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a b s t r a c t

Background: Various mathematical models were published to predict the epidemiological

consequences of the COVID-19 pandemic. This systematic review has studied the initial

epidemiological models.

Methods: Articles published from January to June 2020 were extracted from databases using

search strings and those peer-reviewed with full text in English were included in the study.

They were analysed as to whether they made definite predictions in terms of time and

numbers, or contained only mathematical assumptions and open-ended predictions.

Factors such as early vs. late prediction models, long-term vs. curve-fitting models and

comparisons based on modelling techniques were analysed in detail.

Results: Among 56,922 hits in 05 databases, screening yielded 434 abstracts, of which 72 ar-

ticles were included. Predictive models comprised over 70% (51/72) of the articles, with sus-

ceptible, exposed, infectious and recovered (SEIR) being the commonest type (mean duration

of prediction being 3 months). Common predictions were regarding cumulative cases (44/72,

61.1%), time to reach total numbers (41/72, 56.9%), peak numbers (22/72, 30.5%), time to peak

(24/72, 33.3%), hospital utilisation (7/72, 9.7%) and effect of lockdown and NPIs (50/72, 69.4%).

The commonest countries for which models were predicted were China followed by USA,

South Korea, Japan and India. Models were published by various professionals including

Engineers (12.5%), Mathematicians (9.7%), Epidemiologists (11.1%) and Physicians (9.7%) with

a third (32.9%) being the result of collaborative efforts between two or more professions.

Conclusion: There was a wide diversity in the type of models, duration of prediction and the

variable that they predicted, with SEIR model being the commonest type.
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Introduction

The first case of COVID-19 was detected in Wuhan on 17

November 2019.1 On 11Mar 2020, theWHO declared COVID-19

as a pandemic.2 This pandemic is the defining global health

crisis of our time and the greatest challenge we have faced

since World War II. Since its emergence in Asia late last year,

the virus has spread to every continent except Antarctica.3

The total number of cases worldwide on 14 April 2021 was

138,297,267 with 2,976,297 deaths and 111,208,976 recoveries.3

The seminal paper of Kermack et al. in 1927 introduced the

Susceptible, Infectious and Recovered (SIR) model for infec-

tious diseases.4 Since then, with advances in information

technology and fast computingmethods,many variants of the

SIR model have been developed. Mathematical models pre-

dicting the impact of COVID-19 have burgeoned since the

onset of pandemic at a global level, with publications on

models doubling almost every 20 days.5 Published predictive

models have looked at various aspects of the pandemic. The

models have used specificmodelling techniques, assumptions

and data gathered from real cases. The predicted outcomes

depend on these variables. Models developed early in the

epidemic might have had greater impact in planning and

allocation of healthcare resources than the later ones.

Numerous mathematical models with varied techniques

and predictions often leave the readers confused. This sys-

tematic review was carried out to analyse the initial epide-

miological predictive models of the COVID-19 pandemic.
Materials and methods

The protocol for this systematic review was registered at

www.osf.io on 30/07/2020.6 The population for the review

comprised all studies on mathematical modelling of the

COVID-19 epidemic. The outcomes of interest were epidemi-

ological predictions of the model including the techniques

used for mathematical predictions. Only those mathematical

models that were published in peer-reviewed journals were

included in the study. Studies without explicit mathematical

modelling, reviewing COVID-19 with guesstimates, with no

full text freely available, with only model description but no

predictions and pre-print articles, were excluded. Narrative

reviews and commentaries, perspective articles too were

excluded, unless they provided novel modelling analyses or

outcomes. Publication date range included in our review was

from January to June 2020, in the predefined databases to

ensure that we considered the initial models.

A detailed literature search was carried out and the

following databases were searched; Medline through PubMed,

Web of Science, medRxiv, bioRxiv and arXiv. Key words used

were mathematical modelling, predictive modelling, COVID-

19, SARS-CoV-2, peak infected cases and total deaths. The

search strategy followed a two-stage approach. In the first

stage, databases were searched using the keywords, and in

the second stage, a manual search of articles from the refer-

ences of the selected article was carried out. The literature

search was conducted by two researchers independently. The

searches were then reviewed by two other authors.
A data extraction form was designed for the study. Two

authors independently extracted the data from all the studies

and then compared them. In case of any disagreement, a

designated third author again extracted the data separately

and the discrepancy was resolved through mutual

consultation.

