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ABSTRACT Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the
number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and
computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various
parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package
implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and
semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed
for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can
be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates
and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods
implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis.

ANY modern statistical learning problems involve the

analysis of high-dimensional data; this is particularly
common in genetic studies where, for instance, phenotypes
are regressed on large numbers of predictor variables (e.g.,
SNPs) concurrently. Implementing these large-p-with-small-n
regressions (where n denotes sample size and p represents
the number of predictors) poses several statistical and com-
putational challenges, including how to confront the so-called
“curse of dimensionality” (Bellman 1961) as well as the com-
plexity of a genetic mechanism that can involve various types
and orders of interactions. Recent developments in shrinkage
and variable selection estimation procedures have made the
implementation of these large-p-with-small-n regressions fea-
sible. Consequently, whole-genome-regression approaches
(Meuwissen et al. 2001) are becoming increasingly popular
for the analysis and prediction of complex traits in plants (e.g.,
Crossa et al. 2010), animals (e.g., Hayes et al. 2009, VanRaden
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et al. 2009), and humans (e.g., Yang et al. 2010; Makowsky
et al. 2011; Vazquez et al. 2012; de los Campos et al. 2013b).

In the past decade a large collection of parametric and
nonparametric methods have been proposed and empirical
evidence has demonstrated that no single approach per-
forms best across data sets and traits. Indeed, the choice of
the model depends on multiple factors such as the genetic
architecture of the trait, marker density, sample size and the
span of linkage disequilibrium (e.g., de los Campos et al.
2013a). Although various software (BLR, Pérez et al. 2010;
rBLUP, Endelman 2011; synbreed, Wimmer et al. 2012;
GEMMA, Zhou and Stephens 2012) exist, most statistical
packages implement a few types of methods and the in-
tegration of these methods in a unified statistical and com-
putational framework is needed. Motivated by this we have
developed the R (R Core Team 2014) package BGLR. The
package offers the user great latitude in combining differ-
ent methods into models for data analysis and is available
at CRAN (http://cran.at.r-project.org/web/packages/BGLR/
index.html) and at the R-forge website (https://r-forge.
r-project.org/projects/bglr/). In this article we discuss the
statistical models implemented in BGLR (Statistical Models,
Algorithms, and Data), present several examples based on
real and simulated data (Application Examples), and pro-
vide benchmarks of computational time and memory usage
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for a linear model (Benchmark of Parametric Models). All the
examples and benchmarks presented in this article are based
on BGLR version 1.0.3. In addition to the scripts presented in
the boxes included this article we provide supplementary
code in File S1, and text version of all the scripts used to
produce the results presented in the article in File S2.

Statistical Models, Algorithms, and Data

The BGLR package supports models for continuous (censored
or not) and categorical (binary or ordinal multinomial) traits.
We first describe the models implemented in BGLR using a
continuous, uncensored, response as example. Further details
about censored and categorical outcomes are provided later
on this article and in the supporting information, File S1.
For a continuous response (y;; i = 1, ..., n) the data
equation is represented as y; = n; + ¢;, where 7; is a linear
predictor (the expected value of y; given predictors) and ¢;
are independent normal model residuals with mean zero
and variance w2o?. Here, the w;s are user-defined weights
(by default BGLR sets w; = 1 for all data-points) and af is
a residual variance parameter. In matrix notation we have

y=m-+g

wherey ={y1, .., Yl M =M1, - -, M}, and € = {eq, .. ., &,}.
The linear predictor represents the conditional expecta-
tion function, and it is structured as

J L
n=lut ) XiB+ D) w, @
j=1 =1

where u is an intercept, X; are design matrices for predic-
tors, X; = {x;}, B; are vectors of effects associated to the
columns of Xj, and w; = {up, ..., u,} are vectors of random
effects. The only element of the linear predictor included by
default is the intercept. The other elements are user speci-
fied. Collecting the above assumptions, we have the follow-
ing conditional distribution of the data:
J K L
Yilw+ )Y xip B+ Y g otw? |,
j=1 k=1 =1

j=

p(ylo) =[N
i=1

1

where 0 represents the collection of unknowns, including
the intercept, regression coefficients, other random effects,
and the residual variance.

Prior density

The prior density is assumed to admit the following factorization:

J
p(0) =p(wp(o?) [[p(8) [[p(w).

L
j=1 =1

The intercept is assigned a flat prior and the residual variance is
assigned a scaled-inverse x2 density p(o?) = x~%(02|S,, df,)
with degrees of freedom df,(> 0) and scale parameter
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S.(> 0). In the parameterization used in BGLR, the prior
expectation of the scaled-inverse x? density x ~2(-|S., df) is
given by S./(df — 2).

Regression coefficients {8j} can be assigned either unin-
formative (i.e., flat) or informative priors. Those coefficients
assigned flat priors, the so-called “fixed” effects, are estimated
based on information contained in the likelihood solely. For
the coefficients assigned informative priors, the choice of the
prior plays an important role in determining the type of
shrinkage of estimates of effects induced. Figure 1 provides
a graphical representation of the prior densities available in
BGLR. The Gaussian prior induces shrinkage of estimate sim-
ilar to that of ridge regression (RR; Hoerl and Kennard 1970),
where all effects are shrunk to a similar extent; we refer to this
model as the Bayesian ridge regression (BRR). The scaled-t
and double exponential (DE) densities have higher mass at
zero and thicker tails than the normal density. These priors
induces a type of shrinkage of estimates that is size-of-effect
dependent (Gianola 2013). The scaled-t density is the prior
used in model BayesA (Meuwissen et al. 2001), and the DE or
Laplace prior is the one used in the BL (Park and Casella
2008). Finally, BGLR implements two finite mixture priors:
a mixture of a point of mass at zero and a Gaussian slab,
a model referred to in the literature on genomic selection
(GS) as BayesC (Habier et al. 2011), and a mixture of a point
of mass at zero and a scaled-t slab, a model known in the GS
literature as BayesB (Meuwissen et al. 2001). By assigning
a nonnull prior probability for the marker effect to be equal
to zero, the priors used in BayesB and BayesC have potential
for inducing variable selection.

Hyperparameters: Each of the prior densities described
above are indexed by one or more parameters that control
the type and extent of shrinkage/variable selection induced.
We treat most of these regularization parameters as random;
consequently a prior is assigned to these unknowns. Table 1
lists, for each of the prior densities implemented, the set of
hyperparameters. Further details about how regularization
parameters are inferred from the data are given in the sup-
porting information, File S1.

Combining priors: Different priors can be specified for each
of the set of coefficients of the linear predictor, {1, ..., B,
u;, Wy, ..., U}, giving the user great flexibility in building
models for data analysis; an example illustrating how to com-
bine different priors in a model is given in Example 2 of
Application Examples.

Gaussian processes: The vectors of random effects u; are
assigned multivariate-normal priors with a mean equal to
zero and covariance matrix Cov(u;, ;) = Kjo%, where K
is a (user-defined) n X n-symmetric positive semidefinite
matrix and o2 is a variance parameter with prior density
o2 ~ x 2(df;,S;). These random effects can be used to
deal with different types of problems, including but not

limited to: (a) regressions on pedigree (Henderson 1975),
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Figure 1 Prior densities of regression coefficients implemented in BGLR
(all densities in the figure have null mean and unit variance).

(b) genomic BLUP (VanRaden 2008), and (c) nonparametric
genomic regressions based on reproducing kernel Hilbert
spaces (RKHS) methods (e.g., de los Campos et al. 2009a,
2010; Gianola et al. 2006). Examples about the inclusion of
these Gaussian processes into models for data analysis are
given in Application Examples.

Categorical Response

The argument response type is used to indicate BGLR
whether the response should be regarded as gaussian, the
default value, or ordinal. For continuous traits the re-
sponse vector should be coercible to numeric; for ordinal traits
the response can take on K possible (ordered) values y; €
{1, ..., K} (the case where K = 2 corresponds to the binary
outcome), and the response vector should be coercible to
a factor. For categorical traits we use the probit link; here,
the probability of each of the categories is linked to the linear
predictor according to the following link function

P(yi =k) = ®(n; — v) = ®(m; — ¥k—1)s

where ®(-) is the standard normal cumulative distribution
function, u; is the linear predictor, specified as described
above, and v, are threshold parameters, with yg = — o,
Yk = Yr—1, Yk = . The probit link is implemented using
data augmentation (Tanner and Wong 1987); this is done
by introducing a latent variable (so-called liability) I; = n; +
& and a measurement model y; = k if y—1 = [; = ;. For
identification purpouses, the residual variance is set equal to
one. At each iteration of the Gibbs sampler the unobserved
liability scores are sampled from truncate normal densities;
once the unobserved liability has been sampled, the Gibbs
sampler proceeds as if [; were observed (see Albert and Chib
1993, for further details).

