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Purpose: Despite advances in characterizing the neurobiology of emotional disorders, there is

still a significant lack of scientific understanding of the pathophysiological mechanisms govern-

ing major depressive disorder (MDD). This study attempted to elucidate the molecular circuitry

of MDD and to identify more potential genes associated with the pathogenesis of the disease.

Patients and Methods: Microarray data from the GSE98793 dataset were downloaded

from the NCBI Gene Expression Omnibus (GEO) database, including 128 patients with

MDD and 64 healthy controls. Weighted gene coexpression network analysis (WGCNA) was

performed to find modules of differentially expressed genes (DEGs) with high correlations

followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses to obtain further biological insight into the top three key

modules. The protein-protein interaction (PPI) network, the modules from the PPI network,

and the gene annotation enrichment of modules were analyzed, as well.

Results: We filtered 3276 genes that were considered significant DEGs for further WGCNA

analysis. By performing WGCNA, we found that the turquoise, blue and brown functional

modules were all strongly correlated with MDD development, including immune response,

neutrophil degranulation, ribosome biogenesis, T cell activation, glycosaminoglycan biosyn-

thetic process, and protein serine/threonine kinase activator activity. Hub genes were identi-

fied in the key functional modules that might have a role in the progression of MDD.

Functional annotation showed that these modules primarily enriched such KEGG pathways

as the TNF signaling pathway, T cell receptor signaling pathway, primary immunodeficiency,

Th1, Th2 and Th17 cell differentiation, autophagy and RNA degradation and oxidative

phosphorylation. These results suggest that these genes are closely related to autophagy

and cellular immune function.

Conclusion: The results of this study may help to elucidate the pathophysiology of MDD

development at the molecular level and explore the potential molecular mechanisms for new

interventional strategies.

Keywords: major depressive disorder, bioinformatic analysis, differentially expressed genes,

immune response, autophagy

Introduction
Major depressive disorder (MDD) is one of the most common forms of mental

disease and includes a wide range of symptoms, such as prolonged episodes of low

mood, lack of motivation, retraction from social interaction, altered patterns of

sleep and appetite, cognitive difficulties and, at its worst, suicidal tendency.1,2
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Therefore, depression is associated with serious conse-

quences, including excessive mortality, disability, second-

ary morbidity, and contributors to the global burden of

disease.3 According to the World Health Organization

(WHO), an estimated 350 million people of all ages suffer

from depression disorder globally.4 Despite the significant

social burden that stems from this disease, there is still

a significant lack of scientific understanding of the patho-

physiological mechanisms governing depression.

Furthermore, the current diagnostic systems do not ade-

quately reflect the relevant neurobiological alterations that

drive the modified behavioral patterns found in patients.5

To date, the microarray technique has increasingly been

used for life science research purposes, and bioinformatic

data-mining of the gene has widely been used for differ-

ential expression analysis to identify novel diagnostic and

therapeutic biomarkers of diseases.6,7

Extensive research efforts investigating depression

have been performed in past decades, and potential new

therapeutic targets are being identified, including oxidative

stress, immune system effects8 and neuroinflammation9 in

the central nervous system (CNS), through cytokines,

which regulate brain activities and emotions. In particular,

a recognition that immune system actions profoundly

impact mood regulation10 has been particularly well estab-

lished for inflammatory signals from the innate immune

system linked to depression in human and rodent studies.

As such, it was important to identify the critical genes and

key-related pathways that may be related to innate immu-

nity and neuroinflammation and thus can further under-

stand the pathophysiological mechanisms of

depression.11,12 Recent genome-wide association studies

(GWAS) and many studies on common variants increase

our understanding of MDD; however, the underlying

genetic basis remains largely unknown.13–15 The weighted

gene coexpression network analysis (WGCNA) algorithm

can group genes into modules based on the gene coexpres-

sion similarities across the samples, resulting in a cluster

of genes with similar functions, for relating modules to

one another and external sample traits, and then the corre-

lation networks can be used to identify tissue-specific

biomarkers and pathophysiological-related pathways.16,17

To this end, within the current study, we constructed

correlation networks using gene expression data from pub-

licly accessible resources. Based on a microarray dataset

GSE98793 from Gene Expression Omnibus (GEO), the

study was designed to construct a gene coexpression net-

work to predict clusters of candidate genes involved in the

pathogenesis of MDD. The DEGs were screened, and the

WGCNA algorithm was employed to construct

a coexpression network. Then, the gene modules related

to MDD were identified. We conducted Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses to obtain further

biological insight into the highly correlated module, and

the modules of the protein-protein interaction (PPI) net-

work in MDD were screened, as well. In our research, all

the possible genes were analyzed, and our results would be

more complete and more reliable. The results of this study

may help to elucidate the pathophysiology of MDD devel-

opment at the molecular level and explore the potential

molecular targets for new interventional strategies.