Models were assessed for various prediction characteris-

tics such as peak numbers, total infections, point of time

where the pandemic was predicted to peak at a particular

location, time to end of pandemic, effectiveness of non-

pharmaceutical interventions (NPIs) and hospital admissions.

The models were classified as ‘early’ if they had made their

predictions before cases reached 2000 at their respective

geographical location. Others were classified as ‘late’ models.

Short-termmodels were those that predicted up to two weeks

while long-term models predicted beyond this period.

Risk of bias in mathematical model is difficult to assess

including with the use of PROBAST checklist for predictive

models in medical science, as there is no selection and mea-

surement bias in mathematical models, only the approach

and type of models may differ.7 Quality assessment of the

study articles was carried out based on five questions adapted

from Holmdahl et al. published in June 2020.8 Narrative syn-

thesis was performed as per the synthesis without meta-

analysis guideline.9
Results

The chosen search strings yielded 56,922 hits in the five da-

tabases. The screening of titles yielded 434 abstracts, of which

266 did not contain predictive models. Another 96 were

excluded due to other reasons listed in the PRISMA chart

(Fig. 1). Finally, 72 articles were included in the systematic

review.10e81

Over 70% (51/72) of the articles contained predictive

mathematical models, with susceptible, exposed, infectious

and recovered (SEIR) being the commonest one (41/72,

56.9%). The common predictions were regarding cumulative

cases (44/72, 61.1%), time to reach total numbers (41/72,

56.9%), peak numbers (22/72, 30.5%), time to peak (24/72,

33.3%), hospital utilisation (7/72, 9.7%) and impact of lock-

down and NPIs (50/72, 69.4%). Prediction characteristics

studied are listed in Supplementary Table 1. It was found

that of the 72 articles, 20 articles were based on hypothetical

scenarios which predicted outcomes in numbers, but these

outcomes (number of asymptomatic cases and effect of

screening, etc) could not be compared with real data.

Among those which did (n ¼ 52), the median duration of

prediction was 3 months (interquartile range, 2e4 months;

range: 10 dayse48 months). Curve-fitting models invariably

made short-term predictions.

While certainmodels predicted definite outcomes in terms

of time and numbers (51/72, 71%), others were pure mathe-

matical models (21/72, 29%) which studied the impact of

various parameters on the pandemic such as basic repro-

duction number (R0), variable contact rates of infectious in-

dividuals, time spent in crowded zones and population

density.22,28,31,34,35,43

http://www.osf.io
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Fig. 1 e PRISMA: Selection of articles.
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Of the 51 models which predicted definite outcomes,

models were divided into long-term (n ¼ 29) and short-term

(n ¼ 22) models. Furthermore, the long-term models were

classified into early predictor models (n ¼ 5) and late predictor

models (n ¼ 24) (Fig. 3). Among articles with definite pre-

dictions in terms of numbers or time, 22 were curve-fitting

models with short-term outcomes, which modelled the

epidemiological characteristics around the peak in their

region.11,13,14,20,22,23,25,26,34,37,40,42,48e50,53,57,60e62,64,74
Fig. 2 e Characteristics of inclu
While one model looked into the effects of lockdown and

other NPIs like screening at airports another looked at specific

impact of lockdown in India at 21, 42 and 60 days.39,44 Many

models predicted the estimated burden on health care system

and utilisation.10,23,30,38,51,52,74

The countrywise distribution of the studies is shown in

Fig. 2. Most of the models predicted outcomes for China (22/

71, 31%) followed by USA, South Korea, Japan, India, Iran,

UK and Canada (Fig. 2). While most models predicted for a
ded mathematical models.
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single country or city, there were 12 models that predicted

outcomes for more than one country and 3 models that

made worldwide predictions. Predictions were also made for

the following regionsdHubei Province in China, California,

Michigan and Utah in USA, Ontario in Canada, cities such as

New York, London and Wuhan and cities in India such as

New Delhi, Kolkata, Mumbai and Bangalore. Most studies

were published in March (26/72, 36.1%), followed by April

(21/72, 29.2%).