Table 1 Prior densities available for regression coefficients in the

BGLR package

Model (prior density) Hyperparameters  Treatment in BGLR?
Flat (FIXED) Mean (ug) ug=0
Variance (o) of=1x110
Gaussian (BRR) Mean (ug) ug=0
Variance (o) of~x?
Scaled-t (BayesA) Degrees of User specified
freedom (df) (default value, 5)
Scale (Sg) Sg ~ Gamma
Double A2 A fixed, user
exponential (BL) specified, or
A2 ~ Gamma, or
A/max ~ Betab
Gaussian mixture 7 (prop. of T ~ Beta

(BayesC)

nonnull effects)
dfg

User specified
(default value, 5)

Sg Sg ~ Gamma
Scaled-t mixture 7 (prop. of T ~ Beta
(BayesB) nonnull effects)
dfg User specified
(default value, 5)
Sp Sg ~ Gamma

? Further details are given in the supporting information (Section A of File S1).
b This approach is further discussed in de los Campos et al. (2009b).

Missing Values

The response vector can contain missing values. Internally, at
each iteration of the Gibbs sampler, missing values are sam-
pled from the corresponding fully conditional density. Missing
values in predictors are not allowed.

Censored Data

Censored data in BGLR is described using a triplet {a;, y;, b;},
the elements of which must satisfy a; < y; < b;. Here, y; is the
observed response (e.g., a time-to-event variable, observable
only in uncensored data points, otherwise missing, NA) and
a; and b; define lower and upper bounds for the response,
respectively. Table 2 gives the configuration of the triplet for
the different types of data points. The triplets are provided
to BGLR in the form of three vectors (y, a, b). The vectors
a and b have NULL as default value; therefore, if only y is
provided this is interpreted as a continuous trait without
censoring. If a and b are provided together with y, data
are treated as censored. Censoring is dealt with as a missing
data problem; at each iteration of the MCMC algorithm the
missing values of y;, present due to censoring, are sampled
from truncated normal densities that satisfy a; < y; < b;. An
example of how to fit models for censored data are given in
the supporting information in File S1 (Section E).

Algorithms

The R-package BGLR draws samples from the posterior density
using a Gibbs sampler (Geman and Geman 1984; Casella and
George 1992) with scalar updating. For computational conve-
nience the scaled-t and DE densities are represented as infinite
mixtures of scaled normal densities (Andrews and Mallows
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Table 2 Configuration of the triplet used to described censored
data points in BGLR

Type of point a; Vi b;
Uncensored NULL Yi NULL
Right censored a; NA Inf
Left censored —Inf NA b;
Interval censored a; NA b;

1974), and the finite-mixture priors are implemented using
latent random Bernoulli variables linking effects to compo-
nents of the mixtures. The computationally demanding steps
are performed using compiled C and Fortran code.

User Interface

The R-package BGLR has a user interface similar to that of
BLR (Pérez et al. 2010); however, we have modified key
elements of the interface, and the internal implementation,
to provide the user with greater flexibility for model build-
ing. All the arguments of the BGLR function have default
values, except the vector of phenotypes. Therefore, the sim-
plest call to the BGLR program is as follows.

library(BGLR)
y<-50+rnorm(100)
£m<-BGLR (y=y)

When the call fm<-BGLR (y = y) is made, BGLR fits an
intercept model, a total of 1500 cycles of a Gibbs sampler
(the default value for the number of iterations; see Box 2)
are run, and the first 500 samples are discarded, this is the
default value for burn-in (see Box 2). As the Gibbs sampler
collects samples, some are saved to the hard drive (only the
most recent samples are retained in memory) in files with
extension *.dat, and the running means required for
computing estimates of the posterior means and of the
posterior standard deviations are updated; by default, a
thinning of 5 is used but this can be modified by the user
using the thin argument of BGLR. Once the iteration process
finishes, BGLR returns a list with estimates and the argu-
ments used in the call.

Inputs

Box 2, displays a list of the main arguments of the BGLR
function, a short description follows:

e v, a, b (y, coercible to either numeric or factor, a and
b of type numeric) and response type (character) are
used to define the response.

e ETA (of type 1ist) is used to specify the linear predictor.
By default it is set to NULL, in which case only the in-
tercept is included. Further details about the specification
of this argument are given below.

e niter,burnin,and thin (all of type integer) control
the number of iterations of the sampler, the number of
samples discarded, and the thinning used to compute
posterior means, respectively.
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e saveAt (character) can be used to indicate BGLR
where to store the samples and to provide a pre-fix to
be appended to the names of the file where samples are
stored. By default samples are saved in the current work-
ing directory and no pre-fix is added to the file names.

e S0, df0, R2 (numeric) define the prior assigned to the
residual variance, df0 defines the degrees of freedom,
and SO defines the scale. If the scale is NULL, its value is
chosen so that the prior mode of the residual variance matches
the variance of phenotypes times 1-R2 (see supporting in-
formation, Section A of File S1, for further details).

BGLR( y, a = NULL, b = NULL, response_type = "gaussian",
ETA = NULL,
nIter = 1500, burnIn = 500, thin = 5,
saveAt = "',
SO = NULL, df0 = 5, R2 = 0.5,...

Return

The function BGLR returns a list with estimated posterior
means and estimated posterior standard deviations and the
arguments used to fit the model. Box 3, shows the structure
of the object returned after fitting the intercept model of
Box 1. The first element of the list (y) is the response vector
used in the call to BGLR, $whichNa gives the position of the
entries in y that were missing, these two elements are then
followed by several entries describing the call (omitted in
Box 3), and this is followed by estimated posterior means and
estimated posterior standard deviations of the linear pre-
dictor (SyHat and $SD.yHat), the intercept ($mu and
$SD.mu), and the residual variance (SvarE and $SD.varE).
Finally $fit gives a list with DIC and DIC-related statistics
(Spiegelhalter et al. 2002).

str(fm)

List of 18

$y : num [1:100] 50.4 48.2 48.5 50.5 50.2 ...
$ whichNa : int(0)

$ yHat : num [1:100] 49.7 49.7 49.7 49.7 49.7 ...
$ SD.yHat ¢ num [1:100] 0.112 0.112 0.112 0.112 0.112 ..
$ mu : num 49.7
$ SD.mu : num 0.112
$ varE ¢ num 1.11
$ SD.varE : num 0.152
$ fit :List of 4
..$ logLikAtPostMean: num -147
..$ postMeanLogLik : num -148
..$ pD : num 2.02
..$ DIC : num 298
-attr(x, "class")= chr "BGLR"

Output files

Box 4, shows an example of the files generated after executing
the commands given in Box 1. In this case samples of the
intercept (mu.dat) and of the residual variance (varE.dat)
were stored. These samples can be used to assess conver-
gence and to estimate Monte Carlo error. The R-package coda
(Plummer et al. 2006) provides several useful functions for
the analysis of samples used in Monte Carlo algorithms.


http://www.genetics.org/content/suppl/2014/07/09/genetics.114.164442.DC1/164442SI.pdf

Box 4: Files generated by BGLR (use after running the code in Box 1)

list.files()
[1] "mu.dat" "varE.dat"
plot(scan("varE.dat"),type="o")

Data Sets

The BGLR package comes with two genomic data sets involving
phenotypes, markers, pedigree, and other covariates.

Mice data set: This data set is from the Wellcome Trust
(http://gscan.well.ox.ac.uk) and has been used for detection
of quantitative trait loci (QTL) by Valdar et al. (2006a,b) and
for whole-genome regression by Legarra et al. (2008), de los
Campos et al. (2009b), and Okut et al. (2011). The data set
consists of genotypes and phenotypes of 1814 mice. Several
phenotypes are available in the data frame mice . pheno. Each
mouse was genotyped at 10,346 SNPs. We removed SNPs
with minor allele frequency (MAF) <0.05 and imputed miss-
ing genotypes with expected values computed with estimates
of allele frequencies derived from the same data. In addition
to this, an additive relationship matrix (mice.3) is provided;
this was computed using the R-package pedigreemm (Bates
and Vazquez 2009; Vazquez et al. 2010).

