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Abstract

We presented a risk assessment model to distinguish between type 1 diabetes (T1D)
affected and unaffected siblings using only three single nucleotide polymorphism (SNP)
genotypes. In addition we calculated the heritability from genome-wide identity-by-descent
(IBD) sharing between full siblings. We analyzed 1,253 pairs of affected individuals and their
unaffected siblings (750 pairs from a discovery set and 503 pairs from a validation set) from
the T1D Genetics Consortium (T1DGC), applying a logistic regression to analyze the area
under the receiver operator characteristic (ROC) curve (AUC). To calculate the heritability of
T1D we used the Haseman-Elston regression analysis of the squared difference between
the phenotypes of the pairs of siblings on the estimate of their genome-wide IBD proportion.
The model with only 3 SNPs achieving an AUC of 0.75 in both datasets outperformed the
model using the presence of the high-risk DR3/4 HLA genotype, namely AUC of 0.60. The
heritability on the liability scale of T1D was approximately from 0.53 to 0.92, close to the
results obtained from twin studies, ranging from 0.4 to 0.88.

Introduction

One of the main reasons for disease gene identification is to provide the ability to identify peo-
ple who are at risk of disease. Thus, a central question for the field is whether validated marker
data can be used to discriminate effectively between cases and controls. However, even mark-
ers with replicated highly significant odds ratios may be poor classifiers and most variants
identified so far confer only small increments in risk and still explain only a small proportion
of phenotypic diversity [1]. T1D is a major chronic childhood disease caused by a combination
of genetic and environmental influences and genome wide association studies (GWAS) have
found over 60 genes to affect the risk of the disease, with the HLA loci having the greatest
impact on susceptibility (reviewed in [2, 3]). However, the AUC for risk prediction using mul-
tiple identified variants ranges from 0.65 to 0.68 for T1D (see ref. [4] for more details) despite
the fact that T1D has a very strong family component with a heritability estimate from 0.4 to
0.8 [5-8].
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The association of T1D with alleles at HLA loci, especially the HLA class II genes DR and
DQ, is well validated [9]. The highest risk is seen in individuals who are heterozygous
HLA-DRB1*03 and HLA-DRB1*04 types. HLA allele typing assists in determining risk for
T1D, and in studies to understand the pathogenesis of T1D. It is particularly useful in preven-
tion and intervention trials that test potential preventative treatments in high-risk subjects
[10]. However, the high cost of HLA genotyping is a major impost on such large scale pro-
grams but is beyond the reach of smaller research groups.

In this study, we presented a cost-effective predictive model that could distinguish T1D sta-
tus in siblings from multiplex families. Our model can be conducted at birth for early predic-
tion and prevention. Our 3-SNP model can not only prevent mortality, but also decrease
morbidity and public health costs.

Materials and methods
T1D datasets

We used subjects from the Type 1 Diabetes Genetics Consortium (T1DGC) [11]. A subject
was labelled as affected if the subject had documented T1D with onset at 37 years old, had
used insulin within 6 months of diagnosis, and had no concomitant disease or disorder associ-
ated with diabetes. Most subjects came from families where more than one child was affected,
and genotyping and clinical data were also collected for parents and unaffected sibs.

For each family, we randomly selected an affected subject to form a dataset, namely, pro-
bands. Next, sibs were selected from each family and were paired together with the probands
to create 1,253 pairs of proband-sib. Then we randomly split the 1,253 pairs into two datasets,
namely, a “discovery” dataset of 750 pairs and a “validation” dataset of 503 pairs, subject to the
equal proportion of case vs control in each dataset.

Predictors

We have recently presented a 3-SNP set, namely, rs2854275, rs3104413 and rs9273363 that
could rapidly define the HLA-DR and HLA-DQ types relevant to T1D (see our methods in
[12]). We used these SNPs genotyped from the probands as well as theirs sibs to predict the
risk of a new sibling at birth to be developed T1D in a multiplex family.

Risk assessment model

We used a logistic regression model to construct risk prediction models [13]. This method
finds the logistic curve that best predicts the risk of disease P = yes on the basis of continuous
or categorical independents of an observation G = (g;,. . .,g,,), formally:

( Pr(P = yes|G)

1Pr(Pyes|G) =B)+Bg +...+Bg, (1)

Logistic regression uses an approach called maximum likelihood estimation to estimate
regression coefficients. In this case, the predictor G is a 9-dimension vector, including the 3
SNPs genotyped from a proband, the corresponding 3 SNPs genotyped from a sib and 3 binary
indicators showing whether or not a genotype from the proband is equal to the corresponding
genotype from the sib.

We measured the discriminative accuracy of the predictive models using receiver-operator
curve (ROC) analyses [14,15]. The ROC plots the relationship between the true positive rate
(TPR or sensitivity) and false positive rate (FPR or 1-specificity) across all possible threshold
values that define the disease. The area under the receiver-operator curve (AUC) is the
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probability that a randomly chosen case will have a higher estimated risk of developing the dis-
ease than a randomly chosen control. The AUC ranges from 0.5 to 1, where a higher number
implies a better discriminative model between cases and controls. One important feature of the
AUC is that it is not dependent on the number of cases or controls tested as described in ref. [16].