Mathematical models were published by various pro-

fessionals including Engineers (12.5%),Mathematicians (9.7%),

Epidemiologists (11.1%), Physicians (9.7%), Biostatisticians

(5.5%) and others (18%). A third of the articles (32.9%) were

collaborative efforts between two professions (e.g., Mathe-

maticians and Physicians).

Quality assessment of themodels is depicted in Table 1. All

the models have clearly defined the purpose in their study.

Only 11 (15.27%) considered the population density in the re-

gion studied.

A table of narrative synthesis of all the articles is provided

depicting authors, title, geographical area of predictions,

mathematical modelling technique and outcomes evaluated

(Suppl Table 1). The characteristics of early and late predictors

are also shown (Suppl Table 1).
Discussion

“All models are wrong, but some are useful” said George Fox.82

In a situation like the COVID-19 epidemicwhere uncertainty is

rife, predictions from epidemiological models are one of the

key tools available for early decision-making.

This review of all the published initial peer-reviewed

mathematical models of COVID-19 attempts to summarise

and synthesise their findings. The question of prediction ari-

ses in the initial stages of any situation (especially a pandemic

like COVID-19) that is fraught with ambiguity, chaos and un-

certainty. With the passage of time, most situations become

clearer and hard data become available for computation.

Hence, we did not consider subsequent models from July 2020

onwards. Our review showed that of the large numbers of
Fig. 3 e Geographical origin of included mathematical

models.
models published, only a few were both predictive and peer

reviewed. Because we studied only the peer-reviewedmodels,

it is likely that models which were published largely for

planning purposes by governments or models from news or

social media are not included. It is also possible that some

authors chose to forgo peer review and submitted their arti-

cles directly to various databases.

Systematic review of mathematical models has earlier

been carried out in the context of other infectious diseases.

Prieto et al. performed a systematic review to identify areas of

enhancement of pandemic simulation models of Influenza

epidemics for operational use at provincial and local levels.83

A study by Harris et al. has reviewed mathematical models

exploring the epidemiological impact of future TB vaccines.84

There was a wide heterogeneity seen in the mathematical

models evaluating epidemiology of the COVID epidemic (Table

2). The commonest one was SIR model and its variant. The

model divided the population into different compartments

and the movement of population from one compartment to

another is predicted by differential equations. The approach is

flexible asmore number of compartmentsmay be added. Both

stochastic and deterministic model are possible. There were

many noneSEIR-based models based on regression models

and techniques such as ARIMA (based on time series). How-

ever, the model used depends on the aim of the researcher

and data available. None of the methods is established as

superior to another.85

While short-term models that predicted over just two

weeks were more accurate, they were not particularly useful

due to the short prediction horizon. These curve-fitting

models predicted close to actual outcomes, but with mini-

mal preparedness benefits. However, in special situations

where short-term predictions are desired, these might still

have a role. Thesemodels can be used for validating a new set

of assumptions or a new modelling technique.

A few long-term models were constructed early in the

epidemic. What they lacked in precision, they made up in

usefulness.86 Later models were more precise due to larger

data sets of more cases, but their usefulness progressively

declined. Pure mathematical models (open-ended models)

were used to evaluate concepts for validation or prepared-

ness, without predicting any particular quantifiable outcome.

Mathematical modelling was done by a variety of pro-

fessionals from engineers andmathematicians to doctors and

biologists. Epidemiologists comprised about a tenth of all

modellers. This demonstrated the interest that the epidemic

had generated among various scientists traversing traditional

professional silos. Even more interesting was the fact that

almost a third of all models were collaborations between

multiple professions.