Materials and Methods
Microarray Data
The mRNA microarray expression profile dataset

GSE98793 from whole blood samples for 128 patients

with MDD and 64 healthy controls provided by Leday

et al18 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE98793) was downloaded from the Gene

Expression Omnibus database, which is a public functional

genomics data repository of high-throughput gene expres-

sion data, chips, and microarrays. The GSE98793 dataset

was based on the GPL570 [HG-U133_Plus_2] platform

using the Affymetrix Human Genome U133 Plus 2.0

Array (Affymetrix, Inc., Santa Clara, CA). We down-

loaded the raw CEL file and the probe annotation file.

The probes were converted into the corresponding gene

symbol according to the annotation information on the

platform. All of the data were freely available online,

and this study did not involve any experiments on humans

or animals performed by any of the authors.

Data Preprocessing and DEG Screening
After the raw data in CEL format were downloaded, the

Affymetrix package19 (http://www.bioconductor.org/

packages/release/bioc/html/affy.html) in R software (ver-

sion 3.5.2, https://www.r-project.org/) was used for data

preprocessing and then obtained after removing the batch

differences and performing data background correction,

normalization and summarization to create a robust multi-

array average (RMA).

The series matrix files of the dataset were normalized

log-expression values available for further analysis. To

characterize DEGs, the control group and the MDD
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group were analyzed using the LIMMA (linear models for

microarray data) package20 in the R/Bioconductor plat-

form. Benjamini–Hochberg’s method was used to control

the false discovery rate, and P-values < 0.05 were defined

as the DEGs, which were used to screen gene modules

with similar expression profiles for the subsequent coex-

pression network construction.

Construction of Weighted Gene

Coexpression Networks
As a systems biology method, the construction of gene coex-

pression networks and the identification of gene clusters or

modules is especially useful in identifying transcriptional

alterations in multigene diseases, where the phenotypic state

emerges from the convergence of numerous small changes,

rather than from isolated single-gene effects.21,22 In the present

study, the Weighted Gene Co-expression Network Analysis

(WGCNA) package (Version 1.68, https://cran.rstudio.com/

web/packages/WGCNA/index.html) within R software was

used to construct groups of strongly coexpressed genes into

coexpression networks according to the DEG expression

matrix, which included 3276 selected genes. The gene net-

work was visualized with selected DEGs, and visualization in

the gene network of module eigengenes was also undertaken.

The selection of the soft-thresholding power is an impor-

tant step when constructing a WGCNA.16 In this study, the

soft thresholding power was screened out by analysis of

network topology when the degree of scale independence

was set as β=5 (scale-free R2=0.88). When the degree of

scale independence was set as β=5, the summary connectiv-

ity measures decline steeply with increasing soft-

thresholding power, it is advantageous to choose the lowest

power that satisfies the approximate scale-free topology

criterion. Then, gene coexpression module similarity and

adjacency matrices were successively constructed using the

power values obtained by the WGCNA algorithm. During

module selection by cluster analysis, the adjacency matrix

was used to calculate the topological overlap measure

(TOM) and measure the connection strength between all

gene pairs.23,24 Modules of coexpressed genes were gener-

ated by hierarchical clustering dendrograms with different

colors, and the module structure was visualized by topolo-

gical overlap matrix plots. Finally, the minimum number of

genes was set at 100 to ensure the reliability of the result in

each module, after which we performed further analysis and

validation as the candidates on gene modules to characterize

modules related to MDD.

Functional Enrichment Analysis of Genes

in Three Key Modules
The genes inside coexpression modules have high connec-

tivity, and the genes within the same module may play

similar roles. The top 3 modules with more than 100 genes

that are significantly associated with MDD were selected.

To further analyze the cellular component (CC), molecular

function (MF), and potential biological process (BP), func-

tional enrichment analysis was performed to identify and

interpret complex biological functions based on the GO

terms and KEGG pathway annotation in the coexpression

modules. The genes of each selected module were sub-

mitted to the online Database of Enrichr (http://amp.

pharm.mssm.edu/Enrichr/) to conduct functional and path-

way enrichment analysis in this study. Enrichr is a useful

online tool for annotating genes,25–27 which provides the

functionality to perform simultaneous GO and KEGG

pathway analysis. P-values < 0.01 were considered to

indicate significant differences.

