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Abstract: Marine organisms represent an important source of novel bioactive compounds, 
often showing unique modes of action. Such drugs may be useful tools to study complex 
processes such as reproduction; which is characterized by many crucial steps that start at 
gamete maturation and activation and virtually end at the first developmental stages. 
During these processes cytoskeletal elements such as microfilaments and microtubules 
play a key-role. In this review we describe: (i) the involvement of such structures in both 
cellular and in vitro processes; (ii) the toxins that target the cytoskeletal elements and 
dynamics; (iii) the main steps of reproduction and the marine drugs that interfere with 
these cytoskeleton-mediated processes. We show that marine drugs, acting on 
microfilaments and microtubules, exert a wide range of impacts on reproductive events 
including sperm maturation and motility, oocyte maturation, fertilization, and early embryo 
development. 

Keywords: marine drugs; toxins; reproduction; microtubules; microfilaments 
 

Abbreviations  

Azaspiracid (AZA); Calyculin-A (CLA); Caulerpenyne (CYN); 2E,4E-Decadienal (DD); 
Dolastatin (DOL); Geodiamolide (GEO); Jasplakinolide (JAS); Latrunculin (LAT); Methoxyconidiol 
(MET); Mycalolide-B (MYC); Okadaic acid (OA); Palytoxin (PAL); Pectenotoxin (PTX);  

OPEN ACCESS



Mar. Drugs 2010, 8 
 

 

882

Pseudopterolide (PSE); Strongylophorine (STR); Stypoldione (STY); Swinholide-A (SWI); 
Theonellapeptolide Ie (TEO) 
 
1. Introduction 

 
Marine organisms represent a huge source of bioactive compounds affecting reproductive processes 

(for a review see [1]). Among them, marine natural products targeting microtubule or microfilament 
structures and dynamics are of particular interest, since reproduction is a complex multi-step process in 
which the cytoskeleton plays a key-role in the regulation of many functions such as: intracellular 
transport, cellular shape, motion and division. Microfilaments and microtubules are the main 
components of the cytoskeleton in eukaryotic cells, forming an extensive network; but, despite many 
studies, there are some aspects still obscure, such as polymer dynamics. In fact, on the basis of the 
Wegner theory [2], the chemical state of the bound nucleotide determines the rates of subunit addition 
and removal. More recently, was proposed that “structural plasticity” is the change in the structural 
state of polymer without change in the chemical state of its bound nucleotide [3]. Thus, integration 
with the older treadmilling theory to clarify these dynamics should be necessary. 

Here, we describe how marine drugs affect cytoskeleton mediated reproductive events by giving an 
overview on: (i) structure, functions and dynamics of microfilaments and microtubules; (ii) the main 
reproductive events such as gamete maturation, activation, fertilization and early embryo development; 
(iii) how cytoskeleton elements are involved in these processes and how marine toxins affect 
reproductive events throughout the cytoskeletal network. In this review, we show that marine drug 
studies may help to better understand the cytoskeleton role in reproduction from invertebrates to 
mammals. 
 
2. Microfilaments or Actin Filaments 
 
2.1. Nucleation and Function of Microfilaments 
 

The actin cytoskeleton is a dynamic network of filaments made up of a monomeric 43 kDa protein 
named globular actin (G-actin), which self-assembles into polymers of 8 nm diameter that are also 
called microfilaments or filamentous actin (F-actin) [4]. In cells, approximately half of the actin is kept 
in monomeric form, and the polymerization of actin is a dynamic process. Generally speaking, F-actin 
networks are continuously reorganized in cells that rapidly change their shape and in fast migrating 
cells that swiftly change the direction of movement [5]. Continuous polymerization and 
depolymerization of actin molecules in cell-surface protrusions have been well investigated and 
defined; in fact conversion of these two states of actin existence, which is the foremost point of actin 
functional performance, is very essential for cell survival [6]. The function of the actin cytoskeleton in 
cells relies on the intrinsic capacity of the actin monomers to reversibly assemble into protein 
polymers. Actin is an asymmetric molecule, assembling into polar filaments with structurally and 
functionally distinct ends, characterized by ATP-actin monomer addition at the plus-end (or barbed-
end) and loss of ADP-actin monomers at the minus-end (or pointed-end) [4].  
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The nucleation and functions of microfilaments have been extensively investigated. It is known that 
new actin filaments are formed by cutting of existing filaments or de novo by the action of specialized 
nucleating components. One of the most highly characterized nucleating component is the Arp (actin-
related protein) 2/3 complex, which catalyzes actin polymerization [7,8]. To maintain a steady state, 
filaments undergo depolymerization facilitated by actin-depolymerizing factor (ADF)/cofilin to limit 
the rate of new filament nucleation and elongation [9–11]. 

Generation of free barbed ends by nucleating units at specific sites, together with release of  
ATP-monomers by monomer-buffering proteins (thymosin β4, profilin), drives rapid elongation of 
actin filaments at barbed ends. Subsequently, old filaments are capped by proteins such as gelsolin and 
CapZ. Hydrolysis of ATP constitutes a timer mechanism for filament turn-over. Cofilin specifically 
depolymerizes ADP-filaments, increasing the formation of actin monomers. Profilin increases  
ADP-ATP exchange in the actin monomers released from cofilin, and together with thymosin β4, 
forms a polymerization-competent ATP monomer pool that will be recycled to free barbed ends 
[12,13]. It is important that the function of profilin and cofilin is not restricted to cell migration. There 
are studies suggesting a role for these proteins in the regulation of actin dynamics during the assembly 
and disassembly of the contractile ring [4,14–16], but also in the modulation of intracellular calcium 
signaling [17]. 

 
2.2. Marine Toxins Interfering with Microfilament Network 

 
Besides endogenous actin filament-regulating proteins, numerous natural products also display 

potent abilities to affect the polymeric state of actin filaments [18,19]. This property has earned these 
compounds significant recognition as valuable molecular probes for dissecting complex cellular 
pathways that are dependent upon the actin cytoskeleton [4,18,20]. 

Although they can share a common structure (Figure 1) and target (Table 1), anti-actin drugs 
display diverse mechanisms of action. Toxins that block or destabilize actin filaments have been 
shown to act by binding two distinct regions of the actin monomer: (i) the ATP-binding cleft and (ii) 
the barbed end. Due to the dynamic nature of actin filaments, filament-destabilizing compounds can be 
further subdivided into those which merely sequester actin monomers when they passively dissociate 
from filaments, and those that also actively promote filament severing by binding directly to the 
filament and disrupting interactions between adjacent actin monomers [21]. 

