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In this paper, we present a method to forecast the spread of SARS-CoV-2
across regions with a focus on the role of mobility. Mobility has previously
been shown to play a significant role in the spread of the virus, particularly
between regions. Here, we investigate under which epidemiological
circumstances incorporating mobility into transmission models yields
improvements in the accuracy of forecasting, where we take the situation
in The Netherlands during and after the first wave of transmission in 2020
as a case study. We assess the quality of forecasting on the detailed level
of municipalities, instead of on a nationwide level. To model transmissions,
we use a simple mobility-enhanced SEIR compartmental model with sub-
populations corresponding to the Dutch municipalities. We use commuter
information to quantify mobility, and develop a method based on maximum
likelihood estimation to determine the other relevant parameters. We show
that taking inter-regional mobility into account generally leads to an
improvement in forecast quality. However, at times when policies are in
place that aim to reduce contacts or travel, this improvement is very small.
By contrast, the improvement becomes larger when municipalities have a
relatively large amount of incoming mobility compared with the number
of inhabitants.
1. Introduction
In the effort to contain a pandemic, local contact-restricting measures tailored to
particular regions within a country can be beneficial when those regions exhibit
large differences in infection prevalence. For instance, local measures can be
implemented specifically for regions with a high level of infections, whereas
such measures are not necessary for other regions with lower levels of infec-
tions. To take such decisions on a regional level, the local policymakers need
information on the effect that measures have on their specific region. Therefore,
for such a region-focused approach to be successful, it is important to know the
effect of measures on the progression of infections on this local level, rather than
only on the national level.

Since the start of the COVID-19 pandemic, a substantial number of studies
have focused on forecasting the course of the pandemic, for example to be able
to judge the effect of policy changes (see, for example, the overview in [1]).
Already at the very start of the pandemic, the role of human mobility has been
studied extensively, establishing a correlation between reductions in mobility
(e.g. as a consequence of national restrictive measures) and the spread of the
virus (e.g. [2–4]). A general conclusion from these studies is that human mobility
between regions contributes significantly to the initial transmission and spread of
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the virus. Similarly, a reduction in mobility as a consequence of
restrictive measures is shown to correlate with a reduction of
new infections. This suggests that information on the influence
of inter-regional mobility on the virus spread is useful for
regional policymakers.

When focusing on the influence ofmobility on the spread of
the virus, it is important to identify which type of mobility
is most relevant and which level of granularity and detail
in mobility information is required. On the one hand, the
country-level may be sufficient for inference and forecasting
the general development of the pandemic, but is not suitable
to gain insight into the emergence of local outbreaks or
super-spreading events, which have been shown to be impor-
tant [5,6]. On the other hand, small-scale mobility, for example,
on the level of individuals, can provide enormous insight into
demographic aspects of the transmission process [7], but
require many assumptions on the behaviour of individuals
and such assumptions are generally hard to validate [8,9].
Another reason why determining the right level of detail is
important, is that exact mobility information is not available
for reasons of privacy. Thus, proxies must be used instead,
i.e. different data that approximate the desired data or can be
used to obtain such an approximation. The availability and
accuracy of such proxies depends on the level of granularity
and detail, where smaller-scale and more detailed proxies are
generally less readily available and more sensitive to noise.

A perhaps even more fundamental question is: under
which epidemiological conditions and restrictive measures
does incorporating mobility in transmission models actually
yield significant improvements in estimating the state of
the epidemic and forecasting its development? For instance,
several studies [10–12] found a strong correlation between
changes in mobility and infection prevalence at the start of
the pandemic, when a severe lockdownwas in place. However,
after the first wave, this correlation was much weaker, presum-
ably because different restrictive measures were in place that
did not directly limit the number of contact moments (e.g. an
advise to work from home instead of the closing of work-
places). This suggests that changes in mobility are not always
predictive of changes in infection incidence, which justifies
the question in which epidemiological situations the inclusion
of mobility yields more accurate estimations and forecasts.

The goal of this paper is to develop methodological tools
to ultimately support regional policymakers in taking appro-
priate contact-restrictive measures to contain the spread of
SARS-CoV-2, where we take the epidemic in The Netherlands
as a use-case. For this, we study the influence of inter-
regional mobility on the spread of infections and aim to
answer the following two questions:

1. How effective are particular types of measures in reducing
the number of local and inter-regional contacts? To answer
this question, we estimate these numbers of contacts for
our case study of the situation in The Netherlands using a
mobility-enhanced SEIR-compartmental model [3]. We
find that measures that restricted visiting public places in
August 2020 and a set of measures representing a partial
lockdown in October and November 2020 (including the
closing of bars and restaurants and a strong advice to
work from home) were followed by a reduction in both
the number of local and inter-regional contact moments.
However, further restricting contacts by additional
measures, such as minimizing the number of allowed
guests at home and the closing of public places inNovember
2020, was followed by an increase in local contacts.

