together, these Chicago library reads provided
50.8 × physical coverage of the genome (1–50 kb pairs).

A de novo assembly was constructed using a combination of paired end reads (mean insert sizes
~350 bp and 550 bp), which were sequenced on an Illumina HiSeq2500 (Illumina, San Diego, CA,
USA) and an Illumina HiSeq X (Illumina, San Diego, CA, USA), respectively. De novo assembly was
performed using Meraculous (version 2.2.2.5) [9] with a kmer (k) size of 43. The input data consisted
1.51 billion read pairs sequenced from paired end libraries (totaling 453 Gbp). Reads were trimmed for
quality, sequencing adapters, and mate pair adapters using Trimmomatic [10].

The input de novo assembly, shotgun reads, and Chicago library reads were used as input data for
HiRise, a software pipeline designed specifically for using proximity ligation data to scaffold genome
assemblies [8]. Shotgun and Chicago library sequences were aligned to the draft input assembly using
a modified SNAP read mapper (http://snap.cs.berkeley.edu). The separations of Chicago read pairs
mapped within draft scaffolds were analyzed by HiRise to produce a likelihood model for genomic
distance between read pairs, and the model was used to identify and break putative misjoins, to score
prospective joins, and make joins above a threshold. After scaffolding, shotgun sequences were used
to close gaps between contigs. Raw sequence data is available at the National Centre for Biotechnology
Information (NCBI), under the BioProject accession number PRJNA549927. Mitochondrial DNA is
not included in the assembly as a full mitogenome assessment is currently underway with additional
samples and will be released in the future.

We used the gene prediction program AUGUSTUS 2.5.5 [11] to annotate the genome using
predictions based on human genes. The genome was masked using RepeatMasker 3.2.6 [12] and
run in Augustus using a partial gene model allowing the prediction of incomplete genes at the
sequence boundaries.

We ran the final genome FASTA file through the stats.sh function of BBMap 38.42 [13] to calculate
genome statistics such as the N50. We also used BUSCO (Benchmarking Universal Single-Copy
Orthologs; [14]) to reconstruct 4104 conserved mammalian genes to assess genome completeness.
We aligned the caribou genome to the bovine reference genome, as it is the most closely related (estimated
to share a common ancestor around 25.8 million years ago [15]), highest quality reference genome.
We downloaded the FASTA sequence from the bovine genome database (bovinegenome.org [16]), and
aligned it to our genome using BWA-MEM [17]. Using the alignment, we created a Jupiter plot using
the script written by J. Chu [18] and Circos 0.69-3 [19]. We plotted the largest scaffolds covering 75% of
the bovine genome (as the figure becomes crowded and unclear when showing more) to assess synteny
between the two genomes. We also downloaded the consensus FASTA sequence for a previously
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published reindeer genome from Inner Mongolia [20] and did an alignment in the same way with the
bovine genome. We used QUAST 5.0.2 [21] to assess the quality of both our caribou assembly and the
reindeer assembly in comparison to the bovine genome.

3. Results and Discussion

The final Rangifer tarandus genome assembly consists of approximately 2.205 Gb, with a scaffold
N50 of 11,765,000 base pairs (Table 1), and a GC content of 41.44% (Table 2). AUGUSTUS identified the
locations of 33,177 protein-coding genes, and BUSCO indicated the presence of 3820 (93.1%) complete
mammalian genes of the 4104 searched for. Our quality assessment statistics are similar to those of
other recent non-model mammal species genome assemblies, including the American brown bear
(Ursos arctos ssp. horribilis) [22]; the beluga whale (Delphinapterus leucas) [23]; and the northern sea otter
(Enhydra lutris kenyoni) [24]. The previously published Rangifer tarandus genome, sequenced from a
domesticated individual from Inner Mongolia [20], consists of 58,765 scaffolds, with a scaffold N50 of
986, 392 bp, and successfully reconstructed 92.6% of the BUSCO genes, indicating our genome to be a
more contiguous assembly. We used the Chicago method which produces proximity ligation libraries
that have a relationship between within-read pair distance and read count. This produces long-range
sequence scaffolds during the assembly of genomes [8], and increased our scaffold contiguity compared
to the reindeer.