There is a wide diversity of mechanisms of action for marine toxins, but, despite this complex array 
of modes of action, only pectenotoxins (PTXs, Figure 1a) are known to target specifically the actin 
filaments. PTXs mimic the activity of endogenous actin-binding proteins to varying degrees [18]. 
These toxins were first isolated from the Japanese scallop Patinopecten yessoensis [22], but they are 
produced by many species of the dinoflagellate genus Dinophysis. PTXs induce actin filament 
disruption by a capping effect and G-actin monomer sequestration [23]. 

Cytotoxins Latrunculin A and B (LAT, Figure 1b and 1c, respectively), isolated from the Red Sea 
sponge Latrunculia magnifica, are potent inhibitors of actin filament formation [24,25]. LATs 
specifically sequester monomeric actin, mimicking proteins such as β-thymosins. They inhibit 
polymerization of G-actin, promote depolymerization of F-actin most likely by an allosteric 
mechanism [18,25,26], and form ternary complexes with profilin or thymosin β4-actin in vitro [27]. 
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They are the only known toxins that interact with the ATP-binding cleft of the actin monomer  
[21,25–30]. LAT A in the nanomolar concentration range disrupts the actin cytoskeleton and causes 
cell rounding [24,31].  

Different classes of natural products target the barbed end instead of the ATP-binding cleft. 
Swinholide A (SWI, Figure 1d) is a dimeric macrolide, isolated from the marine sponge Theonella 
swinhoei [21,32]. In vitro, SWI severs actin filaments without capping them. In cells, SWI disrupts the 
actin cytoskeleton by depolymerizing F-actin, probably due to sequestering actin dimers during the 
nucleation phase of filament growth. In addition, SWI is cytotoxic and inhibits cytokinesis [33]. Due 
to its ability to mimic actin binding proteins, SWI can be used to replace deficient capping or severing 
proteins [4]. Another natural product targeting the barbed end region is mycalolide B (MYC, Figure 
1e): isolated from the marine sponge Mycale sp. as an antifungal or cytotoxic substance [34]. MYC 
does not accelerate actin polymerization, but quickly depolymerizes F-actin [35–37]. It inhibits 
polymerization of purified actin, apparently by sequestration of monomeric actin and actin severing 
caused by the rapid F-actin depolymerization [18,25]. MYC disrupts actin filaments, inducing cell 
rounding [4,35]. This toxin is considered a depolymerizing agent, and it has become an important tool 
for elucidating actin-mediated cellular functions [38].  

Jasplakinolide (JAS, Figure 1f) from the marine sponge Jaspis johnstoni, has both fungicidal and 
antiproliferative activity. This peptide potently induces actin polymerization in vitro, stabilizing actin 
filaments and actin nucleation [39,40]. This drug binds F-actin competitively with phalloidin, but 
despite this similar affinitiy for F-actin, JAS seems to stabilize filaments more effectively. JAS is able 
to penetrate cells, thereby representing an extremely useful tool to study actin-dependent processes in 
cells. Thymosin β4 amplifies the in vitro effects of JAS, suggesting cellular variations in the 
concentration of this actin-binding protein may modulate the effects of the drug [40].  

 
Figure 1. Chemical structures of marine drugs binding actin (from Pubchem website): 
PTX-2 (a); LAT A (b); LAT B (c); SWI (d); MYC (e); JAS (f). 
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Figure 1. Cont. 
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However, regardless of the mechanism of action, most of the toxin groups have profound effects on 

cytoskeletal dynamics [41]. 
Isolated from marine dinoflagellates of the genera Dinophysis and Prorocentrum, okadaic acid 

(OA, Figure 2a) and its analogs, the dinophysistoxins, are potent inhibitors of protein phosphatases 1 
and 2A [42]. The number of physiological processes in which the Ser⁄Thr protein phosphatases are 
involved is immense, including regulation and coordination of the cell cycle [43]. Protein 
phosphorylation and dephosphorylation events have been established as key factors in the regulation of 
cytoskeletal structure and function [44]. OA has been shown to stimulate cell motility, loss of 
stabilization of focal adhesions and consequently a loss of cytoskeletal organization; OA does not 
modify the total amount of F-actin, but it causes changes in the F-actin cytoskeleton, with strong cell 
retraction and rounding, and in many cases cell detachment [42]. It is plausible that calyculin-A 
(CLA, Figure 2b), originally derived from the marine sponge Discodermia calyx, could have the same 
effect of OA on the cytoskeleton, since it is similar to OA in its potent inhibition of protein 
phosphatases 1 and 2A [45]. However, CLA differs from OA in that protein phosphatases 1 and 2A 
display greater sensitivity to CLA [45,46].  
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Rangel and colleagues [47] reported new information on the peptides geodiamolides (GEO) A, B, 
H and I (Figure 2c) isolated from the marine sponge Geodia corticostylifera. These authors noted that 
peptides A and H had negative effects on proliferation of cancer cell lines by disorganizing F-actin in a 
dose-dependent manner. Interestingly, normal cell lines did not show cytoskeleton alterations after 
treatment with GEO, thus suggesting a putative biomedical potential for these novel compounds [48]. 
For the chemical structure see Figure 2c. Isolated from another sponge species, Petrosia sp., 
theonellapeptolide Ie (TEO, Figure 2d) was shown to have ionophoretic activity and to induce 
morphological changes of the immature oocytes of starfish Asterina pectinifera characterized by 
disturbed cortical F-actin distribution with assembled dots and rings. However, this action on the 
maturation appears to be unrelated to the movement of monovalent ions across the cell  
membrane [49–51]. 

The azaspiracids (AZAs, Figure 2e) are a group of marine phycotoxins discovered during the late 
1990s. Since then, 20 different analogs of the AZA group have been detected in natural samples  
[52–57]. One of the in vitro signs of AZA toxicity is the alteration of the actin cytoskeleton 
arrangement, which is accompanied by changes in cell shape and loss of cell adherence to the 
substrate, but the biological target of the toxin is still unknown. Moreover, the cytoskeletal damage is 
irreversible after toxin withdrawal [58].  

Palytoxin (PAL, Figure 2f) is a marine toxin first isolated from zoanthids (genus Palythoa), even 
though dinoflagellates of the genus Ostreopsis are the most probable origin of the toxin [59,60]. This 
marine toxin is known to act on the sodium pump and elicit an increase in sodium permeability, which 
leads to depolarization and a secondary calcium influx, interfering with some functions of cells. 
Studies on the cellular cytoskeleton have revealed that the signaling cascade triggered by PAL leads to 
actin filament system distortion. The activity of PAL on the actin cytoskeleton is only partially 
associated with the cytosolic calcium changes; therefore, this ion represents an important factor in 
altering this structure, but it is not the only cause [61].  