Wheat data set: This data set is from CIMMYT global wheat
breeding program and comprises phenotypic, genotypic, and
pedigree information of 599 wheat lines. The data set was
made publicly available by Crossa et al. (2010). Lines were
evaluated for grain yield (each entry corresponds to an aver-
age of two plot records) at four different environments; phe-
notypes (wheat .Y) were centered and standardized to a unit
variance within environment. Each of the lines were geno-
typed for 1279 diversity array technology (DArT) markers.
At each marker two homozygous genotypes were possible
and these were coded as 0/1. Marker genotypes are given
in the object wheat.X. Finally a matrix wheat . A provides
the pedigree relationships between lines computed from
the pedigree (see Crossa et al. 2010 for further details).
Box 5, illustrates how to load the wheat and mice data sets.

Box 5: Loading the mice and wheat data sets included in BGLR

library(BGLR)
data(mice)
data(wheat)
1s0

Application Examples

In this section we illustrate the use of BGLR with various
application examples, including comparison of shrinkage
and variable selection methods (Example 1), how to fit
models that account for genetic and nongenetic effects
such as covariates or effects of the experimental design
(Example 2), models for simultaneous regression on markers
and pedigree (Example 3), reproducing kernel Hilbert
spaces regression (Examples 4 and 5), and the assessment of
prediction accuracy (Examples 6 and 7). The scripts used to

fit the models discussed in each of these examples are
presented in the text; additional scripts with code for
post hoc analysis (e.g., plots) are provided in the supporting
information (File S1 and File S2).

Example 1: Comparison of shrinkage and variable
selection methods

In this example we show how to fit models that induce
variable selection and others that shrink estimates toward
zero. In the example, we use simulated data generated
using the marker genotypes for the mice data set. We assume
a very simple simulation setting with only 10 QTL. Pheno-
types were simulated under the standard additive model,

p
yi:injﬁj+8i: i:17"'7n7
j=1

where ¢ ~ N(0, 1 — h?), h? = 0.5. Marker effects were
sampled from the mixture model:

N(0,h?/10) if j € {517,1551,2585,3619,4653,
B; = 5687,6721,7755,8789,9823}
0 otherwise.

Box 6, shows the R code for simulating the phenotypes. The
simulation settings can be changed using parameters that
control sample size (n), the number of markers used (p), the
number of QTL (nQTL), and trait heritability (h2).

Box 6: Shrinkage and variable selection (I: simulation)

rm(list=1s())
library(BGLR); set.seed(12345); data(mice);
n<-nrow(mice.X); p<-ncol(mice.X);
X<-scale(mice.X,scale=TRUE, center=TRUE)

## Toy simulation example
nQTL<-10; p<-ncol(X); n<-nrow(X); h2<-0.5
whichQTL<-seq(from=floor (p/nQTL/2) ,by=floor (p/nQTL) ,length=nQTL)
b0<-rep(0,p)
b0 [whichQTL] <~rnorm(n=nQTL, sd=sqrt (h2/nQTL))
signal<-as.vector (X%*%b0)
error<-rnorm(n,sd=sqrt(1-h2))
y<-signal+error

Box 7, shows code that can be used to fit a Bayesian ridge
regression, BayesA, and BayesB. Once the models are fitted,
estimates of marker effects, predictions, estimates of the
residual variance, and measures of goodness of fit and
model complexity can be extracted from the object returned
by BGLR. Box S1 of File S1, provides the code used to ex-
tract the results presented next.

Box 7: Shrinkage and variable selection (II: fitting models)

nlter<-4500; burnIn<-500
## Fitting models
## Bayesian Ridge Regression (Gaussian prior), equivalent to G-BLUP
ETA<-1list (MRK=1list (X=X,model="BRR"))

fmBRR<-BGLR (y=y,ETA=ETA, nIter=nIter, burnIn=burnIn,saveAt="BRR_")

## Bayes A(Scaled-t prior)
ETA$MRK$model<-"BayesA"
£mBA<-BGLR (y=y ,ETA=ETA, nIter=nIter, burnIn=burnIn,saveAt="BA_")

## Bayes B (point of mass at zero + scaled-t slab)
ETA$MRK$model<-"BayesB"
£mBB<-BGLR (y=y,ETA=ETA, nIter=nIter, burnIn=burnIn,saveAt="BB_")
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Table 3 provides the estimated residual variance, the
deviance information criterion (DIC) and the effective num-
ber of parameters (pD) (Spiegelhalter et al. 2002). The es-
timated residual variances were all closed to the simulated
value (0.5). According to pD (288.9, 200.2, 198.3 for the
BRR, BayesA, and BayesB, respectively) the BRR was the
most complex model, and DIC (“smaller is better”) favored
BayesA and BayesB over the BRR, clearly. This was ex-
pected given the simple trait architecture simulated. Model
BayesA and BayesB gave very similar estimates and predic-
tions; this happened because in BayesB the estimated prob-
ability for the markers to have nonnull effects was very
high (>0.9); as this proportion approaches one, BayesB
converges to BayesA. The correlation between the true
and simulated signals were high in all cases (0.86 for the
BRR, 0.947 for BayesA, and 0.955 for BayesB) but favored
BayesA and BayesB over the BRR, clearly. We run the sim-
ulation using 30 QTL and removing the QTL genotypes in
the data analysis and the ranking of the models, based on
DIC and on the correlation between predicted and simu-
lated signal was similar to the one reported above.

Figure 2 displays the absolute values of estimates of
marker effects for models BayesA (red) and the BRR (black).
The estimates of BayesB (not shown) are similar to those
of BayesA. The vertical lines and blue dots give the posi-
tion and absolute value of the simulated effects. The BRR
gives a profile of estimated of effects where all markers
had tiny effects; BayesA and BayesB give a very different
profiles of effects: most of the simulated QTL were detected
(except the first one), markers having no effects had very
small estimated effects, and QTL had sizable estimated
effects. This simulation illustrates how in ideal circum-
stances the choice of the prior density assigned to marker
effects can make a big difference in terms of estimates of
effects. However, the difference between models is expected
to be much smaller under more complex genetic architectures
and, perhaps more importantly, when the marker panel does
not contain markers in tight LD with QTL, e.g., Wimmer et al.
(2013). The example also illustrates a very important concept:
in high-dimensional regressions it is possible to have similar
predictions with very different estimates of effects. Indeed, in
the example presented above, although the correlation of
effects estimated by BRR and BayesB was low (0.226), the
correlation between predictions (yHat) derived from each
of the models was relatively high (0.946).

Example 2: Fitting models for genetic and
nongenetic factors

In the next example we illustrate how to fit models with
various sets of predictors using the mice data set. Valdar et al.
(2006b) pointed out that the cage where mice were housed
had an important effect in the physiological covariates and
Legarra et al. (2008) and de los Campos et al. (2009b) used
models that accounted for sex, litter size, cage, familial rela-
tionships, and markers. Therefore, one possible linear model
that we can fit to a continuous phenotype is
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Table 3 Measures of Fit and of Model Complexity

Model Residual variance DIC pD

Bayesian ridge regression 0.506 (0.020) 4200.0 288.9
BayesA 0.489 (0.019) 4047.4 200.2
BayesB 0.482 (0.019) 4017.6 198.3

y=1u+ X187 +XoB2 + X3B3 + &,

where y is the phenotype vector (body mass index, in the
example), u is an intercept, X; is a design matrix for the
effects of sex and litter size, 8; is the corresponding vector
of effects, X, is the design matrix for the effects of cage, B,
is a vector of cage effects, X3 is the matrix with marker geno-
types, and B3 is the corresponding vector of marker effects.
We treat B, as “FIXED” and the other two vectors of effects
as random; B, is treated as Gaussian and marker effects, B3,
are assigned IID double-exponential priors, which corre-
sponds to the prior used in the Bayesian LASSO model.

Fitting the model: The script needed to fit the model above
described is given in Box 8. The first block of code, #1+#,
loads the data. In the second block of code we set the linear
predictor. This is specified using a two-level list. Each of the
elements of the inner list is used to specify one element of
the linear predictor; these elements are specified by pro-
viding a formula or a design matrix and a prior (model
argument). When the formula is used, the design matrix
is created internally using the model .matrix () function
of R. Additional arguments in the specification of the linear
predictors are optional (see Table S1, File S1 for the arguments
used to specify hyperparameters). Finally in the third block of
code we fit the model by calling the BGLR () function. When
BGLR begins to run, a message warns the user that hyperpara-
meters were not provided and that consequently they were set
using built-in rules (see Table S1, File S1, for further details).