Heritability

Heritability of disease traits is formally defined as the proportion of phenotypic variance in a pop-
ulation attributable to additive genetic factors [17]. Traditionally, heritability is often estimated
on the basis of parent-offspring correlations for continuous traits or the ratio of the incidence in
first-degree relatives of affected persons to the incidence in first-degree relatives of unaffected
persons [5]. In this study, we used the Haseman-Elston regression analysis [18], the simple esti-
mation procedure for # sib pairs, of the squared difference between the phenotypes P;; and P;, of
the i*" pair of siblings on the estimate of their genome-wide IBD proportion 7, formally:

(Pil_Pi2)2:a+ﬁ7% (2)

Because T1D subjects were recruited from different families across worldwide [2,3] the
equation (2) is adjusted for stratification using a linear mixed model:

(Pil_Pi2)2:a+ﬁﬁ+u (3)

where u is random effect from T1D samples’s regions. The fixed effect coefficient f is esti-
mated using the Ime4 package [19] after determining that the genome-wide IBD were distrib-
uted normally. We assume that the parents are not inbred so an estimate of the narrow sense
heritability is simply:

h? = —B/(26%) (4)

where 3; is an estimate of the total phenotypic variance.

To account for ascertainment that generates a much higher proportion of cases in our ana-
lyzed samples than in the population, the estimate heritability fzg on the observed scale case-
control study was transformed to that on the liability scale as [17,20]:

,  ~K(1-K)K(1-K)

L= h, (5)

h 22 P(1-P)

Where K is the population prevalence of T1D disease, P is the proportion of case vs. control

and z = e 7/2/y/21 is the height of the standard normal probability density function at the
truncation threshold T = ®(1-K).

Results
IBD estimate

IBD probabilities were calculated using Plink [21]. Fig 1 shows the distribution of the genome-
wide additive coefficients. The average proportion of the genome-shared IBD between the sib
pairs (the coefficient of additive genetic variance) was 0.516 (standard deviation 0.056), with a
range of 0.226-0.715.

Heritability

We used a non-parametric bootstrap method [22] to calculate the standard error of the herita-
bility. We divided the sib-pair dataset into three subsets, namely affected-affected sib-pairs,
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Fig 1. Histogram of the genome-wide additive genetic relationships of full-sib pairs estimated from genetic markers using Plink.

https://doi.org/10.1371/journal.pone.0176341.9001

affected-unaffected sib-pairs and unaffected-unaffected sib-pairs. From each subset, we ran-
domly selected with replacement 300 sib-pairs to reconstruct a new dataset of 900 samples
where the proportion of case vs. control was always fixed at 0.5. We repeated this bootstrap
routine 10,000 times to generate 10,000 new different datasets. Table 1 shows the overall #°; of
T1D ranging from 0.53 to 0.92 depends on different settings of the T1D prevalence K. Our her-
itability estimates using sib-pair methods are closed to the results obtained from twin studies,
ranging from 0.4 to 0.88 [5-8]. The R program and IBD data are available in Supporting Infor-
mation files.

AUC

The AUC and the corresponding 95% Cls for the sib-pair logistic regression model obtained
in the discovery and validation sets are shown in Table 2. The AUC for the model was 0.75

Table 1. The heritability on liability scale (h?,) of T1D estimates using the well-known Haseman-
Elston regression analysis.

T1D prevalence K K, (s.e.)
0.003 (general population) 0.53(0.0017)
0.005 (general population) 0.59 (0.0019)
0.01 (siblings of affected probands) 0.69 (0.0022)
0.03 (siblings of affected probands) 0.92 (0.0029)

https://doi.org/10.1371/journal.pone.0176341.t001
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Table 2. AUC on T1D discovery and validation datasets generated from logistic regression models.

Model

Presence / Absence DR3/4

3 SNPs rs2854275, rs3104413, rs9273363

Discovery set
n =750 pairs
(1,500 samples)
0.61 (s.e. 0.014)
95% Cl (0.59-0.64)

0.75 (s.e. 0.013)
95% C.I. (0.72-0.77)

Validation set
N =503 pairs
(1,006 samples)
0.61 (s.e. 0.018)
95% CI (0.57-0.64)

0.75 (s.e. 0.015)
95% C.I. (0.72-0.78)

https://doi.org/10.1371/journal.pone.0176341.1002

(95% CI, 0.72-0.77) in the discovery set, and when applied to the validation set, the AUC was
also 0.75 (95% CI, 0.72-0.78). Thus, the model revealed consistency between the discovery and
the validation sets. The overall AUCs in both datasets are far better than those of the model
using only the presence / absence of the high risk HLA-DR3/4, namely AUC of 0.61 (s.e.
0.014-0.018). Fig 2 shows the ROC analyses from the sib-pair logistic regression model applied
on the two datasets.