Integration of Genetics and Highly

Connected Hubs in Modules
The top-ranked genes in the modules are thought to be hub

genes. To systematically analyze the hub genes from each

module and the module eigengene, the genes obtained from

eachmodule previouslyweremapped into the online search tool

STRING database28 (STRING, V11.0; https://string-db.org/),

which could play a critical role in the protein-protein network

(PPI). A combined score ≥ 0.4 of PPI pairs was considered

significant. Then, the CytoHubba plugin based on Cytoscape

software29 (http://www.cytoscape.org/, version 3.7.1; Institute

for Systems Biology, Seattle, WA, USA) was used to construct

and visualize the transcriptional regulatory network of each

module, and the highest degree connectivity was identified as

the hub genes.

Results
Identification of DEGs Associated with

Normal and MDD Samples
A total of 192 tissue sample raw files (. CEL format) were

downloaded from the Gene Expression Omnibus (GEO)

database. There were a total of 54,675 probes on the inte-

grated dataset GSE98793 after batch normalization by the

sva and limma packages in R, and 22,484 gene expressions

were extracted. Furthermore, P-values < 0.05 with 3276 gene
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expressions were considered to be significant as the DEGs

for further WGCNA analysis.

Weighted Coexpression Network

Construction and Key Module

Identification
To explore the potential functions and mechanisms of

these RNAs in the progression of major depression in

patients, the WGCNA package in R software was used to

construct a gene coexpression network to identify biologi-

cally meaningful gene modules. After screening the 3276

DEGs, we analyzed the data with WGCNA to identify the

modules containing highly correlated genes, and the soft-

threshold power 5 was optimized based on the criterion of

approximate scale-free topology (Figure 1A and B). We

set MEDissThres as 0.25 to merge similar modules, and 9

modules were generated (Figure 2A). There were 491

genes in the turquoise module, 348 genes in the blue

module, 144 genes in the brown module, 50 genes in the

black module, 64 genes in the green module, 34 genes in

the magenta module, 41 genes in the pink module, 63

genes in the red module and 71 genes in the yellow

module. The 296 genes that could not be included in any

modules were put into the gray module, which was

reserved for genes identified as not coexpressed.

Correlation Between Modules and

Identification of Key Modules
Interactions between the nine coexpression modules were

analyzed, and all genes were identified for the network

heatmap (Figure 2B). Interestingly, the results revealed

that some of these gene modules were independently vali-

dated, especially the turquoise, blue, brown and magenta

modules, which demonstrated a high level of independence

among the modules and relative independence of genes

expressed in each module. To determine the connections

and interactions among these nine coexpressed modules, we

analyzed the connectivity of eigengenes. Combined with

Figure 2C, we observed that these nine modules were clas-

sified into two main clusters: one included five modules

(turquoise, black, brown, magenta and green modules),

while the other included four modules (red, pink, yellow

and blue modules). Furthermore, the results were demon-

strated by the heatmap plotted according to the connectivity

of eigengenes (Figure 2D). We found that the three pairs of

modules had higher adjacencies, and they were the yellow

Figure 1 Clustering of samples and determination of soft-thresholding power.

Notes: (A) Analysis of the scale-free fit index for various soft-thresholding powers (β). The red line represents the merging threshold. (B) Analysis of the mean connectivity

for various soft-thresholding powers. In all, 5 was the most fit power value.
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and blue, brown and green, and black and magenta modules,

respectively.

Functional Enrichment Analysis of Genes

in Modules of Interest
Because the turquoise, blue andbrownmodulemoduleswere all

highly correlated with MDD development, GO and KEGG

enrichment analyseswere performed to obtain further biological

insight for the genes in the three constructedmodules.As shown

in Figure 3A, the genes in the turquoise module were mainly

enriched in neutrophil activation involved in the immune

response, neutrophil degranulation, neutrophil-mediated immu-

nity and cAMP-dependent protein kinase activity (cAPK).

Genes in the blue module (Figure 3B) were enriched in ribo-

some biogenesis, ncRNAand rRNAmetabolic processes, Tcell

activation and DNA helicase activity. Genes in the brown

module (Figure 3C) were primarily involved in mRNA 5ʹ-

splice site recognition, glycosaminoglycan biosynthetic process,

protein serine/threonine kinase activator activity and cellular

response to caffeine. KEGG pathway analysis (Figure 3D)

showed that the top enriched terms were the T cell receptor

signaling pathway, primary immunodeficiency, the TNF signal-

ing pathway, T-helper type 1 (Th1), T-helper type 2 (Th2) and

T-helper type 17 (Th17) cell differentiation, autophagy and

RNA degradation and oxidative phosphorylation. These results

suggest that these genes are closely related to autophagy and

cellular immune function.