Diatoms synthesize bioactive oxylipins in response to wound-activation. 2E,4E-decadienal (DD, 
Figure 2g) and decatrienal are polyunsaturated aldehydes (PUA), which are the most intensively 
researched of the diatom-oxylipin family. Oxylipins are broadly cytotoxic with potential molecular 
targets associated with the cytoskeleton, calcium signaling and cell death pathways; however, they do 
not induce the same acute toxicity syndromes as the other algal biotoxins [62], prompting some 
researchers to question whether or not the oxylipins are indeed toxins in the conventional sense [63]. 
These defensive compounds are toxic to developmental stages of a range of invertebrate species 
including copepods, sea urchins, polychaetes and ascidians. Diatom extracts and the bioactive 
unsaturated short-chain aldehyde DD affect microtubule and microfilament stability [64].  

Pseudopterolide (PSE, Figure 2h) is an inhibitor of cell division isolated from the soft coral 
Pseudopterogorgia acerosa. Although its in vitro target is unknown, in vivo it has been shown to give 
rise to an aberrant aster formation in sea urchin embryos [4].  

The cytoskeleton target of numerous compounds isolated from the marine sponge Strongylophora 
and named as strongylophorines (STR) is unknown, except STR-26 (Figure 2i) that affects actin 
dynamics by inhibiting actin regulator Rho-GTPases [65].  
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Figure 2. Chemical structures of marine drugs affecting actin dynamics (from Pubchem 
website, except PAL from Chemspider website): OA (a); CLA (b); GEO H (c); TEO (d); 
AZA-1(e); PAL (f); DD (g); PSE (h); STR-26 (i). 
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Figure 2. Cont. 
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3. Microtubules 

 
3.1. Microtubule Formation, Functions and Dynamics  

 
Microtubules, the major component of the highly dynamic mitotic spindle, are also key actors in 

organizing the spatial distribution of organelles in interphase cells, and are extremely stable 
components of cilia, flagella, and the centrioles. 

Microtubules are hollow tubes about 25 nm in diameter with walls made from globular protein α 
and β-tubulin heterodimers (100 kDa) that associate to form protofilaments running lengthwise along 
the wall with the α-tubulin subunit facing the microtubule minus end and the β -tubulin subunit facing 
the plus end. This confers them a structural polarity that is an essential feature. Microtubule assembly 
is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist 
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principally of ‘GDP-tubulin’ stabilized at the plus end by a short ‘cap’. The polar nature of the 
microtubule polymer and the hydrolysis of GTP that occurs during microtubule polymerization creates 
two unusual forms of dynamic behavior in cells and in vitro. One such form is dynamic instability 
[66], in which microtubule ends stochastically switch between episodes of prolonged growth and 
shortening. One microtubule end, the plus end, shows more dynamic instability behavior than the 
opposite or minus end. The other form of dynamic behavior, treadmilling, which is due to differences 
in the critical subunit concentrations at opposite microtubule ends [67,68], consists of net growing at 
the microtubule plus ends and net shortening at the minus ends [20]. Actin filament treadmilling but 
not dynamic instability has been observed in vitro and in cells [69,70]. For review see [71,72]. 

In the cell, microtubules are nucleated preferentially in a region called the centrosome or MTOC 
and grow outwards toward the cell membrane with the plus end leading [73]. 

Microtubules are important in the process of cell division, e.g., mitosis and meiosis. In mitosis, the 
microtubules radiating from the centrosome are in a state of dynamic instability and with a number of 
lengthening and shortening cycles (search-capture model): just the microtubule reaching the 
kinetochore is stabilized by its interaction with this structure. After correct positioning, each aster 
forms a spindle body. As mitosis proceeds, each copy of a duplicated chromosome is separated and 
assembled by the centrosome to which it is attached [30]. Correct spindle assembly is one the cell 
cycle checkpoints [74,75]; disturbance of spindle formation with inhibitor of microtubule function 
arrests the cell cycle at mitosis [30]. 

A large number of proteins interact with microtubules including the motor proteins kinesin and 
dynein, which use ATP-derived energy to transport a variety of intracellular cargoes toward the plus-
ends and minus-ends of microtubules, respectively [76,77]. Kinesin and dynein can take many 
consecutive steps along their microtubule tracks without dissociating [78–84], allowing them to shuttle 
cargoes over long distances spanning between a cell center and periphery which use microtubules as 
pathways for transport; in addition, they are also involved in cell division [85]. Thus, if microtubules 
are the railway for particle transport within the cell, kinesin and dynein are thought to function as 
vehicles that carry different cargoes along microtubules [86]. Cytoplasmic dynein is a microtubule-
associated motor protein complex with 1000–2000 kDa (for review, see [87]). It is known to generate 
the minus-end-directed movement along the microtubules (for reviews, see [87,88]). 

 
3.2. Marine Toxins Interfering with Microtubules 

 
In spite of their involvement in reproductive processes and unlike microfilament interfering drugs, 

so far few marine natural products affecting microtubules have been described.  
OA and dinophysistoxin-1 (35S-methylokadaic acid) cause rapid changes in the structural 

organization of intermediate filaments, followed by a loss of microtubules, solubilization of 
intermediate filament proteins, and disruption of desmosomes [42]. In mouse oocytes, protein 
phosphatases 1 and/or 2A are positively involved in the activation of pericentriolar material into 
microtubule organizing centres (MTOCs). This explains the inhibitory effect of OA on spindle 
assembly [89]. 

Species of Caulerpa were among the first green algae that were investigated by natural product 
chemists [90]. Extracts of Caulerpa spp. and caulerpenyne (CYN, Figure 3a) have been reported to 
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show diverse biological activities, such as antimicrobial [91–94], antiproliferative [91,95,96] and 
neurological [90,97]. Electron microscopy analysis indicated that CYN treatment results in inhibition 
of microtubule polymerization probably due to the induced aggregation of tubulin [98].  

The shell-less mollusc Dolabella auricularia has yielded a number of cytotoxic peptides and 
depsipeptides (for a review, see [99]). The most potent of these compounds have been dolastatins 10 
and 15 [100,101], both of which interact with tubulin and arrest cells in mitosis. Dolastatins 15 (DOL, 
Figure 3b) is a tubulin destabilizing drug that inhibits microtubule assembly through a vinca-alkaloid 
domain [102].  