#1# Loading and preparing the input data
library(BGLR); data(mice);
Y<-mice.pheno; X<-mice.X
y<-Y$Obesity.BMI; y<-scale(y,center=TRUE,scale=TRUE)
#2# Setting the linear predictor
ETA<-1ist( FIXED=list("factor (GENDER)+factor (Litter),
data=Y,model="FIXED"),
CAGE=list (“factor(cage) ,data=Y, model="BRR"),
MRK=1list (X=X, model="BL")
)
#3# Fitting the model
£m<-BGLR (y=y,ETA=ETA, nIter=105000, burnIn=5000)
save(fm,file="fm.rda")

Extracting results: Once the model was fitted one can
extract from the list returned by BGLR the estimated posterior
means and the estimated posterior standard deviations
as well as measures of model goodness of fit and model
complexity. Also, as BGLR runs, it saves samples of some
of the parameters; these samples can be brought into the
R-environment for posterior analysis. Box S2 of File S1,
illustrates how to extract estimates from the models fitted
in Box 8. Some of the results are given in Figure 3. In the
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Figure 2 Absolute value of estimated marker effects (black, Bayesian
ridge regression; red, BayesB; blue, simulated Value).

example, phenotypes were standardized to a unit sample var-
iance and the estimated residual variance was 0.53, suggest-
ing that the model explained ~47% of the phenotypic
variance. Figure 3, top left, gives the absolute value of esti-
mated effects and Figure 3, top right, gives a scatter plot of
phenotypes vs. predicted genomic values; this prediction does
not include differences due to sex, litter size, or cage. Figure
3, bottom, gives trace plots of the residual variance (left) and
of the regularization parameter of the Bayesian LASSO
(right). The residual variance had a very good mixing; how-
ever, the mixing of the regularization parameter was not as
good. In general, with large numbers of markers long chains
are needed to infer regularization parameters precisely.

Example 3: Fitting a pedigree+markers BLUP model
using BGLR

In the following example we illustrate how to incorporate
in the model Gaussian random effects with user-defined
covariance structures. These types of random effects appear
both in pedigree and genomic models. The example pre-
sented here uses the wheat data set included with the
BGLR package. In the example of Box 9 we include two
random effects, one representing a regression on pedigree,
a~ N(0, Ac?), where A is a pedigree-derived numerator
relationship matrix, and one representing a linear regression
on markers, g ~ N(O, Gaﬁ) where G is a marker-derived
genomic relationship matrix. For ease of interpretation of
estimates of variance components we standardized both
matrices to an average diagonal value of (approximately)
one. The implementation of Gaussian processes in BGLR
exploits the equivalence between these processes and ran-
dom regressions on principal components (de los Campos
et al. 2010; Janss et al. 2012). The user can implement a
RKHS regression either by providing covariance matrix (K)

or its eigenvalue decomposition (see the example in Box 9).
When the covariance matrix is provided, the eigenvalue de-
composition is computed internally. Box S3 of File S1, shows
how to extract estimates, predictions, and samples from the
fitted model. The estimated residual variance (posterior
standard deviation) was 0.43 (0.044), and the estimates
of the variance components associated to the pedigree, o2,
and markers, ag, were 0.24 (0.07) and 0.42 (0.09), respec-
tively. The code in Box S3 of File S1, shows how to obtain
samples of heritability from the samples collected before
each of the variance components. The estimated posterior
mean of the ratio of the genetic variance (o2 + cré) relative
to the total variance was 0.6; therefore, we conclude that
~60% of the phenotypic variance can be explained by genetic
factors. In this example, the pedigree explained approxi-
mately one-third of the total genetic variance and markers
explained the other two-thirds. The samples from the pos-
terior distribution of o2 and ¢ had a posterior correlation
of —0.184; this happens because both A and G are, to some
extent, redundant.

#1# Loading and preparing the input data

library(BGLR); data(wheat); set.seed(123);

Y<-wheat.Y; X<-wheat.X; A<-wheat.A/mean(diag(wheat.A));
y<-Y[,1]

#2# Computing the genomic relationship matrix
X<-scale(X,center=TRUE, scale=TRUE)
G<-tcrossprod(X) /ncol (X)

#3# Computing the eigen-value decomposition of G
EVD<-eigen(G)

#3# Setting the linear predictor
ETA<-1ist (PED=list (K=A, model="RKHS"),
MRK=1ist (V=EVD$vectors,d=EVD$values, model="RKHS")
)
#4# Fitting the model

fm<-BGLR (y=y,ETA=ETA, nIter=12000, burnIn=2000,saveAt="PGBLUP_")
save (fm,file="fmPG_BLUP.rda")

Reproducing kernel Hilbert spaces regressions: Reproduc-
ing Kernel Hilbert Spaces Regressions (RKHS) have been
used for regression (e.g., smoothing spline, Wahba 1990), spa-
tial smoothing (e.g., kriging, Cressie 1988), and classification
problems (e.g., support vector machine, Vapnik 1998). Gianola
et al. (2006) proposed using this approach for genomic pre-
diction and since then several methodological and applied
articles have been published elsewhere (Gianola and de los
Campos 2008; de los Campos et al. 2009a, 2010). In this
section we illustrate how to implement RKHS using single-
(Example 4) and multi- (Example 5) kernel methods.

Example 4: Single-kernel models

In RKHS the regression function is a linear combination of
the basis function provided by the reproducing kernel (RK);
therefore, the choice of the RK constitutes one of the central
elements of model specification. The RK is a function that
maps from pairs of points in input space (i.e., pairs of indi-
viduals) into the real line and must be positive semidefinite.
For instance, if the information set is given by vectors of
marker genotypes the RK, K(x;, Xy) maps from pairs of vectors
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of genotypes, {X;, x;} onto the real line with a map that must
satisfy > ;> . ai0iK(X;, Xp) = 0, for any nonnull sequence of
coefficients «;. Following de los Campos et al. (2009a) the
Bayesian RKHS regression can be represented as

y=1lu+u+e with p(u,u,e) «N(u|0, Ko2)N (&0, Io?),
2

where K = {K(x;,x)} is an (n X n)-matrix whose entries are
the evaluations of the RK at pairs of points in input space.
Note that the structure of the model described by (2) is that
of the standard animal model (Quaas and Pollak 1980) with
the pedigree-derived numerator relationship matrix (A)
replaced by the kernel matrix (K). Box 10, features an ex-
ample using a Gaussian kernel evaluated in the (average)
squared-Euclidean distance between genotypes, that is:

P v \2

K(x;,X%;) = exps —h X —Zk:l (xik —i'k)
p

In the example genotypes were centered and standardized,
but this is not strictly needed. The bandwidth parameter, h,
controls how fast the covariance function drops as the distance
between pairs of vector genotypes increases. This parameter
plays an important role in inferences and predictions. In this
example we have arbitrarily chosen the bandwidth parameter
to be equal to 0.25; further discussion about this parameter is
given in the next example. With this choice of RK, the esti-
mated residual variance was 0.41, which suggests that the
RKHS model fitted in Box 10, fits the data slightly better than
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the pedigree + markers models of Box 9. Box S4 of File S1,
provides supplementary code for the model fitted in Box 10.