2. When does taking inter-regional mobility into account
improve the quality of short-term forecasts of the spread of
infection?We answer this question by comparing the forecast
qualityof theaforementionedmodel to thatof the samemodel
without mobility. We find that taking mobility into account
generally improves the forecast quality of the model. How-
ever, under measures that aim to reduce the amount of
commuter travel and work contacts, this improvement
turns out to be insignificant. This suggests that, under such
measures, information on this type of travel is not necessary
to explain the development of new infections. Moreover, we
find evidence that suggests a larger improvement for munici-
palities where the share of incoming mobility is large
comparedwith thenumberof inhabitants. Theoverall forecast
accuracy itself is worse for regions that are known for having
more contacts than average, that have a large share of foreign
travel (which we do not explicitly take into account), or that
have had disproportionally many positive cases.

We build in this work on the mobility-enhanced SEIR-
compartmental model of [3], where a given area is divided
into several smaller regions (e.g. a country that is divided
into municipalities). Transmissions within a given region are
modelled using a standard SEIR-compartmental model [13]
and transmissions caused by contacts with inhabitants from
other regions are modelled by enhancing the standard formu-
lation of the SEIR-model with an additional term involving the
mobility between these regions and their susceptible and infec-
tious populations. Potential differences between the average
number of intra- or inter-regional contacts are modelled via a
distinct transmission rate for both contact types.

Several parameters of this model, such as the average
latent and infectious periods, can be taken from the literature
since they concern the intrinsic properties of the virus that are
not location-dependent. However, the transmission rates
are dependent on the number of contact opportunities
and are time-dependent. In earlier work [3], these parameter
values were chosen based on the literature available at that
time with the goal to serve as illustrative examples when
assessing the trade-off between mobility restrictions and
virus transmission. In several studies in the literature, a maxi-
mum-likelihood estimation (MLE) approach is followed to
estimate the single transmission rate for compartmental
models that do not include mobility (see [14–16] and refer-
ences therein). In the current work, we develop an MLE
procedure to determine both transmission rates in the mobi-
lity-enhanced model of [3], simultaneously based on the
infection prevalence of SARS-CoV-2 in the Dutch population.
To do this, we turn the corresponding difference equations
of the model into a partially stochastic model, where one of
the difference equations is interpreted as the parameter of a
suitable negative binomial random variable.

There are many studies that focus on the additional value
of taking mobility into account when investigating the spatial
prevalence and transmission dynamics of infectious diseases
[17,18], thereby also stressing the importance of choosing the
right proxy for mobility data, given the desired accuracy [19].
For the specific case of the COVID-19 pandemic, various
models and mobility proxies have been considered. These
models range from data-driven models with minimal assump-
tions on transmission dynamics [20,21] to process-focused
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approaches that incorporate mobility in existing transmission
models, such as used in this paper (see also [22]). Data used
to estimate mobility patterns primarily consist of origin-desti-
nation data between regions obtained from social media
platforms [21,23] or mobile phone operators [24]. Compared
to theseworks, the novelty of our work is that we directly com-
pare transmission models that do and do not include mobility
and investigate when and where including mobility improves
the model and forecast accuracy.

Our evaluations indicate that the mobility-enhanced model
and estimation procedure yield accurate forecasts of the distri-
bution of infections throughout the country, i.e. the percentage
of all reported infections that occurs in each region. In particular,
we obtain accurate forecasts of the order of regions in terms
of their share in the total number of reported infections.
This suggests that the model and the mobility data are sophisti-
cated enough to describe the inter-regional patterns in virus
transmission. This is important information for regional policy-
makers since they are interested in the potential sources of local
COVID-19 outbreaks. However, we also find that the model
is able to accurately forecast the volume of infections only
during longer periods without changes in mobility-restricting
measures. The predictive quality of the model reduces signifi-
cantly within the first week after such changes but, in the
subsequent week, returns to the original degree of accuracy.
The main cause of this reduction in accuracy is the absence of
information on the most recently infected individuals.

In this paper, we focus primarily on spread in The
Netherlands. However, we believe that our general conclusions
with regard to, for example, the added value of accounting for
mobility also apply to similar countries, i.e. densely populated
countries with substantial inter-regional mobility. Further-
more, although we focus here on the SARS-CoV-2 pandemic,
our approach is also applicable to other infectious diseases
with similar epidemiological characteristics.

The organization of the paper is as follows. In §2, we intro-
duce and explain the compartmental model and in §3, we
explain how we initialize the parameters of this model and
which data sources we use for this. In §4, we describe how
we estimate the transmission rates usingMLE, howwevalidate
the model, and how we use it to investigate the influence of
mobility. In §5, we present the results and, finally, in §6 we
discuss the limitations of our work and state our conclusion.
2. The compartmental model
We mathematically describe the spread of infection using the
compartmental model introduced in [3]. In this section, we
provide a brief description of the model, and more details
are given in electronic supplementary material, appendix A.