Marine toxins have been isolated even from chordates: methoxyconidiol (MET, Figure 3c) was 
extracted from the ascidian Aplidium aff. densum [103] and most likely it is able to affect microtubule 
dynamics [104]. 

Stypoldione (STY, Figure 3d) from alga Stypopodium zonale was found in early studies to inhibit 
polymerization of tubulin into microtubules in vitro, which leads to the suggestion that inhibition of 
microtubule polymerization in cells might be responsible for the ability of the compound to inhibit cell 
division [105]; however, White and Jacobs [106] showed that STY does not act like a mitotic spindle 
poison. A few years later, STY was found to react covalently with the sulfhydryl groups of a number 
of proteins including tubulin and with sulfhydryl groups of peptides and small molecules. Thus, STY 
could potentially react with a large number of cellular targets and, although it can disrupt microtubules 
at relatively higher concentrations, it inhibits cell division at the lowest effective concentrations by a 
selective action on cytokinesis through a mechanism that does not appear to involve disassembly of 
microtubules [107].  

 
Figure 3. Chemical structure of marine toxins interfering with microtubules: CYN (a); 
DOL-15(b); MET(c); STY (d). 
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4. Reproduction 
 
Reproduction is the biological process by which new individuals are generated. In sexual 

reproduction, the newly created organism has a combination of half of the genetic material of each 
parent through the production of the two gametes: spermatozoon and oocyte. The two gametes are 
formed during peculiar processes such as spermatogenesis and oogenesis, both characterized by 
meiosis - the unique process of cell division occurring only in gametes, whose goal is the production of 
haploid cells highly specialized for fertilization.  

The main steps toward fertilization are gametogenesis (spermatogenesis and oogenesis), gamete 
reciprocal activation, sperm-egg interaction, syngamy (fertilization) that leads to the zygote formation. 
After that, mitotic division of the zygote triggers embryo development 
 
4.1. Effect of Marine Drugs on Cytoskeletal Dynamics Involved in Reproductive Events 
 
4.1.1. Spermatogenesis  

 
Spermatogenesis is the process of sperm production from a primordial germ cell, which goes 

through a highly orchestrated series of stages of generating spermatogonium, primary spermatocyte, 
secondary spermatocyte, spermatid, and finally mature spermatozoon. 

Sperm maturation is defined as the acquired ability of spermatozoa to fertilize eggs. In this process, 
the sperm undergoes morphological, biochemical, and physiological modifications initially in the testis 
(testicular maturation) and later in the epididymis in mammals. In the former, maturation occurs at 
molecular levels especially during the last phase of spermatogenesis known as spermiogenesis; here, 
the large round haploid spermatid undergoes dramatic morphological and molecular changes including 
replacement of histones with protamines, high condensation of chromatin, formation of the acrosome, 
centrioles migration, and tail assemblage. In the meantime, the sperm acquires a functional 
competence, e.g., acquisition of flagellar beating to provide forward propulsion and compactness of 
nuclear and flagellar structures [108,109]. 

Subsequently, in mammals, full sperm functionality occurs in the epididymis, whereas in marine 
animals it takes place when spermatozoa are spawned in the sea water [108,110,111]. 

This peculiar developmental process continues throughout nearly the whole lifetime of animals. 
During spermatogenesis, the above-mentioned structural and biochemical changes that take place in 
the testis [112], and its gradual differentiation are thus heavily dependent on the cytoskeletal 
organization. In light of recent data, it has been shown that actin cytoskeleton dynamics play an 
indispensable role in facilitating these events [6]. 

In the spermatogenetic process, developing germ cells of different phases migrate from the basal 
through the intermediate to the adluminal compartment of the testis, via junctional contacts and the 
cytoskeletal apparatus to form round, elongating, and elongated spermatids. 

In mammalian testis, the actin-based Sertoli ectoplasmic specialization (ES), which is known as 
basal ES between Sertoli cells as well as apical ES between Sertoli and developing sperm cells [113], 
is a specialized type of the adherens junctions in the seminiferous epithelium. ES is the best-
characterized cell-to-cell anchoring junction type using an actin filament attachment site in the testis 
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[114,115]. Cheng et al. [116] discovered that disruption of Sertoli-germ cell adhesion function by 
adjudin (AF-2364) in the rat testis can be limited to apical ES without affecting the other junctions, 
e.g., desmosome-like junctions at the blood-testis barrier site. However, this phenomenon could be a 
novel approach for male contraceptive development, without the potential side-effects of a drug based 
on altering the balance of sex hormones, with trials on laboratory animals showing that the 
contraceptive effect is reversible and that there are no apparent long-term side-effects [6]. 

Dynein and myosin are found in the apical ES and these proteins apparently function as transporters 
to assist spermatid translocation across the seminiferous epithelium during spermatogenesis  
[117–119]. In essence, motor proteins use microtubules found in Sertoli cells at the apical ES site as a 
track to facilitate the movement of elongating/elongated spermatids across the epithelium  
[117,119–121]. Cytoplasmic dynein associates with the cytoplasmic face of ER at the site of ES,  
co-localizing with actin [120,122–124]. 

Forces on kinetochore microtubules applied by actomyosin could promote tubulin flux of 
kinetochore microtubules in metaphase-I crane-fly spermatocytes: kinetochore microtubule flux 
disappeared when cells were treated with an antitubulin drug which decreases microtubule dynamics; 
moreover, the flux disappeared when cells were treated with anti-actin drugs (LAT B and SWI), but 
not when treated with the actin stabilizing drug JAS. After treatment with LAT B and SWI, also 
spindle actin was altered. These results suggest that actomyosin could be involved in driving the flux 
of tubulin in kinetochore microtubules in metaphase [125].  

As demonstrated by Ianora et al. [126], there is a connection between diet, spermatophore 
production and sperm quality: some dinoflagellate diets significantly modified spermatophore 
production and reduced the fertilization capacity of male copepod sperm. 
 
4.1.2. Sperm motility 

 
As described before, mammalian spermatozoa gradually acquire flagellar motility during their 

passage through the epididymis [108,127,128]. Motility plays a key role in the natural fertilization 
process and depends on the flagellum, which contains the axoneme structure, a pair of central singlet 
microtubules encircled by nine outer doublet microtubules [129]. Dynein, found in the doublet 
microtubule arms, has ATPase activity and plays a role energizing flagellar and ciliary movement. It 
has now been established that the fundamental mechanism underlying flagellar and ciliary movement 
is the sliding between the adjacent outer doublet microtubules, which is mediated by the dynein  
arms [130,131]. 