PPI Network Construction and Analysis

of Selected Modules
The protein-protein interaction (PPI) network of top-

ranked genes for three selected modules was constructed

based on the STRING database, including the turquoise,

blue, and brown modules. All the modules were visualized

by Cytoscape software as shown in Figure 4. The high

degree of connectivity was calculated as the hub genes of

Figure 2 Construction of coexpression modules by the WGCNA package in r.

Notes: (A) The cluster dendrogram of genes in GSE98793. Branches of the cluster dendrogram of the most connected genes gave rise to nine gene coexpression modules.

Genes that could not be clustered into one of these modules were assigned to the gray module. Every gene represents a line in the hierarchical cluster. The distance

between two genes is shown as the height on the y-axis. (B) Interaction relationship analysis of coexpressed genes. Different colors of the horizontal axis and vertical axis

represent different modules. The brightness of yellow in the middle represents the degree of connectivity of different modules. There was no significant difference in

interactions among different modules, indicating a high degree of independence among these modules. (C) Hierarchical clustering of module hub genes that summarize the

modules yielded in the clustering analysis. (D) Heatmap plot of the adjacencies in the hub gene network.

Abbreviation: WGCNA, weighted gene coexpression network analysis.
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the selected module by the cytoHubba plugin. Mitogen-

activated protein kinase 3(MAPK3), resistin (RETN),

matrix metallopeptidase 9 (MMP9), cathepsin D (CTSD)

and cyclic adenosine monophosphate (cAMP) were identi-

fied in the turquoise module (Figure 4A and Table 1),

which was enriched in neutrophil degranulation and acti-

vation involved in an immune response. Fibrillarin (FBL),

ribosomal protein L11 (RPL11), ribosomal protein S18

(RPS18), NOP56 ribonucleoprotein (NOP56), ribosomal

protein S5 (RPS5), ribosomal protein S14 (RPS14),

MRT4 homolog (MRTO4), ribosomal protein L18a

(RPL18A), ribosomal protein L35 (RPL35) and RNA poly-

merase I and III subunit C (POLR1C) were identified in

the blue modules (Figure 4B and Table 2), which were

enriched in ribosome biogenesis. Solute Carrier organic

anion transporter family member 4C1 (SLCO4C1), vascu-

lar endothelial growth factor A (VEGFA) and serine and

arginine rich splicing factor 1 (SRSF1) were identified in

the brown module (Figure 4C and Table 3), which was

enriched in mRNA 5ʹ-splice site recognition and glycosa-

minoglycan biosynthetic process.

Discussion
Depression is a major human disease that has become

a pervasive public health problem.30,31 Despite advances

in understanding the neurobiology of MDD, further

research is warranted to determine the distinctive patho-

physiology of MDD in contrast to many other brain dis-

orders. Microarray technology has become a popular

technology in recent years and is commonly used to obtain

data regarding genetic alterations during the pathological

process of disease.32 The GSE98793 dataset may be cri-

tical in the identification of pathophysiology and biomar-

kers in MDD. Several researchers have previously

Figure 3 Top 5 GO analysis and KEGG pathway enrichment results for genes in three modules.

Notes: (A) turquoise module, (B) blue module, and (C) brown module. The size of the bubble shows the enrichment significance, while colors indicate the enrichment

score. Bubble nodes represent BP, triangular nodes represent CC, and square nodes represent MF. (D) KEGG pathway enrichment results. Bubble nodes represent the blue

module, triangular nodes represent the brown module, and square nodes represent the turquoise module.

Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular function; CC, cellular component.
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analyzed the dataset. Leday et al, who provided the origi-

nal data for GSE98793, demonstrated that MDD was sig-

nificantly enriched for an immune response to infection

coupled with relative inactivation of the adaptive immune

system, indicating the potential of transcriptional biomar-

kers for immunological stratification of patients with

depression. Wang et al divided randomly into two nono-

verlapping groups for cross-validation and found that

MDD is mainly enriched in such pathways as ribonucleo-

protein complex biogenesis, the Toll-like receptor

signaling pathway, the apoptosis pathway, and the struc-

tural constituent of ribosomes.33 Unlike the previous stu-

dies mentioned in this report, the present study applied

a new approach, based on WGCNA, to investigate the

molecular mechanisms underlying MDD samples com-

pared with control samples. A total of 3276 DEGs were

used to build coexpression networks and identify groups of

highly coexpressed genes. Moreover, we identified nine

distinct coexpression modules based on the DEGs, and

three highly correlated modules (turquoise, blue and

Figure 4 PPI network of hub genes in three modules.