We divide the population of size N into a set D of
separate regions and denote the population of each area i∈D
by Ni. We focus primarily on the division in municipalities
in this paper, but in the general model divisions based on
other criteria are possible. Throughout, we assume that
the population remains constant over time. At each time t,
the population of each region i is partitioned into six com-
partments that indicate their epidemiological state, denoted
by ðSiðtÞ, EiðtÞ, ITi ðtÞ, IUi ðtÞ, RT

i ðtÞ, RU
i ðtÞÞ. These compartments

contain all susceptible (not infected), exposed (infected but not
yet infectious), positively tested infectious, untested infectious,
recovered positively tested and recovered untested individuals,
respectively. In our model, we distinguish between positively
tested and untested individuals for two reasons. First, we
assume that positively tested individuals do not travel to, or
receive visitors from, other regions. Second, the compartment
of positively tested infectious persons is the only compartment
whose size we can accurately measure or estimate.

We model mobility between regions as follows. For each
two regions i, j∈D, we let the parameter Mij denote the
number of individuals traveling from i to j per time unit.
We assume that travelling individuals visit only one region
and return directly afterwards to their home region.

In compartmental epidemiological models, the trans-
mission rate, usually denoted by β, determines the rate at
which susceptible individuals are infected by infectious ones.
With the inclusion of mobility between regions, two separate
transmission rates βloc and βmob are introduced that correspond
to the transmission rates for infections caused by intra-regional
contacts and inter-regional contacts, respectively.

The compartmental model is described by the following
differential equations, for each i∈D:

dSiðtÞ
dt

¼ �bloc
SiðtÞ
Ni

ðITi ðtÞ þ IUi ðtÞÞ

� bmob

X
j[D

SiðtÞ
Mji

Ni

IUj ðtÞ
Nj

þ IUj ðtÞ
Mij

Nj

SiðtÞ
Ni

 !
, ð2:1Þ
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¼ IUi ðtÞ
v

: ð2:2Þ

Here, a is the fraction of infectious individuals that is posi-
tively tested, ν is the average latent period, i.e. the time
between getting infected and becoming infectious, and ω is
the average infectious period, during which an infected
individual can infect others.

Given the probability ε that a transmission occurs during
an appropriate contact between a susceptible and an infectious
person, the overall average contact rate c, and the fraction p of
those contacts that occur locally, i.e. that are not the result of
inter-regional travel, we can decompose βloc and βmob as

bloc ¼ 1pc ð2:3Þ
and

bmob ¼ 1ð1� pÞ cN
2
P

ði,jÞ[D�D Mij
: ð2:4Þ

In the latter expression, the term

ð1� pÞ cN
2
P

i,j[D�D Mij

represents the total number of non-local contacts (1− p)(cN/2)
divided by the total number of travels

P
ði,jÞ[D2 Mij, i.e. the

number of contacts per traveling person per unit time.



Table 1. Model parameters.

parameter meaning

N total population size

D set of region indices

Ni population size of region i

Mij number of individuals that travel from region i to region j

a fraction of infectious people that have been tested

ω infectious period

v latent period

βloc transmission rate via local contacts

βmob transmission rate via non-local contacts

ε transmission probability per contact between susceptible

and infectious individual

c average number of contacts

p fraction of local contacts

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220486

4

A concise explanation of the model parameters is given in
table 1. Further details of the model and parameters are the
same as in our earlier work [3] and are provided in electronic
supplementary material, appendix A. One of the novel contri-
butions of this work is the initialization and estimation
procedure of the model parameters, based on the available
data, which we address in §§3 and 4.1.
3. Parameter initialization and data sources
The demographic parameters D and Ni are initialized based
on the division of the country into regions. For instance, if we
investigate on the municipality-level, then D contains an index
for each municipality. Furthermore, the values for the average
latent and infectious periods ν and ω are chosen based on the
literature as 3 days [25,26] and 9 days [27–29], respectively.

To initialize the sizes of the six compartments on a given
day t for a given municipality i, we use information on daily
reported cases as reported by, for example official national
health sources such as the Dutch National Institute for Public
Health and the Environment (RIVM) [30]. More precisely, we
use as input the number of positive tests reported at time t in
region i, denoted by ΔIi(t), for each time t and region i. We
assume that recipients of a positive test result become infectious
at the report date of the test sincewe do not have (access to) any
other information on when a positively tested individual
has been infected, underwent a test, or recovered. We refer to
electronic supplementary material, appendix B for the
mathematical description of the initialization procedure.

For the initialization of the mobility parameters Mij, we
combine two different data sources: one on mobility patterns
from before the pandemic and the other on the relative
change in mobility since the start of the pandemic. Clearly,
both the volume and structure of mobility patterns has chan-
ged significantly since the start of the pandemic [31]. In
particular, both the total number of travel movements and
the share of long-distance trips among the total number of
movements have significantly decreased [32].

The first source is data on places of residence and of work
as collected by Statistics Netherlands (CBS) [33]. The second
source is data that represent the change in mobility for differ-
ent types of mobility compared to a pre-pandemic baseline as
collected by Google [34]. We refer to electronic supplemen-
tary material, appendix C for more details on these data
and how we combine them to obtain a proxy for the mobility
matrix M.