Gelsolin drastically inhibited guinea pig sperm motility in a dose dependent manner, while, on the 
contrary, LAT did not affect it. Since gelsolin is a specific F-actin severing protein, while LAT seems 
to associate only with actin monomers thereby preventing them from repolymerizing into filaments 
[26], specific intact F-actin regions play a role in supporting sperm motility [131]. 

There is compelling evidence of pronounced effects of PUA on sperm motility [64]. DD inhibits 
motility in a clear dose- and time-dependent manner for a range of broadcast spawning marine 
invertebrates, but importantly does not result in sperm death. Using the broadcast-spawning 
echinoderms Asterias rubens and Psammechinus miliaris and the polychaetes Arenicola marina and 
Nereis virens as model species, Caldwell et al. [64] demonstrated the inhibitory effect of DD on sperm 
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motility. When sperm were incubated with DD, the effects on fertilization success with untreated 
oocytes were striking and a pronounced reduction in fertilization success was observed. Although 
flagellar beating was arrested, the sperm remained viable, as evidenced by prolonged oscillation of the 
sperm head. Beyond the PUA-mediated cytoskeletal disruption, it is likely that the motility inhibition 
is also due to interference with calcium signaling, since it has been demonstrated that DD inhibits the 
fertilization current in ascidians together with the voltage-gated calcium current activity [132] and that 
calcium ions play an essential role in the normal functioning of marine invertebrate sperm, greatly 
influencing the pattern and shape of flagellar bending [133]. In fact, in sea urchin sperm, elevated 
calcium increases flagellar beat asymmetry and reversibly blocks beating [134–136]. In mammalian 
sperm, the progressive decrease of internal calcium concentration during epididymal maturation is 
essential to prepare the sperm for activation of motility whereas internal calcium concentration 
elevation is required at ejaculation to develop flagellar motion [137]. Beyond actin cytoskeleton 
modifications, possibly also sperm motility inhibition by PAL could be explained by toxin-associated 
cytosolic calcium changes [61]. The motility of hamster caudal epididymal and other sperm can be 
inhibited by PAL in a time-dependent manner, detectable as a loss in flagellar amplitude, often 
accompanied by an increase in beat frequency, resulting in a loss of forward progression and 
ultimately cessation of movement. Similar effects were observed in sperm from guinea pigs, rabbit, 
cattle, sea urchins and human. The observation showing PAL did not inhibit the progressive motility 
of demembranated sperm axoneme preparations suggests that this large molecule acts via the plasma 
membrane to cause its exceedingly toxic effects [138].  
 
4.1.3. Oogenesis 

 
During oogenesis, the immature oocyte grows in size and acquires the competence to mature and 

then to be fertilized. Oocyte maturation is the last phase of oogenesis and consists of nuclear and 
cytoplasmic modifications [139,140]. Nuclear maturation involves a cell cycle progression, which 
alternates between meiotic arrest and resumption; the first meiotic arrest occurs during prophase I, 
when the immature oocyte is characterized by a large nucleus known as the germinal vesicle (GV). As 
a general scheme, the first morphological indication of nuclear maturation is represented by germinal 
vesicle breakdown (GVBD), which, depending on the species, is induced by a different stimulus; in the 
majority of species, the oocyte subsequently arrests at first (MI) or second metaphase (MII) stage, 
where it remains up to the time of fertilization or parthenogenic activation [141]. The meiotic stage 
correlated with fertilizable oocyte is species-specific: in some animals, oocytes are fertilized at the GV 
stage (e.g., some molluscs) or, on the contrary, there are some oocytes that are fertilized after meiosis 
completion (coelenterate, echinoderms). The second oocyte arrest occurs at MI stage in worms, 
ascidians, and some molluscs, or at MII stage in the Amphioxus and in all the vertebrates [141]. 

The process of cytoplasmic maturation is less clear, but is characterized by morphological and 
functional changes that are necessary to support fertilization and the subsequent developmental events 
[142–144]. These changes include modification of the plasma membrane, calcium signaling, and 
activation of specific molecules and complexes [145–150]. 
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In Ciona intestinalis, oocyte growth is associated with characteristic changes in the distribution of 
mitochondria, microtubules and cortical mRNAs, which all translocate from the region surrounding the 
GV in previtellogenic and vitellogenic oocytes to the periphery of the postvitellogenic oocytes [151].  
Similar types of relocalizations occur in the Xenopus previtellogenic oocyte in which microtubular 
reorganizations and the translocation of mRNAs to the cortex have been well studied [152,153]. 

It has been reported that redistribution of endoplasmic reticulum in the cytoplasm to the nuclear 
area is dependent on microfilaments in starfish eggs [154] and on microtubules in Drosophila [155]. 
During mammalian oocyte growth, organelles move to the cell cortex, forming an ‘organelle zone’, 
while organelles (except for cortical granules) move centrally during oocyte maturation, forming an 
‘organelle-free zone’ at the cortex of a mature oocyte. Mitochondrial translocation is mediated by 
microtubules, not by microfilaments, since disruption of microtubules, but not microfilaments, blocked 
mitochondria migration [156]. Centrosomes, other organelles, govern the organization of 
microtubules: their separation is regulated by microfilaments in sea urchin [157] and mouse [158] 
eggs, while microtubule inhibition prevents centrosome expansion and separation in sea urchin [157]. 
In sea urchin [159], pig [156], and mouse [160], cortical granule translocation to the egg cortex is 
driven by microfilaments. In mammalian oocytes, many of the maturation and fertilization events are 
driven by the dynamic interactions between myosin and actin filaments whose polymerization is 
regulated by RhoA, Cdc42, Arp2/3 and other signaling molecules [11,161].  

In Ciona, as in some molluscs and mammals, the reinitiation of meiosis causes GVBD and 
formation of a central meiotic spindle which migrates towards the oocyte surface [151,162]. In 
contrast, in starfish and amphibian oocytes, the GV is located eccentrically just beneath the cortex and 
defines the future position of the meiotic spindle [163,164]. Finally, in some species of sea urchins, sea 
cucumbers, and fishes meiosis resumption triggers GV migration towards the surface and subsequent 
GVBD and meiotic spindle formation at that site [165,166]. 