Box 10: Fitting a Single Kernel Model in BGLR

#1# Loading and preparing the input data
library(BGLR); data(wheat); set.seed(123);
Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<-Y[,1]

#2# Computing the distance matrix and then the kernel.
X<-scale(X,center=TRUE, scale=TRUE)
D<-(as.matrix(dist(X,method="euclidean"))"2)/p
h<-0.25
K<-exp(~h#D)

#3# Single Kernel Regression using BGLR

ETA<-1list(K1=1list (K=K,model="RKHS"))
fm<-BGLR (y=y,ETA=ETA,nIter=12000, burnIn=2000,saveAt="RKHS_h=0.25_")

Example 5: Multikernel methods

The bandwidth parameter of the Gaussian kernel can be
chosen using either cross-validation (CV) or Bayesian
methods. From a Bayesian perspective, one possibility is
to treat h as random; however, this is computationally
demanding because the RK needs to be recomputed any
time h is updated. To overcome this problem de los Campos
et al. (2010) proposed using a multikernel approach (named
kernel averaging, KA) consisting of: (a) defining a sequence
of kernels based on a set of values of h, and (b) fitting a
multikernel model with as many random effects as kernels
in the sequence. The model has the form

y=1u+ Zlelul +¢ with
p(w .. ) < [T, N (wl0. Ko )N (el0,102),  (3)
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where K; is the RK evaluated at the Ith value of the bandwidth
parameter in the sequence {hy, ..., h;}. It can be shown (e.g.,
de los Campos et al. 2010) that if variance components
are known, the model of expression (3) is equivalent to a
model with a single random effect whose distribution is
N(u|0, Ko?), where K is a weighted average of all the RK
used in (3) with weights proportional to the corresponding
variance components (hence the name kernel averaging). Per-
forming a grid search for h or implementing a multikernel
model requires defining a reasonable range for h. If the value
of h is too small, the entries of the resulting Gaussian kernel
will approach a matrix full of ones; such a kernel will be re-
dundant with the intercept, which is included as fixed effect.
On the other hand, if h is too large, the off-diagonal values of
the kernel matrix will approach zero, leading to a random
effect that is confounded with the error term. Therefore, in
choosing values for h both extremes should be avoided. Al-
though there is no general rule to define the values of the
bandwidth parameter, one possibility is to set h to values
h=1/Mx{1/5,1,5}, where M is the median squared Eu-
clidean distance between lines (computed using off-diagonals
only). With this choice, the median off-diagonals of K will be
exp(—1), exp(—1) and exp(—5) for h equal to h=1x4,
h= 1% and h = 2, respectively. We use this approach in Box
11, to fit a multikernel model. The resulting entries of the RK
are displayed in Figure 4. Box S5 of File S1, provides supple-
mentary code that can be used to retrieve estimates from the
model fitted in Box 11. The estimated residual variance was
close to 0.3 and the estimated variance components for each
of the kernels fitted were 0.62, 0.48, and 0.24 for h equal to
0.098, 0.490 and 2.450, respectively. The script provided in
Box S5 of File S1, produces trace plots of variance compo-
nents. The residual variance has a reasonably good mixing.
The sum of the variances of the three kernels also has a
reasonably good mixing; however, due to confounding be-
tween the kernels, individual variance components show a
much poorer mixing.

Box 11: Fitting a RKHS Using a Multi-Kernel Methods (Kernel Averaging)

#1# Loading and preparing the input data
library(BGLR); data(wheat); set.seed(456);
Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<=Y[,1]

#2# Computing D and then K

X<-scale (X, center=TRUE, scale=TRUE)
D<-(as.matrix(dist(X,method="euclidean"))"2)/p
h<-round(1/median (D [row(D)>col(D)]),2)
h<-h*c(1/5,1,5)

Ki=exp(-h[1]*D)
K2=exp(-h[2]*D)
K3=exp (-h[3]*D)

#3# Kernel Averaging using BGLR
ETA<-1list(list(K=K1,model="RKHS"),

1ist(K=K2,model="RKHS") ,

list(K=K3,model="RKHS"))
£n<-BGLR (y=y,ETA=ETA,nTter=17000, burnIn=2000,saveAt="RKHS_KA_")

Assessment of prediction accuracy: In the previous exam-
ples we illustrated how to fit different types of models to
training data; in the following section we consider two
ways of assessing prediction accuracy: a single training—
testing partition and multiple training—testing partitions.

1.0

0.6
|

K(1,i)

0.4

0 100 200 300 400 500 600

individual

Figure 4 Entries of the first row of the (Gaussian) kernel matrix evaluated
at three different values of the bandwidth parameter, h = 0.098, 0.490,
2.450.

Example 6: Assessment of prediction accuracy using
a single training-testing partition

A simple way of assessing prediction accuracy consists of
partitioning the data set into two disjoint sets: one used
for model training (TRN) and one used for testing (TST).
Box 12, shows code that fits a G-BLUP model in a TRN-TST
setting using the wheat data set. The code randomly assigns
100 individuals to the TST set. The variable tst is a vector
that indicates which data points belong to the TST data set;
for these entries we introduce missing values in the phenotypic
vector (see Box 12). Once the model is fitted, predictions
for individuals in the TST set can be obtained typing
fm$yHat[ tst] in the R command line; Box S6 of File S1
gives supplementary code to the example in Box 12, includ-
ing the code used to produce Figure 5 that displays observed
vs. predicted phenotypes for individuals in TRN (black dots)
and TST (red dots) sets. The correlation between observed
phenotypes and predictions was 0.83 in the TRN set and 0.60
in the TST set, and the regression of phenotypes on predic-
tions was 1.49 and 1.24 for the TRN and TST set, respectively.

Box 12: Assessment of Prediction Accuracy (Continuous Response)

#1# Loading and preparing the input data
library(BGLR); data(wheat);
Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<-Y[,1]

#2# Creating a Testing set
yNA<-y
set.seed(123)
tst<-sample(1:n,size=100,replace=FALSE)
yNA[tst]<-NA

#3# Computing G
X<-scale (X, center=TRUE, scale=TRUE)
G<-tcrossprod(X)/p

#4# Fits the G-BLUP model
ETA<-1list(1list (K=G,model="RKHS"))
£m<-BGLR (y=yNA,ETA=ETA,nIter=5000, burnIn=1000,saveAt="RKHS_")
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Example 7: Model comparison based on multiple
training-testing partitions

The example presented in the previous section is based on
a single training-testing partition. A cross-validation is sim-
ply a generalization of the single TRN-TST evaluation. For
a K-fold cross-validation there are K TRN-TST partitions; in
each fold, the individuals assigned to that particular fold are
used for TST and the remaining individuals are used for TRN.
Another possibility is to generate multiple TRN-TST partitions
with random assignment of subjects to either TRN or TST.
Each partition yields a point estimate of prediction accuracy
(e.g., correlation between predictions and phenotypes). The
variability of the point estimate across partitions (replicates)
reflects uncertainty due to sampling of TRN and TST sets, and
a precise estimate of prediction accuracy can be obtained by
averaging the estimates of accuracy obtained in each partition.

Box 13, gives an example of an evaluation based on 100
TRN-TST partitions. In each partition two models (P, pedi-
gree and PM, pedigree + markers) were fitted and used to
predict yield in the TST data set. This yielded 100 estimates
of the prediction correlation for each of the models fitted.
These estimates should be regarded as paired samples be-
cause both share a common feature: the TRN-TST parti-
tion. Several statistics can be computed to compare the
two models fitted, and a natural approach for testing the
null hypotheses Hy: P and PM have the same prediction
accuracy vs. Hy: the prediction accuracy of models P and
PM are different is to conduct a paired-t-test based on the
difference of the correlation coefficients. Figure 6 gives
the estimated correlations for the pedigree + markers
model (PM, vertical axis) vs. the pedigree-only model (P,
horizontal axis) by environment. The great majority of the
points lay above the 45° line indicating that in most parti-
tions the PM model had higher prediction accuracy than
the P-only model. The paired-t-test had P-values <0.001
in all environments indicating strong evidence against the
null hypothesis (Hy: P and PM have the same prediction
accuracy). The code used to generate the plot in Figure 6
and to carry out the t-test is given in Box S7, File S1.

#1# Loading and preparing the input data
rm(list=1s()); trait<-1; library(BGLR); data(wheat); y<-wheat.Y[,trait]
set.seed(123);
nTST<-150; n<-length(y); nRep<-100; nIter<-12000; burnIn<-2000

#2# Computing the genomic relationship matrix and the EVD decomposition
X<-scale (wheat.X, center=TRUE, scale=TRUE)

G<-tcrossprod(X)/ncol(X)

EVDG<-eigen(G); EVDA<-eigen(wheat.A)

#3# Setting the linear predictor
HO<-1list (PED=1ist (V=EVDA$vectors,d=EVDA$values, model="RKHS"))
HA<-HO
HA$G<-1ist (V=EVDG$vectors,d=EVDG$values, model="RKHS")
COR<-matrix(nrow=nRep,ncol=2,NA)

#4# Loop over TRN-TST partitions
for(i in 1:nRep){

tst<-sample(1:n,size=nTST,replace=FALSE)
yNA<-y; yNA[tst]<-NA
fm<-BGLR (y=yNA,ETA=HO, nIter=nIter, burnIn=burnIn)
COR[i,1]<-cor (y[tst],fm$yHat [tst]); rm(fm)
fm<-BGLR (y=yNA,ETA=HA, nIter=nIter, burnIn=burnIn)
COR[i,2]<-cor(y[tst],fm$yHat [tst]); rm(fm)
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Figure 5 Estimated genetic values for training and testing sets. Predic-
tions were derived using G-BLUP model (see Box 12).