Via studies on the seroprevalence of SARS-CoV-2 in the
population, the number of hospitalizations, and the daily
fraction of positive tests, estimates can be made of the total
number of infectious people ItotðtÞ :¼P j[DðITj ðtÞ þ IUj ðtÞÞ at
time t. Based on such an estimate Îtot and the total number
of positively tested individuals as initialized in §3, we can
obtain an estimate on the fraction of positively tested infec-
tious individuals a on a given day t as

a ¼
P

j[D ITj ðtÞP
j[DðITj ðtÞ þ IUj ðtÞÞ

¼
P

i[D

Ð1
0 e�ðs=vÞDIiðt� sÞds

ÎtotðtÞ :

For Itot(t), we use estimates by the RIVM based on the out-
comes of the ‘Pienter Corona-studie’ [35], which investigated
the seroprevalence of SARS-CoV-2 in The Netherlands (see
also [36]).

Given the transmission rates βloc and βmob, we estimate
the fraction of local contacts p as follows (we describe how
we estimate the transmission rates in §4.1). Note that, by
the definition of βloc and βmob in equations (2.2) and (2.3),

bloc

p
¼ 1c ¼ 2

P
ði,jÞ[D�D Mij

ð1� pÞN bmob,

provided that p≠ 0 and p≠ 1. From this, it follows that

1
p
¼ 2

P
ði,jÞ[D�D Mij

N
bmob

bloc
þ 1

and thus

p ¼ Nbloc

2bmob
P

ði,jÞ[D�D Mij þNbloc
:

Observe that we can now compute the term εc as εc = βloc/p.
We do not initialize the parameters ε and c separately since
they do not occur separately in our model but only together
in the form εc.
4. Approach
In this section, we describe how we use the compartmental
model and the data initialization procedure to accomplish
the following:

1. estimate the transmission rates βloc and βmob;
2. validate the performance of the model at the nationally

aggregated level;
3. assess the forecasting quality of the model on the munici-

pality level;
4. investigate the influence of mobility on the forecast quality.

We discretize the model so that it matches the discrete-
time format of the available input data, meaning among others
that we look ahead 7 days and look back 14 days when initializ-
ing compartments (see electronic supplementary material,
appendix D).

We focus on the developments within the second half
of 2020, i.e. within the time period 1 July–31 December
2020. The reason for this is that, on the one hand, testing
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for the virus became available for the entire population
slightly before 1 July 2020. Thus, from this time on, the
daily reported cases provide a more accurate view of
the number of known infections. On the other hand,
mass vaccination of the population started in January 2021.
Thus, the current version of our compartmental model is
especially suitable for the time period 1 July 2020–31
December 2020.
 .org/journal/rsif
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4.1. Estimating the transmission rates βloc and βmob
We develop an MLE procedure to estimate for a given day
t the corresponding transmission rates. This means that
we assume that for a given day t and municipality i
the number of new infections on the next day, i.e. −ΔSi(t) :=
Si(t)− Si(t + 1), is a random variable with given distribution.
The goal is to find the parameter values of this distribution
that make this assumption most likely.

In particular, in line with other work on MLE for estimat-
ing transmission rates in compartmental models (e.g. [37]),
we consider a commonly used model for the distributions
of −ΔSi(t), namely the negative binomial distribution. Its
mean is given by the negative of the right-hand side of
equation (2.1), i.e. by

liðtÞ :¼ bloc
SiðtÞ
Ni

ðITi ðtÞ þ IUi ðtÞÞ

þ bmob

X
j[D

SiðtÞ
Ni

IUj ðtÞ
Nj

ðMji þMijÞ, ð4:1Þ

and its variance is given by λi(t)(1 + (λi(t)/r(t)))
r(t), where r(t)

is a to-be-estimated dispersion parameter. Note that the
negative binomial distribution models overdispersion since it
can be interpreted as a mixed Poisson random variable whose
parameter has a gamma distribution and therefore is especially
suitable for modelling SARS-CoV-2 transmission [38].

Note that only the flow from Si(t) to Ei(t) is taken as a
stochastic variable and not the flows between other com-
partments as is common in some other works (e.g. [39]).
The main reason for this is that these flows depend on par-
ameters that are necessary for the compartment initialization
and must therefore be estimated beforehand in a different
way. Thereby, the total population size remains constant for
each municipality.

The maximum-likelihood approach relies on estimating
parameters by optimizing an appropriate (log-)likelihood
function, which is given by

LNB (bloc, bmob, rjxlocðtÞ, xmobðtÞ,DSðtÞ)

¼
X
i[D

log
ðblocxi,locðtÞþbmobxi,mobðtÞÞ�DSiðtÞ

ð�DSiðtÞÞ!