Mechanisms involved in the migration and positioning of the meiotic spindle have been examined 
in a few species, and there are examples of both microtubule-dependent and actin-dependent 
movements. In oocytes of starfish and sea cucumbers, microtubules and centrosomes participate in GV 
relocation in an eccentric position just beneath the oocyte cortex [163,165]. In C. elegans, the 
translocation of the meiotic spindle to the oocyte cortex appears to be mediated by a microtubule-
associated kinesin [167]. Movement of the meiotic spindle toward the unique cortical site is 
microtubule-dependent also in oocytes of the worm Chaetopterus [168]. In contrast, in Xenopus 
oocytes, a myosin (Myo10) plays a critical role in GV anchoring, meiotic spindle assembly and 
anchoring to the cortex by integrating the actin microfilament and microtubule cytoskeletons [169]. In 
mouse oocytes, a large meiotic spindle forms in the center of the oocyte after GVBD and migrates 
towards the region of the cortex closest to one pole of the spindle in an actin-dependent manner [170]. 
Infact, this spindle migration to the oocyte cortex is prevented by JAS, which induces microfilament 
polymerization and stabilization [171]. 

GVBD and meiotic spindle formation are not regulated by microfilaments, but polarized movement 
of the chromosomes depends on a microfilament-mediated process in maturing mouse oocytes. Similar 
results have been obtained in other species, such as hamster [172], cattle [173], pig [156] and human 
[174], while in Xenopus the results are contradictory [11,175,176].  
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In maturing oocytes of C. intestinalis, the first visible sign of polarization is the microfilament-
dependent migration of the meiotic apparatus toward the oocyte surface. After the localization of the 
meiotic apparatus under the animal pole, the myoplasm, the mitochondria-rich domain featured in all 
species of ascidians, polarizes along the animal/vegetal axis, and this polarization is blocked by 
microfilament inhibitors but not by microtubule inhibitors. In the same ascidian species, experiments 
with non-derived marine drugs (cytochalasin, affecting actin cytoskeleton) indicate that actin is 
responsible for the transition of the myoplasm from a uniform layer of mitochondria to a polarized 
basket lining the equatorial and vegetal regions [151].  

As described above, Caldwell [64] found that DD affected sperm motility, while pre-incubation of 
oocytes in DD affected fertilization success to a limited degree, so influencing fertilization success 
from the paternal side. However, maternal effects cannot be discounted. Poulet et al. [177] have 
formulated the hypothesis that, following diatom-feeding, toxins are incorporated into oocytes during 
oogenesis so limiting the fertilization success. When maturation was initiated in the presence of DD, 
the oocytes underwent a severe cellular disruptive event. DD therefore is cytotoxic during the 
prophase/metaphase transition and may have an important role in determining oocyte viability in 
diatom-feeding invertebrates. It is more feasible that low level molecular and cellular damage is 
occurring such as DNA damage, and where the rate of damage exceeds the capacity of the adult to 
repair the damage, reproductive effects may be observed. Such damage is particularly relevant for 
oocyte maturation [63]. 

In starfish, the two most immediate responses to the maturation inducing hormone 1-methyladenine 
are the quick release of intracellular calcium and the accelerated changes of the actin cytoskeleton in 
the cortex. The finding that JAS inhibited the 1-methyladenine -induced calcium response suggests 
that the dynamic change of actin cytoskeleton may play a regulatory role in modulating intracellular 
calcium release [178]. 

In starfish Asterinia pectinifiera, TEO induced malformation of immature oocytes through 
disturbance of cortical F-actin distribution. Instead, no morphological changes were observed in 
maturing oocytes when the same drug was added to oocytes which had been induced to mature by 1-
methyladenine [51]. In the same starfish species, the oocyte maturation was found to be arrested by ten 
different STR by affecting actin dynamics [179].  

It has been demonstrated that OA induces GVBD in starfishes [180,181] and frogs [182]. In 
mammals where, as stated before, in contrast to other zoological groups, oocyte maturation takes place 
spontaneously, OA has been shown to induce chromatin condensation and GVBD in mouse oocytes 
arrested at GV stage by maturation inhibitor [89,183–186]. Although continuous exposure of macaque 
oocytes to CLA enhances GVBD and results in oocytes displaying various cytoplasmic aberrations, 
transient treatment with CLA or OA stimulates GVBD without increasing the incidence of 
morphological abnormalities. These transiently treated oocytes retain the ability to develop to MII and 
to fertilize [46]. However, it is important to bear in mind that OA alone might exert pleiotropic effects 
on oocyte as a consequence of the multiplicity of its molecular targets [89].  
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4.2. Gamete Activation and Fertilization 
 
Fertilization is a highly specialized process of cell-cell interaction that marks the creation of a new 

and unique individual. It is a complex multi-step process involving many events, including gamete 
recognition, binding, activation, and fusion. Reciprocal activation of the two gametes is a crucial step 
of these events; signals from the oocyte investments induce dramatic changes in form and function of 
the spermatozoon, and the spermatozoon triggers the quiescent oocyte into metabolic activation (for 
review see [108]).  
 
4.2.1. Sperm capacitation and acrosome reaction  

 
In order to fertilize, the mammalian spermatozoa should reside in the female reproductive tract for 

several hours, during which they undergo a series of biochemical modifications collectively called 
capacitation. Only capacitated spermatozoa can undergo the acrosome reaction (AR) after binding to 
the egg zona pellucida, a process which enables sperm to penetrate into the egg and fertilize it [187]. 
Polymerization of G-actin to F-actin occurs during capacitation. It was reported that actin 
polymerization is important for initiation of sperm motility during post-testicular maturation [188]. 
The location of actin in the acrosomal region of several mammalian species [189–194] supports its 
possible role in sperm capacitation and the acrosome reaction. Actin polymerization is necessary for 
sperm incorporation into the egg cytoplasm [195] and for sperm nuclei decondensation [196]. Sperm 
from sea urchins, but not those from Limulus or mice, were affected by LAT, becoming unable to 
assemble acrosomal processes and their ability to fertilize eggs is impaired [197]. 

The AR is the last activating event in the spermatozoon as it becomes competent for fertilization. 
The exocytosis of the acrosome and the consequent release of its contained enzymes allows the 
spermatozoon to penetrate the extracellular oocyte investments [198]. Prior to the occurrence of the 
acrosome reaction, the F-actin should undergo depolymerization, a necessary process which enables 
the outer acrosomal membrane and the overlying plasma membrane to come into close proximity and 
fuse. The binding of the capacitated sperm to the zona pellucida induces a fast increase in sperm 
intracellular calcium, activation of actin severing proteins which break down the actin fibers, and 
allows the acrosome reaction to take place [187]. 
 