Our study is one of the first systematic reviews of mathe-

matical models of COVID-19 and seeks to synthesise the key

characteristics. A limitation of our study was that we were

unable to combine the various modelling results into a com-

mon numerical estimate. We attempted to estimate the Mean

Absolute Percentage Error (MAPE) of themodelswith real-time

data but were constrained by the predicted numbers not being

available for different time-points. Another possible limita-

tionwas thatwe have not included articleswhose free full text

was not available.

https://doi.org/10.1016/j.mjafi.2021.05.005
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Table 1 e Qualitative analysis of mathematical models.8

S No Question Yes (%)

1 Has the purpose of model been clearly depicted in the study? 72 (100%)

2 Has immunity been taken into account In the model? 54 (75%)

3 Has asymptomatic transmission been taken into account into the model? 37 (52%)

4 Has contact transmission been taken into account in the model? 72 (100%)

5 Has the statistical model displayed confidence intervals? (n ¼ 22) 22 (100%)

6 Has the mechanistic model depicted various parameters, ranges? (n ¼ 50) 50 (100%)

7 Has the prediction been made for a defined geographical region? 58 (81%)

8 Is population density taken into account in the model? 11 (16%)

Table 2 e Types of mathematical models.

Model types Characteristics Strengths Weaknesses

Epidemiological

models (n ¼ 41)

Compartmental models divide the

population into different

compartments.

Movement from one compartment

to another is predicted by

differential equations.

Can be stochastic or deterministic.

Approach is flexible as number of

compartments can be varied. e.g,

SEIR or variations (SIR, SIRD etc).

Take into account dynamics of

spread of infectious disease in a

population.

Ability to model numerous

variables affecting spread like

quarantine, isolation, vaccination,

re-infection etc.

Good for predicting worst-case

scenarios and aggregate effect of

interventions.

Highly dependent on estimation of

parameters.

Do not, usually, take into account

variability of parameters during

the course of the epidemic.

Data-driven

models (n ¼ 31)

Usually curve-fitting in nature.

Can be predictive or pure

mathematical (Open-ended).

Used to evaluate concepts for

validation or preparedness e.g.

Regression model, ARIMA, Log

logistic model etc.

Generally have a good fit to

retrospective data.

Good for short-term projections

based on current estimated

parameters.

Do not take into account dynamics

of disease spread.

Lack reliability for long-term

predictions.
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An ideal model would be one which factors in the

maximum number of relevant variables which could possibly

affect study outcomes and predicts with closest proximity to

the real outcomes. In this systematic review, the chosen

mathematical models had different modelling and prediction

characteristics, precluding such an analysis.

There was a wide range of variation in the outcomes pre-

dicted in various studies. Which is the model that a country

should follow remains an unresolved question till date. It

would be ideal for a model to have inputs from mathemati-

cians, epidemiologists, and health care workers (involved in

dealing with COVID). Inputs from varied professions help

ensure the widest range of reasonable assumptions andmake

the model more robust. This epidemic is an opportunity for

those interested inmathematicalmodelling (mathematicians,

epidemiologists, HCWs and others) to collaborate and

improve the models for their regions, considering various

parameters based on their specific experience and training. It

is also an opportunity for planners and administrators to

utilise comprehensive models for informing the planning and

preparedness for their regions.

The advent of newer technologies has mademathematical

calculation relatively easy. Many free software such as ‘R’,

‘PYTHON’ etc. are now available for mathematical modelling.

In the future, the use of more advanced and refined technol-

ogies such as artificial intelligence will allow more accurate

real-time predictions.
Mathematical models have used varied assumptions and

have predicted various outcomes. Actual data for compari-

sons remains dynamic as the pandemic is still evolving. Data

are changing rapidly depending on time, place and effects of

NPIs. Hence, it remains difficult to compare predictions with

actual outcomes and also to compare all available models at a

single platform. A similar reviewmay require to be carried out

after some time, when more epidemic data are available and

more models are published.
Conclusion

This systematic review analyses all the initial epidemiological

models of the COVID-19 pandemic from January to June 2020.

The analysis of mathematical models was constrained by

varied prediction parameters of differentmodels and differing

time horizons of predictions among different models. There

was a wide range of assumptions and implications. Thus, no

particular model was substantially superior to others.

This review revealed that majority of the mathematical

models studied the effect of NPIs, which helped administra-

tors to plan preventive measures. Early predictor models were

possibly of greatest utility to administrators in taking plan-

ning decisions. SEIR variants were the commonest modelling

technique. This systematic review has utility in helping future

modellers choose among assumptions to incorporate in their

https://doi.org/10.1016/j.mjafi.2021.05.005
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models and also decide on preferred prediction parameters for

a particular location or region.
Disclosure of competing interest

Four of the authors have previously authored a mathematical

model for the COVID epidemic.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
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