 

� Gðr�DSiðtÞÞ
GðrÞðrþblocxi,locðtÞþbmobxi,mobðtÞÞ�DSiðtÞ

� 1
ð1þððblocxi,locðtÞþbmobxi,mobðtÞÞ=rÞÞr

�

¼
X
i[D

(�DSi logðblocxi,locðtÞþbmobxi,mobðtÞÞ� logðð�DSiðtÞÞ!Þ

þ logðGðr�DSiðtÞÞÞ� logðGðrÞÞþDSiðtÞ
logðrþblocxi,locðtÞþbmobxi,mobðtÞÞ

�r log 1þblocxi,locðtÞþbmobxi,mobðtÞ
r

� ��
, ð4:2Þ
where G is the gamma function and where the ith elements of
the vectors xloc(t) and xmob(t) are given by

xi,locðtÞ :¼ SiðtÞ
Ni

ðITi ðtÞ þ IUi ðtÞÞ

and

xi,mobðtÞ :¼
X
j[D

SiðtÞ
Ni

IUj ðtÞ
Nj

ðMji þMijÞ:

The desired estimate ðb̂loc, b̂mobÞ of (βloc, βmob) and an estimate
r̂ of the corresponding r is a maximizer of this functionwherein
we substitute our estimates for the compartments andmobility
data as described in §3. Since LNB is concave in βloc, βmob and r,
standard descent algorithms can be employed to find such a
maximizer efficiently. The confidence intervals for the esti-
mates are computed via parametric bootstrapping (see
electronic supplementary material, appendix E).

One consequence of estimating the transmission rates in
this way is that the terms b̂mobxi,mob are invariant to the scale
of M. Thus, when the used proxy M̂ for M has the same struc-
ture as M but differs primarily in the volume, the estimated
transmission rates can be scaled to obtain suitable estimates
for the transmission rates obtained when having used the
true mobility matrix M. This also holds for the resulting esti-
mate of the fraction of local contacts p. Note that this
observation is independent of the data source used for the
proxy M̂. This observation explains why our methods are not
very sensitive to changes in mobility volumes.
4.2. Validation on the national level
The model validation consists of two steps. In each step, we
compare an output of the model to the corresponding
reported values by RIVM [30]. The two considered outputs
are the daily reported positive tests and the effective repro-
duction number. Within our model, the number of daily
reported positive tests for a given day t is represented via
equation (2.2) by the term

P
i[D aðÊiðtÞ=nÞ. We focus on two

methods for calculating this term from our model:

(1) The first method is based purely on the initialization
approach. More precisely, we directly compute for each
day t the corresponding term as

X
i[D

a
ÊiðtÞ
n

¼ 1
n

ð1
0

e�ðs=nÞDIiðtþ sÞds

(see also electronic supplementary material, appendix B).
This method allows us to check the validity of the
initialization approach.

(2) In the second method, for each day we first estimate the
transmission rates as described in §4.1. Subsequently, we
initialize the compartments at the first date, 1 July, and
simulate the model until the last day, 31 December,
using for each day the corresponding estimated trans-
mission rates, fraction of positive tests, and mobility
data as input. This procedure directly yields the desired
terms for each simulated date. To reduce the influence
of propagating errors, we re-initialize the compartments
at every first day of the month. This method allows us
to check the validity of the model dynamics, i.e. whether
the model is able to adequately capture the development
of new positive cases over time.
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The effective reproduction number is computed in our model
by constructing the next-generation matrix (NGM) [40] based
on our model and estimates of the transmission rates (for
more details on the construction of this matrix, we refer to
[3]). If the general trend of our and RIVM’s estimate matches,
then the underlying methods to obtain these estimates agree
on the representation of the dynamics between susceptible
and infectious individuals (see [41,42] for a description of
the estimation methods used by RIVM).

However, we also expect that our estimates may have a
delay of several days for two reasons. First, in our model
we do not account for the time between planning a test
appointment (for example, because one develops symptoms)
and receiving a (positive) test result. However, throughout
the studied time period 1 July–31 December, the average of
this time has varied between 35 and 81 h in The Netherlands
[43]. As a consequence, we might estimate the number of
infectious and tested individuals with some delay. By con-
trast, the calculation method used by RIVM does allow for
delays in testing and reporting [41,42].

The second reason is that our computation of the effective
reproduction number via the NGM and estimated trans-
mission rates uses information on daily reported positive
cases from both before and after the date as input. On the
other hand, the aforementioned calculation method of
RIVM uses detailed information about new reported hospital
admissions. These are reported by hospitals with some delay
and these numbers represent infections that took place up to
14 days previously. One reason that the RIVM uses hospital
admissions is that the daily numbers of positive tests
depend on the number of people that get tested and this
number varies also for reasons other than variation in new
cases (for example, changes in testing strategy in the early
phases of the outbreak in The Netherlands).