Notes: (A) turquoise module, with 65 nodes and 248 edges, (B) blue module, with 55 nodes and 387 edges, and (C) brown module, with 29 nodes and 42 edges. Triangular

nodes represent hub genes; up nodes represent upregulated genes; down nodes represent downregulated genes.

Abbreviation: PPI, Protein-protein interaction.

Table 1 Most Significant GO Terms of the Turquoise Module

GO ID P-value No. of Genes Description Hub Gene

GO:0043312 1.93E-11 40 Neutrophil degranulation RETN, CAMP, CTSD, MMP9

GO:0002283 2.49E-11 40 Neutrophil activation involved in immune response RETN, CAMP, CTSD, MMP9

GO:0002446 3.21E-11 40 Neutrophil mediated immunity CAMP, CTSD, MMP9

GO:0035580 3.61E-09 13 Specific granule lumen CAMP, CTSD

GO:0034774 6.63E-09 28 secretory granule lumen CAMP, CTSD
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brown modules) were obtained after the functions of the

module’s analysis based on the coexpression network.

Over the last two decades, the hypothesis emerged that

inflammatory processes and neural-immune interactions are

involved in the pathogenesis of major depression.34–36

Many studies have shown that patients with MDD exhibit

higher neutrophil and monocyte counts and an increased

neutrophil to lymphocyte ratio (NLR) than controls. From

our research, the turquoise module identified by WGCNA

was the most significantly related module to MDD status.

Genes in the turquoise module were mainly enriched in

neutrophil degranulation, neutrophil-mediated immunity

and neutrophil activation involved in the immune response,

suggesting that genes in the turquoise module might play

important roles in immune functions during MDD.

According to the PPI network analysis from the turquoise

module, RETN, cAMP, CTSD andMMP9 were identified as

the high degree genes. Mutations in CTSD play a causal role

in neuronal ceroid lipofuscinosis-10 and may be involved in

the pathogenesis of several devastating neurodegenerative

diseases. CTSD-deficient mice manifest depressive-like

behavior, including anhedonia, behavioral despair, and

enhanced learned helplessness. RETN also plays an impor-

tant role in the pathophysiology ofMDD, and resistin serum

levels were lower in MDD individuals than in healthy

controls.37 cAMP is a multifaceted modulator of immune

synapse assembly and the inflammatory response. It has

been reported that 5-HT7R not only stimulates cAMP

production38 but also forms heterooligomers with

5-HT1AR,39 which are important for the pathogenesis of

MDD.MMP-9 (also known as C1562T) has been confirmed

to participate in the development of depression.40 Changes

in MMP expression may be a common element in, or

perhaps even a marker for, recurrent depressive disorders.41

Pathway enrichment analysis indicated that genes in

the turquoise module were enriched in lysosomes and

autophagy. Autophagy has been recognized as a pivotal

process to ensure homeostasis of cells through lysosomal

degradation of damaged macromolecules and organelles,

which is linked to several diseases.42 Recently, autophagy

has also been linked to depression, mainly through its

involvement in the action of antidepressants. There are

several publications that report that antidepressants impact

autophagy, as has been reported very recently.43,44 One

finding supporting the role of antidepressants in autophagy

was that fluoxetine (10 μM), a selective serotonin reuptake

inhibitor (SSRI), could promote unblocked autophagic flux

by enhancing the fusion of autophagosomes with lyso-

somes in primary astrocytes.45 The tricyclic antidepressant

amitriptyline was found to increase autophagy in primary

neurons and astrocytes, similar to the selective serotonin

reuptake inhibitor fluoxetine. A further expanded study

found that amitriptyline and fluoxetine lead to the gradual

accumulation of sphingomyelin in lysosomes, which sti-

mulates autophagy via protein phosphatase 2A, ULK,

Beclin, and LC3B.46,47 Although the molecular mechan-

ism of the autophagy-modulating function of antidepres-

sants is described in detail in several excellent reviews, it

remains a major challenge that scientists have largely not

explored.