4.2.2. Fertilization 

 
In mammals, sperm-oocyte fusion occurs predominantly [199,200] or exclusively [201] in the 

microvillar-rich region of egg surface. In mollusc and echinoderm, a fertilizing sperm contacting the 
egg protrudes the acrosomal vacuole by elongating the central axial actin bundles [202,203]. Shortly 
after fusion, a global exocytic event occurs in the oocyte and the contents of cortical secretory granules 
are released into the extracellular milieu. Enzymes included in these granules modify the zona 
pellucida in a way that prevents further sperm penetration through this matrix [204]. The 
polymerization of actin beneath the plasma membrane of the fertilization cone and inhibition of sperm 
incorporation by cytochalasins or LAT A are observed in eggs of zebrafish and sea  
urchin [197,205,206]. 
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In the red alga Bostrychia moritziana, the actin inhibitors JAS, MYC, LAT A and B inhibited 
gamete fusion affecting the formation of fertilization pore [207]. 

In starfish eggs, subplasmalemmal actin fibers are involved in the process of sperm-egg interaction 
and in the subsequent events related to fertilization: the alteration of the cortical actin networks by the 
use of LAT A or JAS led to the deregulation of monospermic sperm interaction, generation of calcium 
signaling, of cortical granule exocytosis, and of the sperm entry process [208]. The regulation of actin 
polymerization is also involved in the membrane block to polyspermy in mouse eggs [209]. In 
contrast, microtubule polymerization was apparently unnecessary for this initial process of sperm 
entry, as demonstrated in mussel [210]. Unfortunately, the need of microfilaments for sperm 
incorporation is somewhat inconclusive in mammals [11] and thus requires further investigation. 

Oocyte activation is a dynamic mechanism, and its progress is characterized by early events, e.g., 
cortical granule exocytosis and fertilization currents, and late events, such as resumption of meiosis 
[211,212]. In mouse JAS was found to prevent cortical granule exocytosis after artificial activation 
[171], suggesting that actin filaments participate in cortical granule exocytosis. In contrast, neither 
microfilaments nor microtubules are involved in this event during pig oocyte activation [156], since 
egg exposition either to cytochalasin B or to marine drug JAS did not prevent cortical granule 
exocytosis [11]. In support of this hypothesis, the initial cortical release of calcium promoted by sperm 
may be due to depolymerization of actin in starfish [213].  

Unlike other species, ascidian oocytes lack cortical granules, and between fertilization and first 
cleavage there are two major phases of reorganization corresponding to the so-called first and second 
phase of “ooplasmic segregation” [214]. Among consequences of sperm-egg fusion there is a calcium 
wave, which starts from the site of fertilization and traverse the egg [215–217].The rise in free calcium 
triggers a microfilament-dependent cortical contraction wave starting on the side of the egg where 
fertilization occurs [216,218]. The large reorganization of the oocyte caused by the 
fertilization/contraction phase has traditionally been called “the first phase of ooplasmic segregation” 
[216,219,220]. The “second major phase of reorganization” is characterized by the events from 
meiosis completion to first mitotic division. The completion of the meiotic cell cycle results in the 
formation of male and female pronuclei around the chromosomes and the growth of a large 
microtubular sperm aster in the future posterior pole. As the female pronucleus starts migrating along 
astral microtubules toward the duplicated sperm aster and male pronucleus, these latter structures 
move away from the cortex and toward the center of the oocyte. These translocations during the 
second phase of reorganization are driven by microtubules. Once the male pronucleus and female 
pronucleus are in the center of the zygote, but before the first cleavage, a general surface movement 
occurs, which depends on actin microfilaments, necessary to complete the translocation of the 
myoplasm and the endoplamsic reticulum domain toward the posterior region [166]. In the ascidian C. 
intestinalis, it has been demonstrated that DD and decatrienal inhibit actin reorganization, as well as 
the fertilization current and voltage-gated calcium activity of the plasma membrane [132]. 

The contractile ring is a network of actin and myosin filaments, and the motor activity of myosin 
translocates actin filaments to drive its constriction [221]. In mitotic cells, contractile ring assembly is 
directed by the RhoA guanosine triphosphatase (GTPase), which activates myosin and actin filament 
assembly [221]. Accumulating evidence shows that oocytes adopt similar mechanisms for releasing 
the first and second polar body during maturation and fertilization. In mouse oocytes, inhibition of 
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RhoA caused abnormal microfilament organization and blocked first and second polar body extrusion 
[222].When actin filaments are disrupted, polar body emission is blocked in mouse [223], hamster 
[172] and sheep [224]. In mice, JAS prevents egg polar body emission at a much lower concentration 
than either cytochalasin B or marine drug LAT A [171]. 

Caldwell et al. [225] have demonstrated that both crude diatom extracts and DD can, in a dose-
dependent manner, inhibit secondary fertilization processes (e.g., cortical reaction) in marine 
invertebrates. Also, Buttino et al. [226] have observed that sea urchin embryos incubated with extracts 
of Thalassiosira rotula shortly after sperm/egg binding were unable to complete pronuclear fusion due 
to depolymerization of microtubule assemblies.  

During fertilization in sea urchin, porcine, bovine and human fertilized eggs, the sperm introduces 
the centrosome into the egg, and microtubules nucleated by centrosomes cause the union of male and 
female pronuclei [156,227–229]. Both microtubules and microfilaments are required for pronuclear 
apposition in the mouse [171,205]. The migrations of the sperm and egg nuclei during sea urchin 
fertilization are dependent on microtubules organized into a radial monastral array, the  
sperm aster [230].  
 
4.3. Early Development 

 
Successful fertilization drives the oocyte into meiosis completion and exit leading to formation of 

the zygote. This represents the first diploid cell of a new organism that divides by mitosis into a 
number of smaller cells named blastomeres. This process is called cleavage that differs depending on 
the species [141]. 

In fertilized eggs of sea urchin and sand dollar, accumulation of the contractile ring microfilaments 
at the equatorial cell cortex was first noticed at the beginning of telophase (shortly before furrow 
formation), and the accumulated microfilaments were organized into parallel bundles as furrowing 
progressed [231]. In Xenopus eggs, actin filament patches grow rapidly in the furrow region and, 
together with myosin II, form the contractile ring [232,233]. Microtubules also have an essential role 
in controlling the formation of the contractile ring in Xenopus and in mammals: in Xenopus eggs, 
microtubules are involved in advancement of the cleavage furrow [234], while in mammalian somatic 
cells the complete disassembly of microtubules in anaphase results in the inability to accumulate actin 
to form a contractile ring [235]. During cytokinesis of the mouse egg, actin involvement is 
demonstrated by experiments where microfilament inhibitors block cleavage [197,230], and also RhoA 
plays essential roles in the formation of the actin filaments and the cleavage furrow [222]. A 
microfilament-rich cleavage furrow was also observed in fertilized pig eggs, in which actin filaments 
are required for cleavage [229].  