To assess whether our estimates have some delay com-
pared to the estimates of RIVM, we determine the amount
of days by which we should shift our estimates as to obtain
the largest correlation between these time-shifted estimates
and those of RIVM.
4.3. Forecast quality
We compute forecasts of the number of newly reported infec-
tions in the next 14 days, i.e. the 14-day incidence. To obtain
these forecasts, we initialize the compartmental model 7 days
in the past and simulate it over a horizon of 21 days (recall
that we cannot initialize the model for the current date
since the number of exposed people is calculated from the
number of reported cases within the next 7 days). We
choose the necessary parameters βloc, βmob and a as the aver-
age of these parameters over the past 7 days from the start of
the forecast horizon. As an example, suppose that the current
date is 11 August. Then we aim to make forecasts of the
number of newly reported infections within the period 11–
25 August and initialize the model on 4 August using as par-
ameter inputs the averages of these parameters over the
period 28 July–3 August.

We distinguish between the absolute and relative number
of reported positive cases, where the relative number is in
comparison to the total nationwide number of infections.
The latter values provide insight into the risk that infections
will occur in a given municipality. Thus, they are useful
risk information for local policymakers.
With respect to the absolute number of positive tests, we
directly compare our forecasts of the 14-day incidence to the
actual 14-day incidence within the chosen period, both on
the national level and that of municipalities. With regard to the
level of municipalities, we assess whether there is a spatial
discrepancy in forecast accuracy betweendifferentmunicipalities.

With respect to the relative number of positive tests, we
investigate whether we can accurately forecast the order of
municipalities in terms of the 14-day incidence. We do this
by calculating the correlation between the orders of the fore-
cast and observed fractions of 14-day incidence via the
Spearman correlation.

4.4. Influence of mobility
We assess the influence of mobility in two ways. First, we
investigate under which conditions including mobility leads
to a better fit of the transmission rates. To this end, we con-
sider two different models for estimating the transmission
rates via MLE, which are given by the presence or absence
of mobility. When estimating the rates when mobility
is excluded, we set βmob = 0 in the expressions for the log-
likelihood function in equation (4.2). To assess which of
these models fits the data best, we compute and compare
for both models the Akaike information criterion (AIC) [44].
For each model, this criterion is computed as 2k � 2 log L̂,
where k is the number of unknown parameters that the
model estimates and log L̂ is the maximum value of the log-
likelihood function. A lower AIC implies that the given
model fits the data better. In particular, a difference in the
AIC of two models of more than 10 is generally considered
to be a strong indication that the model with the lower AIC
value is a better fit to the data [45].

Second, we investigate under which conditions the
inclusion of mobility leads to more accurate forecasts of the
number of reported positive tests. For this, we compute for
both model versions (including or excluding mobility) fore-
casts as described in the previous subsection and compare
the difference in accuracy by means of the mean absolute
error (MAE) (for the absolute number of infections) and the
Spearman correlation (for the relative number of infections).
5. Results
We now present and discuss the results of the estimations and
experiments described in the previous section.1 To assess the
influence of new measures on the estimated parameters and
on the forecasting accuracy, we provide an overview of the
restrictive measures taken in The Netherlands within the
studied time period in table 2. In all figures in this section,
the dates at which these measures were installed are indicated
by green (relaxation), orange (restriction) and red (lockdown)
vertical lines.

5.1. Estimation of the transmission rates and related
parameters

Figures 1 and 2 show the estimates of the transmission rates
βloc and βmob. The downward peaks in βmob correspond to
weekend days where the volume of commuting traffic is sig-
nificantly lower than on weekdays. Generally, the behaviour
of the transmission rates matches in the sense that they
increase and decrease in parallel. A notable exception to
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Table 2. Overview of measures taken in The Netherlands between 1 July and 31 December 2020. Adapted from [46].

date type description

1 July relaxation only basic restrictions (keeping 1.5 m distance, washing hands, etc.)

6 August restriction stricter rules for attending public places (e.g. mandatory pre-registration)

18 August restriction at most six guests at home

29 September restriction at most three guests at home, bars and restaurants close at 22.00 h, no audience at sport events;

advice to work from home

14 October partial lockdown bars and restaurants closed, no events, face masks mandatory at schools, sport in groups of at most

four; strong advice to work from home

4 November partial lockdown at most two guests at home, public places closed, sport in groups of at most two

14 December lockdown schools, non-essential stores and gyms closed

24–26 December temporary relaxation at most three guests at home

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220486

7

this can be observed in the period 18 August–29 September,
where βloc increases steeply and βmob remains relatively
stable. This behaviour is in line with schools starting again
in September after the summer break, which led to an
increase in local contacts among school children and their tea-
chers and parents.
Figure 3 shows the estimated values for the fraction p of
local contacts. This fraction appears to increase steadily
throughout the considered time period, which is in line
with the increasing degree of mobility-restricting measures.
In particular, a sudden increase occurs shortly after the
partial lockdown restrictions of 4 November. This suggests
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that our estimates capture the logical trend with respect to
these measures.