Discussion

In the past 15 years, the genetics of common human diseases has been transformed by GWAS.
These studies have been a powerful approach to the identification of genes involved in these
complex diseases and led to developing predictive genetic tests. The tests using SNPs to predict
an individual’s future risk of disease are one of the most appealing early disease prediction
methods. Such tests can be conducted at birth and, by use of appropriate prevention strategies,
prevent individuals from contracting a disease. These tests have the potential to be the corner-
stone of epidemiology and are anticipated to have a large impact on health care (see further
reviews in refs [23-25]). It is important to note that ROC curve is a simple and convenient
overall measure of diagnostic test accuracy and does not depend on the prevalence of disease
in the actual population. However, to measure the performance of a prediction model in clini-
cal settings, the positive predictive value (PPV) and negative predictive value (NPV), which
incorporate the disease prevalence in the testing population, are necessary. PPV is the propor-
tion of patients who test positive for the disease who actually have the disease, and the NPV

is the proportion of subjects who test negative who are actually free of the disease. Note that,
like sensitivity and specificity, the positive and negative predictive values are dependent on
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Fig2. ROC analyses from logistic regression models on A) T1D’s discovery set n = 750 pairs (1,500 samples) and B) T1D’s validation dataset n = 503 pairs
(1,006 samples). Each point represents a test defined by a different logit score.

https://doi.org/10.1371/journal.pone.0176341.9002
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the risk score threshold T (the logit score in this study). When disease is rare like T1D, the
threshold should be selected toward lower left portion of the ROC curve where the sensitivity
is small but the specificity is high [13]. For example, when siblings of affected probands are
screened, the proposed 3-SNP model achieves the PPVs of 2.7% and 7.8%, and the NPV of
99.3% and 97.9% for the prevalence of 1% and 3%, respectively. In this case, screening for low
prevalence T1D disease is cost effective because the cost of screening is less than the cost of
care if the disease is not detected before disease onset. T1D, an autoimmune disease resulting
from immune-mediated destruction of the insulin-producing B-islet cells of the pancreas,
causes substantial morbidity and mortality and requires life-long insulin treatment. By the
time that the disease is detected clinically, the B-cells are almost completely destroyed, and no
known treatment can restore them.

Even though preventing or curing type 1 diabetes at risk subjects remain elusive despite
effortless and substantial investments in industrialized countries [26,27], diabetes prevention
research has been developed rapidly in recent years. In addition to current impressive methods
to prevent type 1 diabetes such as metabolic modifications, antigen-specific vaccination, pan-
creatic transplantation, stimulation of B-cell regeneration, or avoidance of environmental
triggers of islet autoimmunity [28], advances in stem cell biology, cell encapsulation methodol-
ogies, and immunotherapy will benefit the lives of patients in the end [27,29,30]. Importantly,
if early onset diabetes of young children could be identified, screening high risk individuals
can stave off or even avoid the short term as well as long term complications of type 1 diabetes.
For short term complications, monitoring sugar can prevent new-onset diabetic ketoacidosis,
the most severe acute diabetes-related central nervous system complication in young patients
[31]. Early monitoring and modification of insulin sensitivity can also hamper diabetic neph-
ropathy, one of the major causes of morbidity and mortality in type 1 diabetes [32,33]. The
mortality and morbidity of heart disease are significantly escalated in type 1 diabetes patients
compared to the nondiabetic population. An intervention at early stage to achieve glycaemia
as close to normal as possible could alleviate and/or delay all of the cardiovascular compli-
cations of diabetes in high risk patients [34,35]. Several international projects for diabetes
prevention such as DIPP [36], TEDDY [37], TRIGR [38], TrialNet [39] have screened and
monitored thousands of newborn infants for HLA-DQBI allele association with susceptibility
to type 1 diabetes. As shown in the results, our proposed method is more accurate and much
cheaper than the typical HLA typing.

Genetic factors play a significant role in T1D disease, as indicated by the proportion of
explained variance (h°). As the heritability estimates for T1D explain ~90% of the phenotypic
variance the GWAS-based predictions can be significantly improved by incorporating many
other factors. These include invoking rare variants, structural variants, interaction between
genes and environment factors, non-linear interaction between genes and genes, family history
conditional on genotype at known loci and signals in non-coding regions [20,23-25].

Supporting information
S1 File. Histogram R. R program for producing histogram of IBD data.
R)

S2 File. Heritability R. R program for calculating t1d h2 using Haseman-Elston regression
analysis.

(R)

$3 File. Sibling IBD data. Plink IBD probabilities for all sib-pairs studied in this project.
(TXT)
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$4 File. Sibling IBD data. Plink IBD probabilities for non-affected vs non-affected sib pairs.
(TXT)

S5 File. Sibling IBD data. Plink IBD probabilities for non-affected vs affected sib pairs.
(TXT)

$6 File. Sibling IBD data. Plink IBD probabilities for affected vs affected sib pairs.
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