Benchmark of Parametric Models

We carried out a benchmark evaluation by fitting a BRR
to data sets involving three different sample size (n = 1K,
2K and 5K, K = 1000) and four different marker densities
(P = 5K, 10K, 50K, and 100K). The evaluation was carried
out in an Intel Xeon processor, 2 GHz, with R executed in
a single thread and linked against OpenBLAS. Computing
time (Figure 7) scales approximately proportional to the
product of the number of records and the number of effects.
For the most demanding scenario (n = 5K, P = 100K) it
took ~11 min to complete 1000 iterations of the Gibbs sam-
pler. Using the R functions Rprof and summaryRprof
we performed an analysis of memory usage. As expected
the amount of memory used scaled linearly with marker
density with a maximum memory usage of ~6, 3, 0.6, and
0.3 Gb of RAM for n =5K and P = 100K, 50K, 10K, and 5K,
respectively. Because R holds all the objects in virtual
memory and the size of the objects depends on the under-
lying operating system, as a general rule, for an R session
using more than 4 Gb of RAM, a 64-bit build of R would be
needed.

Concluding Remarks

In BGLR we implemented in a unified Bayesian framework
several methods commonly used in genome-enabled pre-
diction, including various parametric models and Gaussian
processes that can be used for parametric (e.g., pedigree
regressions or G-BLUP) or semiparametric regressions (e.g.,
genomic regressions). The package supports continuous
(censored or not) as well as binary and ordinal traits.
The software interface gives the user great latitude in com-
bining different modeling approaches for data analysis. In
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the algorithm implemented in BGLR, operations that can be
vectorized are performed using built-in R-functions; however,
most of the computing intensive tasks are performed using
compiled routines written in C and Fortran languages. The

package is also able to take advantage of multithread BLAS
implementations in both Windows and UNIX-like systems.
Finally, together with the package we have included two
data sets and ancillary functions that can be used to read into
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the R-environment genotype files written in ped and bed
formats (Purcell et al. 2007).

The Gibbs sampler implemented is computationally
very intensive and our current implementation stores geno-
types in memory; therefore, despite the effort made to make
BGLR computationally efficient, performing regressions with
hundreds of thousands of markers requires access to large
amounts of RAM and the computational time can be con-
siderable. Certainly, algorithms other than MCMC can be quite
faster; however, the MCMC framework adopted offers great
flexibility, as illustrated by the examples presented here.

Although some of the computationally intensive algo-
rithms implemented in BGLR can benefit from multithread
computing; there is room to further improve the computa-
tional performance of the software by making more intensive
use of parallel computing. In future releases we plan to exploit
parallel computing to a much greater extent. Also, we are
currently working on modifying the software in ways that
avoid loading genotypes in in memory. Future releases will be
made at the R-Forge website (https://r-forge.r-project.org/R/?
group_id=1525) first and, after considerable testing, at CRAN.
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Supplementary Materials

A Prior Densities Used in the BGLR R-Package

In this section we describe the prior distributions assigned to the location parameters, (3;,w),
entering in the linear predictor of eq. (1). For each of the unknown effects included in the linear
predictor, {3, ..,8;,u1,...,ur}, the prior density assigned is specified via the argument model in
the corresponding entry of the list (see Box 8 for an example). Table S1 describes, for each of the
options implemented, the prior density used. A brief description is given below.

FIXED. In this case regression coefficients are assigned flat priors, specifically we use a Gaussian
prior with mean zero and variance equal to 1 x 100,

BRR. When this option is used regression coefficients are assigned normal IID normal distributions,
with mean zero and variance og. In a 2nd level of the hierarchy, the variance parameter is assigned
a scaled-inverse Chi-squared density, with parameters dfg and Sg. This density is parameterized

in a way that the prior expected value and mode are E(ag) = dfiﬁ— 5 and M ode(ag) = %,

respectively. By default, if dfg and Sg are not provided, BGLR sets dfg = 5 and solves for the scale
parameter to match the R-squared of the model (see default rules to set hyper-parameters below).
An analysis with fixed variance parameter can be obtained by choosing the degree of freedom
parameter to a very large value (e.g., 1 x 10'%) and solving for the scale using Sp = 0'% x (dfs +2);

this gives a prior that collapses to a point of mass at Ug,.

BayesA. In this model the marginal distribution of marker effects is a scaled-t density, with
parameters dfg and Sg. For computational convenience this density is implemented as an infinite
mixture of scaled-normal densities. In a first level of the hierarchy marker effects are assigned
normal densities with zero mean and marker-specific variance parameters, J%jk. In a 2nd level of
the hierarchy these variance parameters are assigned IID scaled-inverse Chi-squared densities with
degree of freedom and scale parameters dfg and Sg, respectively. The degree of freedom parameter
is regarded as known; if the user does not provide a value for this parameter BGLR sets dfs = 5.
The scale parameter is treated as unknown, and BGLR assigns to this parameter a gamma density
with rate and shape parameters r and s, respectively. The mode and coefficient of variation (CV)
of the gamma density are Mode(Sg) = (s — 1)/r (for s > 1) and CV(Sy) = 1//s. If the user does
not provide shape and rate parameters BGLR sets s = 1.1, this gives a relatively un-informative
prior with a CV of approximately 95%, and then solves for the rate so that the total contribution of
the linear predictor matches the R-squared of the model (see default rules to set hyper-parameters,
below). If one wants to run the analysis with fixed scale one can choose a very large value for the
shape parameter (e.g., 1 x 10'%) and then solve for the rate so that the prior mode matches the
desired value of the scale parameter using r = (s — 1)/953.

Bayesian LASSO (BL). In this model the marginal distribution of marker effects is double-
exponential. Following Park and Casella (2008) we implement the double-exponential density as a
mixture of scaled normal densities. In the first level of the hierarchy, marker effects are assigned
independent normal densities with null mean and maker-specific variance parameter szk X ag. The
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residual variance is assigned a scaled-inverse Chi-square density, and the marker-specific scale pa-
rameters, Tfk, are assigned IID exponential densities with rate parameter A\?/2. Finally, in the last
level of the hierarchy A\? is either regarded as fixed (this is obtained by setting in the linear predictor
the option type="FIXED"), or assigned either a Gamma (\?> ~ Gamma(r, s) if type="gamma") or a
A/ max is assigned a Beta prior, if type="beta", here max is a user-defined parameter representing
the maximum value that A can take). If nothing is specified, BGLR sets type="gamma" and s = 1.1,
and solves for the scale parameter to match the expected R-squared of the model (see section B of
this Supplementary Materials for further details).

BayesB-C. In these models marker effects are assigned IID priors that are mixtures of a point of
mass at zero and a slab that is either normal (BayesC) or a scaled-t density (BayesB). The slab
is structured as either in the BRR (this is the case of BayesC) or as in BayesA (this is the case
of BayesB). Therefore, BayesB and BayesC extend BayesA and BRR, respectively, by introducing
an additional parameter m which in the case of BGLR represents the prior proportion of non-zero
effects. This parameter is treated as unknown and it is assigned a Beta prior m ~ Beta(po, m),
with pop > 0 and 79 € [0,1]. The beta prior is parameterized in a way that the expected value
by E(m) = mp; on the other hand py can be interpreted as the number of prior counts (priors

“successes” plus prior “failures”); with this parametrization the variance of the Beta distribution
71'()(1—71’0)
(po+1)
mo = 0.5 gives a uniform prior in the interval [0, 1]. Choosing a very large value for py gives a prior

that collapses to a point of mass at 7.

is then given by Var(m) = , which is inversely proportional to py. Choosing pg = 2 and



Table S1.