Figure 4 shows the estimate of the term εc, i.e. the trans-
mission probability times the average contact rate. Although
ε and c cannot be estimated separately when none of them is
given on forehand (see equations (2.2) and (2.3)), the esti-
mated term εc does provide information on changes in the
number of contacts, assuming that the transmission prob-
ability remains constant over time. For instance, it follows
from figure 4 that the number of contacts has increased fol-
lowing the relaxation of measures after 1 July, following the
start of the new school year in September, and following
the partial lockdown measures after 4 November. Moreover,
after the restrictions on 6 August and the (partial) lockdown
measures of 14 October and 14 December, the number of
contacts has decreased. This is in line with the governmental-
issued advice to work from home in this period, which led to
a reduction in commuting travel.
5.2. Validation results
Figures 5 and 6 show the estimates of the daily reported positive
tests computed via the initialization and simulation method,
respectively (see §4.2), and those as reported by RIVM.
Figure 5 indicates that the estimation via the initialization
method closely follows the positive tests as reported by RIVM.
This suggests that our initialization approach is able to estimate
the state of the epidemicwell on the national level. Figure 6 indi-
cates that the simulation method is generally able to follow the
general trend of the reported new tests. This suggests that our
model and our methods for parameter initialization and esti-
mation are successful in capturing the development of the
number of daily reported positive tests on the national level.
Moreover, our results suggest that the used data sources on
commuting mobility and SARS-CoV-2 seroprevalence can be
integrated successfully into compartmental models.

To determine whether our estimates of the effective repro-
duction number have a time delay compared to those of
RIVM, we computed the correlation between these two esti-
mates for different numbers of delay of days. These results
show that there is a strong correlation between these estimates
when the delay is between 5–14 days and is the strongest for a
delay of 11 days (0.865). This is in line with the reporting delay
and difference in time window and data sources between our
method and the methods used by RIVM.

Figure 7 shows the estimates for the effective reproduc-
tion number, shifted by 11 days, and the estimates made by
RIVM. Overall, our estimates appear to be somewhat more
extreme than those of RIVM. However, both estimates
share the same general pattern with regard to periods of
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monotonic increases and decreases and agree on whether the
epidemic is expanding or dying out, i.e. whether the effective
reproduction number is larger or smaller than 1. Moreover,
the peaks and valleys in the estimates match very well,
which confirms the relative consistency of the estimates and
the presence of a temporal shift. Overall, the validation
shows that our estimation method agrees qualitatively with
the method used by RIVM.
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5.3. Forecast accuracy
We first focus on the accuracy of our forecasts of the absolute
number of daily reported cases. Figure 8 shows for each
date within the period 1 July–31 December 2020, our forecast
and the actual number of newly reported cases nationwide
within the following 14 days. This figure shows that, gener-
ally, the forecasts follow the actual 14-day incidence.
Analogous to the estimation of the effective reproduction
number, it appears that the forecasts have a certain delay.
One reason for this is that our model is necessarily initialized
using parameters from one to two weeks ago as input.
When the transmission rates are relatively stable for a
longer period of time, this effect is minimal. In this case,
the forecast error is relatively small (e.g. around 1 August
and in October). However, when the transmission rates are
not stable, for example due to newly introduced preventive
measures, the forecasts are made using data that are not
representative of the current epidemiological situation.
Consequently, it takes some time before the input data of
the forecast procedure is again a proper representation
of the future parameter values (see also the behaviour of
the transmission rates in figures 1 and 2).

We now focus on the forecast accuracy at the level of muni-
cipalities. First, we consider differences in accuracy over
time, by discussing the results for eight specific dates, namely
those that are one week after a change in preventive measures
as indicated in table 2: 8 July, 13 August, 25 August, 6 October,
21 October, 11 November, 21 December and 31 December
(see the electronic supplementary material for the results of
all the other dates). For each of these eight dates, figure 9
shows for all 355 Dutch municipalities, each of which rep-
resented by one dot, the forecast and actual 14-day incidence
within that municipality over the next 14 days combined.
Moreover, figure 10 shows the forecast error and, as a scale
reference, the actual 14-day incidence starting from these dates.

These figures confirm the observation made earlier on the
national level that our forecasts are relatively accurate for
periods where the transmission rates are stable. For instance,
this is the case for the forecast for 11–25 November but not for
the forecast for 21 October–4 November. Furthermore, the
maps suggest that, in most cases, there are only a few muni-
cipalities with a relatively large forecast error. Thus,
generally, the forecast error is distributed quite evenly over
the municipalities. A notable exception to this is the forecast
for 21 October–4 November, which can be explained by the
relative instability of the corresponding transmission rates.

The graphs in figure 9 suggest that the variation in fore-
cast error is quite high for 8 July, 13 August and 25 August,
and relatively small for the other five dates. One explanation
for this is that the actual numbers of daily new infections was
relatively small compared with the other dates. In particular,
many municipalities had only a few or even zero reported
cases within the considered time periods, meaning that
adjusting a small forecast error for population size may
result in large differences per 100 000 inhabitants.