The inhibitory activities of unsaturated short chain aldehydes have been demonstrated in copepod, 
polychaete, echinoderm and ascidian embryos [132,225,236–238]. Effects of these bioactive 
compounds derived from diatoms include the arrest of embryogenesis, induction of teratogenic effects 
in larvae and inhibition of fertilization success. In particular, DD altered actin filaments, tubulin 
polymerization, DNA replication and mitochondrial migration after contraction, leading to a 
disturbance in cleavage formation. However, DD also induced larval teratogeny at low concentrations, 
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possibly due to actin perturbation. Interestingly, this same DD concentration failed to inhibit 
fertilization currents and voltage gated calcium channels [132]. 

LAT A showed to be a potent inhibitor of microfilament-mediated processes, even those occurring 
after fertilization, because it inhibits second polar body formation and cytokinesis in mouse fertilized 
eggs [197].  

PSE inhibited cytokinesis and induced formation of multinucleate cells in fertilized 
Strongylocentrotus purpuratus embryos. This toxin inhibited cytokinesis selectively by disrupting the 
contractile ring, whereas spindle microtubule organization and mitotic chromosome segregation to 
opposite spindle poles were unimpaired. The effects of PSE in fertilized sea urchin embryos were 
strikingly similar to those of another marine natural product, STY; both toxins could have the same 
cellular target(s) such as an especially sensitive sulfhydryl containing protein(s) involved in the 
formation or function of the contractile ring [239].  

Other peptides, GEO, also inhibited the first cleavage of sea urchin eggs (Lytechinus variegatus): 
duplication of nuclei without complete cell division indicated that the mechanism of action might be 
related to microfilament disruption [47]. 

Microinjection of purified AZA-1 in Japanese medaka (Oryzias latipes) embryo demonstrated that 
AZA-1 is a potent teratogen to finfish, caused dose-dependent effects on developmental rate, hatching 
success, and viability in medaka embryos [240].  

Using a novel oocyte-based screening system, Chae and colleagues [241] identified natural 
compounds that inhibit cytokinesis: when treated with PTX-2, mammalian ovulated oocytes activated 
by ethanol failed to complete mitotic division and remained in the one-cell stage.  

Among marine drugs affecting microtubules, CYN, DOL 15 and MET have been shown to alter or 
inhibit the egg cleavage. CYN blocked cleavage of developing sea urchin eggs [92,242,243], most 
likely because it inhibits microtubule polymerization [98]. DOL 15 induced cleavage alteration/arrest 
of sea urchin fertilized eggs [244]. MET inhibited the cleavages of sea urchin Sphaerechinus 
granularis and Paracentrotus lividus fertilized eggs. The treatment severely disturbs the establishment 
of a mitotic spindle, most likely by affecting microtubule dynamics [104].  

Table 1. summarizes the effects of marine toxins targeting cytoskeleton on different reproductive 
events. 

 
Table 1. The effects of marine drugs on cytoskeleton-mediated reproductive events. 

Drug Name Drug Source Cellular Target  Stage/Event Affected References 
Azaspiracid Dinoflagellates Unknown Early development [240] 
Calyculin Sponges Protein phosphatases Oogenesis [46] 

Caulerpenyne Algae Microtubules Early development [92,242,243] 
2E,4E-Decadienal Diatoms Cytoskeleton, calcium 

signaling etc. 
Sperm motility, oogenesis, 

fertilization, early development 
[64,132,177,225–238] 

Dolastatin  Molluscs Microtubules Early development [244] 
Geodiamolide Sponges Microfilaments Early development [47] 
Jasplakinolide Sponges Microfilaments Oogenesis [171,178,207,208] 

Latrunculin Sponges Microfilaments Spermatogenesis, acrosome 
reaction, fertilization, early 

development 

[125,197, 205–208] 
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Table 1. Cont. 

Methoxyconidiol Ascidians Unknown Early development [104] 
Mycalolide Sponges Microfilaments Fertilization [207] 

Okadaic acid Dinoflagellates Protein phosphatases Oogenesis [89,180–186] 
Palytoxin Dinoflagellates? Sodium pump Sperm motility [138] 

Pectenotoxin Dinoflagellates Microfilaments Early development [241] 
Pseudopterolide Soft corals Unknown Early development [239] 

Strongylophorine Sponges Rho-GTPases Oogenesis [179] 
Stypoldione Algae Microtubules 

(sulfhydryl groups) 
Early development [239] 

Swinholide Sponges Microfilaments Spermatogenesis [125] 
Theonellapeptolide Sponges Microfilaments Oogenesis [51] 

 
5. Conclusions 

 
To date, over 16,000 compounds have been isolated from marine organisms, and new compounds 

are continuously being discovered [245]. Discoveries of these marine natural products have been 
reported in approximately 7,000 publications. In addition, there are another 9,000 publications on the 
subject of marine natural products which deal with the syntheses, reviews, biological activity studies, 
ecological studies, etc. Furthermore, over 300 patents have been issued on bioactive marine natural 
products [245–248].Some of these products may find important applications in biomedical research, 
agriculture, aquaculture, and chemical industries (see [249] for a review), with particular interest 
towards the discovery and the development of novel antitumor and cytotoxic compounds [48].  

In this review we have reported many marine toxins with impact on reproductive processes by 
targeting microtubules or microfilaments or by affecting cytoskeletal dynamics. The effect of these 
marine toxins on reproductive and developmental processes is extensive and variable, affecting every 
step of these processes from the invertebrates up to the vertebrates, including humans. The range of 
reproductive impacts includes: sperm maturation, sperm motility, oocyte maturation, fertilization, and 
early development. The use of marine drugs could lead to many new applications such as the 
development of novel contraceptive methods. Therefore, one of the most important targets of 
pharmacology is now to screen the huge potential of marine toxins and select those that display a 
specific mode of action with the desired characteristics against a disease. Moreover, the study of these 
substances could help in the control of harmful species and lead to the improvement of protection of 
public health and natural environment, or to a better yield in aquaculture and agriculture field. This is a 
further confirmation of the importance in studying the promising and almost unexplored world of 
marine drugs. In conclusion, data described in the review support the fact that sperm, egg and embryo 
bioassays represent a promising field in screening for new drugs that affect reproductive events. 
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