Table 2 Most Significant GO Terms of the Blue Module

GO ID P-value No. of Genes Description Hub Gene

GO:0003723 9.81E-08 52 RNA binding FBL, RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A, RPL35

GO:0042254 4.63E-07 17 Ribosome biogenesis FBL, RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A, RPL35

GO:0016072 2.30E-06 15 rRNA metabolic process FBL, RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A, RPL35

GO:0034470 2.37E-06 16 ncRNA processing FBL, RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A, RPL35

GO:0006364 2.60E-06 15 rRNA processing FBL, RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A, RPL35

Table 3 Most Significant GO Terms of the Brown Module

GO ID P-value No. of Genes Description Hub Gene

GO:0070034 5.09E-04 3 Telomerase RNA binding N/A

GO:0035579 5.37E-04 5 Specific granule membrane SLCO4C1

GO:0002151 7.58E-04 2 G-quadruplex RNA binding N/A

GO:0006024 7.85E-04 5 Glycosaminoglycan biosynthetic process N/A

GO:0050650 8.42E-04 3 Chondroitin sulfate proteoglycan biosynthetic process N/A
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The blue module was enriched in RNA binding, ncRNA

processing, rRNAmetabolic process and ribosome biogenesis.

According to the network analysis of the blue module, FBL,

RPL11, RPS18, NOP56, RPS5, RPS14, MRTO4, RPL18A and

RPL35 were identified as high degree hub genes. The gene

FBL is a component of a nucleolar small nuclear ribonucleo-

protein (snRNP) particle thought to participate in the first step

in processing pre-ribosomal RNA.48 NOP56 is required for

assembly of the 60S ribosomal subunit and is involved in pre-

rRNA processing.49MRTO4 appears to be involved inmRNA

turnover and ribosome assembly.50 The RPL11, RPS18, RPS5,

RPS14, RPL18A and RPL35 genes encode ribosomal proteins.

Each of the proteins belongs to the family of ribosomal pro-

teins. All of the proteins are located in the cytoplasm.

Many cytokines with vital roles in the regulation of the

immune system have been investigated in the pathology of

MDD. Pathway enrichment analysis indicated that genes

in the blue module were enriched in primary immunodefi-

ciency, the T cell receptor signaling pathway, and Th1,

Th2 and Th17 cell differentiation. Several studies have

established that Th17 cells may contribute to the develop-

ment of depression-like behavior.10,51,52 Th17 cells are

a new T cell lineage CD4+ T helper cell. In addition to

the traditional Th1 and Th2 subsets, Th1 cells may be

derived from Th17 cells.53,54 Th17 cells are critical med-

iators of the cellular immune system that are characterized

by the production of the inflammatory cytokines interleu-

kin (IL)-17, IL-21 and IL-22. Th1 and Th2 cells may also

play a regulatory role, as Th1 increased in mouse brains

after depression-inducing stimuli. One study observed Th1

and Th2 cytokine imbalance in the subpopulation of

depressed patients. Th2 cells can stimulate their own

growth by producing IL-4,55 which is a cytokine. As the

major Th2-type cytokine, IL-4 might be protective against

depression due to its ability to counter regulate inflamma-

tion and to inhibit serotonin transporter activity. A recent

study discovered that IL-4 was a critical participant in the

regulation of depressive-like behavior in an untreated

baseline condition,56 and the increase in depressive-like

behavior during inflammation in wild-type mice might be

mediated to some extent by a reduction in IL-4 signaling.

We acknowledge there were some limitations and

shortcomings in this study. First, this study was mainly

focused on data mining and data analysis, which were

based on methodology and the results were not validated

by experiments. Second, the samples from peripheral

blood cells of patients, so the associated analysis of

mRNAs in the brain regions with depression-related

dysfunction may validate the data and strengthen the con-

clusion. Third, the results of this study should be inter-

preted within the context of important limitations.

Conclusion
Our study adopted a systems biology-based WGCNA

method and identified numerous useful molecular targets

for future investigation of the mechanisms and selection of

biomarkers for MDD. Some important biological processes

and pathways, including neutrophil activation involved in the

immune response, T cell receptor signaling pathway, Th1,

Th2 and Th17 cell differentiation and the hub genes func-

tioning in these processes, may help to elucidate the devel-

opment and progression of MDD. Furthermore, the potential

molecular mechanisms that have been identified simulta-

neously include ribosome biogenesis, lysosomes, and autop-

hagy. Our findings may help to elucidate the pathophysiology

and progression of MDD. In addition, further molecular

biological experiments will be performed by our team to

confirm the function of the identified genes in MDD.
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