Prior densities implemented in BGLR.

model= Join distribution of effects and hyper-parameters Specification of elements in the
linear predictor
FIXED p(ﬂj)a:l list(X=, model="FIXED")
BRR p(Bj,03) = {Hk N(ﬁjk\o,ag)} X" *(o3ldfs, Sp) 1ist(X=, model="BRR",df0=,S0=,R2=)
BayesA p(,@j,agj,Sg) = {Hk N(ﬁjk\o,Uéjk)X_Q(U%jk|df5, Sﬂ)} G(Sg|r, s) list(X=, model="BayesA",df0=,rate0=,
shapeO=,R2=)
p(,@j,Ti,)\Qlag) = {Hk (ﬁjk\O,T]k X o )Exp{ |)‘7}} x G(N%|r,s) , or list (X=,model="BL",lambda=,type="gamma",
rate=,shape=,R2=) 1
BL p(B;, 73, Moz, max) = {Hk (Bjkl0, 75, x o )Emp{ |A72}} x B(\/max |pp, ), or list(X=,model="BL",lambda=,type="beta",
probIn=, counts=,max=,R2=) 1
p(B;,T5lo2,\) = {]‘[k N (B0, 75, x 02)Exp {szk\A;}} list(X=,model="BL",lambda=,type="FIXED")!
Lodm) = N(B;0,02) + (1 — v =0)]}
Bayesc PP 757 {Hk2 IV (Bjil0, ) + (1 = m)1(Bjk = 0) list (X=,model="BayesC",d£0,S0,
XX (Uﬁ|dfﬁ"9f3) (7|po, mo) probIn=,counts=,R2=)>
2 _ N 1B — —2( 2 }
BayesB P(B;03,7) {Hk N (8]0, 05) + (1 = m)1(Bje = 0)| X0, Idfs, Sp) list(X=,model="BayesB",df0,rate0,shape0,
B(m ’poaﬂ'O) x G(Sg]r, s) probIn=,counts=,R2=)?
RKHS p(ul,agl) = N(w]0,K; x o2 IX” (o |dfi, S1) Either 1ist (K=,model="RKHS",df0,S0,R2=)

or 1list(V=,d=,model="RKHS",df0,S0,R2=)3

N(|’ .)7 X*2(.‘.’ .)7 G’(|7
spectively. (1) type can take values "FIXED", "gamma", or
non-null effect (g

), Bap(|), B,

eigen-vectors and eigen-values of K, respectively.

-) denote normal, scaled inverse Chi-squared, gamma, exponential and beta densities, re-
"beta"; (2) probIn represents the prior probability of a marker having a
), counts (the number of ‘prior counts’) can be used to control how informative the prior is; (3) V and d represent the



B Default rules for choosing hyper-parameters

BGLR has built-in rules to set values of hyper-parameters. The default rules assign proper, but
weakly informative, priors with prior modes chosen in a way that, a priori, they obey a variance
partition of the phenotype into components attributable to the error terms and to each of the
elements of the linear predictor. The user can control this variance partition by setting the argument
R2 (representing the model R-squared) of the BGLR function to the desired value. By default
the model R2 is set equal to 0.5, in which case hyper-parameters are chosen to match a variance
partition where 50% of the variance of the response is attributable to the linear predictor and 50%
to model residuals. Each of the elements of the linear predictor has its own R2 parameter (see
last column of Table S1). If these are not provided, the R2 attributable to each element of the linear
predictor equals the R-squared of the model divided the number of elements in the linear predictor.
Once the R2 parameters are set, BGLR checks whether each of the hyper-parameters have been
specified and if not, the built in-rules are used to set values for these hyper-parameters. Next we
briefly describe the built-in rules implemented in BGLR; these are based on formulas similar to
those described by de los Campos et al. (2013) implemented using the prior mode instead of the
prior mean.

Variance parameters. The residual variance (02), o2, of the RKHS model, and ag, of the BRR,
are assigned scaled-inverse Chi-square densities, which are indexed by a scale and a degree of
freedom parameter. By default, if degree of freedom parameter is not specified, these are set equal
to 5 (this gives a relatively un-informative scaled-inverse Chi-square and guarantees a finite prior
variance) and the scale parameter is solved for to match the desired variance partition. For instance,
in case of the residual variance the scale is calculated using S. = var(y) x (1 — R2) x (df: + 2), this
gives a prior mode for the residual variance equal to var(y) x (1— R2). Similar rules are used in case
of other variance parameters. For instance, if one element of the linear predictor involves a linear
regression of the form X 3 with model=‘BRR’ then Sz = var(y) x R2 x (dfg +2)/M Sz where M Sx
is the sum of the sample variances of the columns of X and R2 is the proportion of phenotypic
variance a-priori assigned to that particular element of the linear predictor. The selection of the scale
parameter when the model is the RKHS regression is modified relative to the above rule to account
for the fact that the average diagonal value of K may be different than 1, specifically we choose the
scale parameter according to the following formula S; = var(y) x R2 x (df; + 2)/mean(diag(K)).

In models BayesA and BayesB the scale-parameter indexing the t-prior assigned to marker effects
is assigned a Gamma density with rate and shape parameters r and s, respectively. By default
BGLR sets s = 1.1 and solves for the rate parameter using r = (s —1)/Sg with Sg = var(y) x R2 x
(dfg + 2)/M Sz, here, as before, M Sz represents the sum of the variances of the columns of X.

For the BL, the default is to set: type=‘gamma’, fix the shape parameter of the gamma density
assigned A2 to 1.1 and then solve for the rate parameter to match the expected proportion of
variance accounted for by the corresponding element of the linear predictor, as specified by the
argument R2. Specifically, we set the rate to be r = (s —1)/(2 x (1 — R2)/R2 x M Sx).

For models BayesB and BayesC, the default rule is to set mg = 0.5 and pg = 10. This gives a
weakly informative beta prior for 7 with a prior mode at 0.5. The scale and degree-of freedom
parameters entering in the priors of these two models are treated as in the case often models



BayesA (in the case of BayesB) and BRR (in the case of BayesC), but the rules are modified by
considering that, a-priori, only a fraction of the markers (7) nave non-null effects; therefore, in
BayesC we use Sz = var(y) x R2 x (dfg + 2)/M Sz /m and in BayesB we set r = (s — 1)/Sp with
Sg =wvar(y) x R2 x (dfg +2)/MSz/~.



C Supplementary R scripts

Box S1 illustrates how to extract estimates and predictions form the models fitted in Box 7.

Box S1: Supplementary code for the model fitted in Box

#Residual Variance
fmBRR$varE; fmBRR$SD.varE
fmBA$varE; fmBA$SD.varE
fmBB$varE; fmBB$SD.varE

# DIC and pD
fmBRR$fit
fmBA$fit
fmBB$fit

#Predictions
fmBRR$yHat; fmBRR$SD.yHat
fmBA$yHat; fmBAS$SD.yHat
fmBB$yHat; fmBB$SD.yHat

#Correlations between predicted and simulated signals
cor (signal,fmBRR$yHat)
cor(signal,fmBA$yHat)
cor(signal,fmBB$yHat)

# Estimated effects
tmp<-range (abs (b0))
plot (numeric() “numeric() ,ylim=tmp,xlim=c(1,p),
ylab=expression(paste("|",betaljl,"|")),
xlab="Marker Possition (order)")
abline(v=whichQTL,1ty=2,col=4)
points (x=whichQTL,y=abs (b0 [whichQTL]) ,pch=19,col=4)
points(x=1:p,y=abs (fmBRR$ETA$MRK$D) ,col=1,cex=.5)
lines(x=1:p,y=abs (fmBRR$ETASMRK$D) ,col=1,cex=.5)
points(x=1:p,y=abs (fmBB$ETA$MRK$b) ,col=2,cex=.5)
lines(x=1:p,y=abs (fmBB$ETA$MRK$b) ,col=2,cex=.5)

Box S2 illustrates how to extract estimates and predictions form the models fitted in Box 8.



Box S2: Supplementary code for the model fitted in Box

#1# Estimated Marker Effects & posterior SDs
bHat<- fm$ETA$MRKS$b
SD.bHat<- fm$ETA$MRKS$SD.b
plot(bHat"2, ylab="Estimated Squared-Marker Effect",
type="0",cex=.5,col="red" ,main="Marker Effects",
xlab="Marker")
points(bHat"2,cex=0.5,col="blue")

#2# Predictions
# Genomic Prediction
gHat<-X%*%fm$ETASMRK$Db
plot (fm$y~gHat,ylab="Phenotype",
xlab="Predicted Genomic Value", col=2, cex=0.5,
main="Predicted Genomic Values Vs Phenotypes",
xlim=range (gHat) ,ylim=range (fm$y)) ;

#3# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#4# Trace plots
list.files()

# Residual variance
varE<-scan("varE.dat")
plot(varE,type="o",col=2,cex=.5,
ylab=expression(sigmal[epsilon] "2),
xlab="Sample" ,main="Residual Variance");
abline (h=fm$varE, col=4,1lwd=2) ;
abline (v=fm$burnIn/fm$thin,col=4)

# lambda (regularization parameter of the Bayesian LASSO)
lambda<-scan("ETA_MRK_lambda.dat")
plot(lambda,type="0",col=2,cex=.5,

xlab="Sample",ylab=expression(lambda),

main="Regularization parameter");
abline (h=fm$ETA$MRK$lambda,col=4,1wd=2) ;
abline (v=fm$burnIn/fm$thin, col=4)

Box S3 shows how to extract estimates, predictions and variance components from the regression
model fitted using the script provided in Box 9.