Table 1. Assembly statistics of the caribou genome.

Statistic Rangifer tarandus genome

Scaffold sequence total (bp) 22.052 × 108

Number scaffolds 4699
Scaffold N50 (bp) 11.765 × 106

Scaffold L50 52
Scaffold N90 (bp) 89.704 × 104

Scaffold L90 289
Contig sequence total (bp) 21.893 × 108

Number contigs 146,562
Contig N50 (bp) 32.819 × 103

Contig L50 19,701
Contig N90 (bp) 89.140 × 102

Contig L90 68,199

Table 2. Nucleotide base composition of the caribou genome assembly statistics of the caribou genome.

A C G T N

29.27% 20.72% 20.73% 29.28% 0.72%

The reindeer genome is larger, at 2.64 Gb, and so may cover more of the genome in total.
However, QUAST results indicated that the missing data is much higher for the reindeer genome,
with 3.6% of their bases as N’s, whereas our assembly consists of 0.7% N’s. Similarly, the reindeer
annotation recovered fewer genes than we did [20], which may be because our annotation does not
account for pseudogenes or incomplete proteins. However, it could also be because their assembly is
fragmented with a higher percentage of missing data, which may have impacted the detection of genes.
Using QUAST, our caribou assembly recovered 8402 genes from the Bovine annotation, whereas the
reindeer recovered 5755. In addition, we recovered more conserved genes during the BUSCO analysis,
suggesting the difference in the number of genes recovered during genome annotation is related to the
differences in genome contiguity.

Our genome sequence is the first North American Rangifer tarandus (caribou) genome, and is from
a wild animal which is important as genetic differences have been found between domesticated and
wild reindeer [25]. Therefore, both genomes likely represent important but different genomic variation.
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As one of our primary aims is to use the genome to aid with the conservation of wild populations, our
assembly represents a valuable resource.

The Jupiter plot displays the largest 312 caribou scaffolds, out of a total of 4699, which cover 75% of
the bovine genome (Figure 1). The coloured bands represent synteny between the caribou and bovine
assemblies. The lines crossing the circle could be genomic rearrangements, but also likely represent
break points in the assembly, particularly when appearing at the edges of scaffolds. The BWA results
indicated that the sex chromosomes appear on smaller scaffolds within the caribou assembly, explaining
why there are few alignments showing in the Jupiter plot. This reflects the difficulty in assembling
large contigs and scaffolds for the sex chromosomes due to their highly repetitive nature [26]. Overall,
the BWA alignment and Jupiter plot show good synteny between our caribou assembly and the bovine
reference genome, and tells us on which bovine chromosomes the caribou scaffolds are syntetic to
(see Supplementary File S1 for a list of which bovine chromosome the caribou scaffolds align to, and
the caribou genome website for BAM and BED alignment files for our alignment to the bovine genome).
The Jupiter alignment of the reindeer to the bovine genome also showed our assembly to be more
contiguous in comparison (Supplementary File S2).
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Figure 1. A Jupiter plot showing an alignment between the bovine chromosomes and the caribou
genome assembly. The left of the circle shows the numbered bovine chromosomes, and the right of
the circle has the largest 312 scaffolds from our assembly, which cover 75% of the bovine genome.
Coloured bands represent synteny between the genomes, and lines crossing the circle indicate genomic
rearrangements, or break points in the scaffolds.

Information about the genome is available and continuously updated at www.caribougenome.ca.
The website includes a BLAST function, as well as the ability to download the genome in FASTA

www.caribougenome.ca
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format, the annotation (gff3 and bed) files, and a RepeatMasked version of the genome. The availability
of a high-quality genome will be invaluable for answering evolutionary questions relating to this
wide ranging and variable species, but also for conservation efforts. For example, a larger number
of molecular markers can be developed using the whole genome data, as well as investigation into
variation of potentially functional importance [27].

Supplementary Materials: The following is available online at http://www.mdpi.com/2073-4425/10/7/540/s1,
Supplementary File S1: A list of which bovine chromosome the caribou scaffolds align to, Supplementary File S2:
The Jupiter plot showing the alignment of the reindeer genome to the bovine genome.
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