Box S3: Supplementary code for the model fitted in Box

#1# Predictions
## Phenotype prediction
yHat<-fm$yHat
tmp<-range (c(y,yHat))
plot(yHat™y,xlab="0bserved",ylab="Predicted",col=2,
xlim=tmp,ylim=tmp); abline(a=0,b=1,col=4,lwd=2)

#2# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#3# Variance components associated with the genomic and pedigree
# matrices
fm$ETA$PED$varl
fm$ETA$PEDS$SD . varl

fm$ETA$MRK$varU
fm$ETA$SMRKS$SD . varU

#4# Trace plots
list.files()
# Residual variance
varE<-scan("PGBLUP_varE.dat")
plot(varE,type="o",col=2,cex=.5);

#varA and varU
varA<-scan("PGBLUP_ETA_PED_varU.dat")
plot(varA,type="o0",col=2,cex=.5);

varU<-scan ("PGBLUP_ETA_MRK_varU.dat")
plot(varU,type="o",col=2,cex=.5)

plot(varA~varU,col=2,cex=.5,main=paste("Cor= ",round(cor(varU,varA),3),sep=""))
varG<-varU+varA
h2<-varG/ (varE+varG)

mean (h2) ;sd(h2)

mean (varU/varG)
mean (varA/varG)

Box S4 provides supplementary code for the model fitted in Box 10.



Box S4: Supplementary code for the model fitted in Box

fm$varE
plot (y~fm$yHat)

plot(scan("RKHS_h=0.25_ETA_K1_varU.dat"),type="o0",col=2,cex=0.5)
abline (h=fm$ETA$K1$varU,col=4)

plot(scan("RKHS_h=0.25_varE.dat") ,type="0",col=2,cex=0.5)

abline (h=fm$varE, col=4)

Box S5 provides supplementary code for the model fitted in Box 11.

Box S5: Supplementary code for the model fitted in Box

# Posterior mean of the residual variance
fm$varE

# Posterior means of the variances of the kernels
VAR<-c(fm$ETA[[1]]$varU, fm$ETA[[2]]$varU, fm$ETA[[3]]$varl)
names (VAR)<-paste("Variance(h=",h,")",sep="")

barplot (VAR,ylab="Estimated Variance")

# Plots of variance components
varE<-scan("RKHS_KA_varE.dat")
varUil<-scan("RKHS_KA_ETA_1_varU.dat")
varU2<-scan("RKHS_KA_ETA_2_varU.dat")
varU3<-scan("RKHS_KA_ETA_3_varU.dat")
varU<-varUl+varU2+varU3

plot(varE,col=2,type="0",cex=.5,ylab="Residual Variance")
plot(varU,col=2,type="0",cex=.5,ylab="Variance" ,main="Genomic Variance")
plot(varUl,col=2,type="0o",cex=.5,ylab="Variance" ,main=paste("Variance (h=",h[1],")"))
plot(varU2,col=2,type="0o",cex=.5,ylab="Variance" ,main=paste("Variance (h=",h[2],")"))
plot (varU3,col=2,type="0",cex=.5,ylab="Variance" ,main=paste("Variance (h=",h[3],")"))

Box S6 provides supplementary code for the model fitted in Box 12.



Box S6: Supplementary code for the model fitted in Box

# Assesment of correlation in TRN and TST data sets
cor (fm$yHat [tst],y[tst]) #TST
cor (fm$yHat [-tst] ,,y[-tst]) #TRN

# Plot of phenotypes versus genomic prediction, by set (TRN/TST)
plot(y~I(fm$yHat) ,ylab="Phenotype",
xlab="Pred. Gen. Value" ,cex=.8,bty="L")
points(y=y[tst],x=fm$yHat [tst],col=2,cex=.8,pch=19)
legend("topleft", legend=c("training","testing"),bty="n",
pch=c(1,19), col=c("black","red"))
abline(lm(I(y[-tst]) "I(fm$yHat [-tst]))$coef,col=1,1lwd=2)
abline(1m(I(y[tst]) "I(fm$yHat [tst]))$coef,col=2,1wd=2)

Box S7 provides supplementary code for the model fitted in Box 13.

Box S7: Supplementary code for the model fitted in Box

# Comparing models using a paired t-test

colMeans (COR)

mean (COR[,2]-COR[,11)

t.test (x=COR[,2],y=COR[,1],paired=TRUE,var.equal=FALSE)

# Plots of Correlations: Pedigree+Markers vs Pedigree Only
xy_limits<-range(as.vector (COR))
plot (COR[,2]“COR[,1],col="red",

xlim=xy_limits,

ylim=xy_limits,

main="E1",

xlab="Pedigree", ylab="Pedigree+Markers")
abline(0,1,col="blue")
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D Regression with Ordinal and Binary Traits

For categorical traits BGLR uses the probit link and the phenotype vector should be coercible
to a factor. The type of response is defined by setting the argument response_type. By de-
fault this argument is set equal to "Gaussian". For binary and ordinal outcomes we should set
response_type="ordinal". Box S8 provides a simple example that uses the wheat data set with
a discretized phenotype. The second block of code, #2#, presents the analysis of a binary outcome,
and the third one, #3#, that of an ordinal trait. Figure S1 shows, for the binary outcome, a plot of
predicted probability (fmBin$probs) versus realized value in the TRN and TST datasets.

Box S8: Fitting models with binary and ordinal responses

#1# Loading and preparing the input data
library(BGLR) ; data(wheat);

Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<-Y[,1]

set.seed(123)
tst<-sample(1l:nrow(X),size=150)

#2# Binary outcome
yBin<-ifelse(y>0,1,0)

yBinNA<-yBin; yBinNA[tst]<-NA
ETA<-1ist(1ist (X=X,model="BL"))

fmBin<-BGLR (y=yBinNA,response_type="ordinal", ETA=ETA,
nIter=1200,burnIn=200)

head (fmBin$probs)

par (mfrow=c(1,2))

boxplot (fmBin$probs [-tst,2] “yBin[-tst] ,main="Training",ylab="Estimated prob.")
boxplot (fmBin$probs [tst,2] “yBin[tst] ,main="Testing", ylab="Estimated prob.")

#2# Ordinal outcome
yOrd<-ifelse(y<quantile(y,1/4),1,ifelse(y<quantile(y,3/4),2,3))
yOrdNA<-yOrd; yOrdNA[tst]<-NA

ETA<-list(list(X=X,model="BL"))
fmOrd<-BGLR (y=y0OrdNA,response_type="ordinal", ETA=ETA,

nIter=1200,burnIn=200)
head (fmOrd$probs)
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Figure S1: Estimated probability by category, versus observed category (binary response).
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E Regression with Censored Outcomes

Box S9 illustrates how to fit a model to a censored trait. Note that in the case of censored trait the
response is specified using a triplet (a;,v;, b;) (see Table 2 for further details). For assessment of
prediction accuracy (not done in Box S9), one can set a; = —o0, y; = N A, b; = oo for individuals in
testing data sets, this way there is no information about the ith phenotype available for the model
fit.

Box S9: Fitting censored traits

#1# Loading and preparing the input data
library(BGLR) ; data(wheat);
Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<—Y[, 1]
set.seed(123)

#censored

n<-length(y)

cen<-sample(1:n,size=200)

yCen<-y

yCen [cen] <-NA

a<-rep(NA,n)

b<-rep(NA,n)

alcen]<-y[cen]-runif (min=0,max=1,n=200)
blcen]<-Inf

#models
ETA<-1list(list(X=X,model="BL"))

fm<-BGLR (y=yCen,a=a,b=b,ETA=ETA,nIter=12000,burnIn=2000)

cor(y[cen] ,fm$yHat [cen])
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File S2

Boxes.R

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164442/-/DC1
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