To identify potential structural differences in forecast
accuracy between municipalities, figure 11 shows the average
absolute error over the entire time horizon for each munici-
pality (left map and histogram) and, as a scale reference,
the average daily incidence (right map). We found a moder-
ate correlation between the absolute error and total number
of reported positive cases (Pearson’s r = 0.71, p < 0.001, n =
355). This suggests that, overall, the error is larger for muni-
cipalities that have had disproportionately many positive
cases, which is also visible from the maps in figure 11. How-
ever, as visible from figure 10, this does not mean that there is
always a strong relation between large numbers of infections
and a large forecast error on a day-to-day basis. For instance,
for 21 October, large forecast errors occur for ranges of muni-
cipalities with both low incidence numbers (e.g. in the
northern municipalities) or high incidence numbers (e.g. in
the central eastern municipalities).

Municipalities with a relatively high error are in some
sense distinct in terms of the number of contacts that they
have and are different from the average municipality. Based
on figure 11, we highlight two of such distinct groups
of municipalities.

— First, we observe that the error is relatively high among
municipalities in the so-called ‘Bible-belt’. This is a non-
administrative area stretching from the southwest
towards the northeast and has the highest concentration
of conservative orthodox Protestants in the country [47].
In particular, the five municipalities with the highest
average error are all part of this area. This observation
is in line with other research on the positive relation
between the level of church involvement and virus
transmission within communities [48].
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— Second, the prediction errors in municipalities at inter-
national borders (in the south and east) seem generally
higher than those of their neighbouring municipalities that
do not lie at such a border. This suggests a significant
influence of foreignmobility on transmissions in thesemuni-
cipalities. Interestingly, this also applies to the municipality
Haarlemmermeer that houses themain international airport
in The Netherlands (Amsterdam Airport Schiphol) and
ranks 12th in terms of highest average error.

We now assess the quality of our relative forecasts, i.e. fore-
casts of the fraction of reported infections in a given
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municipality compared to the nationwide number. The blue
line in figure 12 shows the Spearman correlation between
the forecast and actually reported 14-day incidence. Note
that a correlation of 1 or −1 means that the order of the frac-
tions as forecast by our model is the same as, or the reverse
of, that of the observed fractions, respectively. The calculated
values in figure 12 indicate that, apart from a small period at
the start of July, the two orders are moderately and some-
times even strongly correlated (from mid-September until
mid-November). This suggests that our approach is able to
forecast the order of municipalities in terms of new infections
with reasonable accuracy.
5.4. Influence of mobility
Figure 13 shows the AIC of the negative binomial model
without mobility minus that of the model with mobility.
For clarity, we have zoomed into a small band around the
critical zero point that determines which of the models has
a better fit. These results show that the differences in AIC
are generally larger than 10 before the partial lockdown
initiated on 14 October. This suggests that, until that day,
incorporating mobility in the estimation process leads to a
significantly better fit. However, throughout the remainder
of the year, the differences are generally between −2.5 and
10, meaning that for this period the fit may not significantly
improve when mobility is taken into account. Note that this
period matches almost perfectly with the time when there
was an urgent advice to work from home. Therefore, these
observations suggest that taking into account information
on commuting mobility does not lead to a significantly
better model fit when there is such a strong advice in place.

To assess the additional value of taking mobility into
account when forecasting the absolute numbers of new
infections, we calculate for each date the MAE of the corre-
sponding forecast for both models and compare these values
in figure 14. These results indicate that in most cases the fore-
casts that incorporate mobility are more accurate than those
that do not. Moreover, after the partial lockdown measures of
4 November, the MAE of both models is practically equal.
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This suggests that the influence ofmobility on forecast accuracy
is insignificant in this period.

To investigate the improvement in forecast accuracy on the
municipality level, for eachmunicipalitywe calculate themean
absolute error of the corresponding forecast over the entire time
horizon for bothmodels and compare these values in figure 15.
These results suggest that for almost 90% of the municipalities
(319 out of 355), includingmobility leads to an overall improve-
ment in forecast quality. The remaining 36 municipalities do
not appear to display a clear connection or pattern in this
regard. Furthermore, we did not find any significant corre-
lation between this ratio and absolute mobility volumes. We
do, however, find that the ratio correlates moderately with
the average daily incoming mobility relative to the number of
inhabitants (r(353) = 0.56, p < 0.001). This suggests that the
inclusion of mobility may improve the forecasts particularly
for municipalities where we would expect relatively much
incoming commuting travel.

With regard to the forecast accuracy in the relative
number of new infections, we again consider the Spearman
correlations in figure 12. In essentially all cases, the corre-
lation for the model with mobility is higher than that for
the model without mobility. This means that taking mobility
into account generally leads to better forecasts of the relative
order of municipalities in terms of new infections. This
suggests that taking mobility into account also improves the
ability of our approach to identify local outbreaks. Further-
more, the correlations are practically the same in the period
November–December, meaning that taking mobility into
account does not significantly improve the forecasts in this
period. This is consistent with the behaviour of the MAE as
discussed above.
6. Conclusion and discussion
In this paper, we studied the transmission of SARS-CoV-2
in The Netherlands during the first year of the pandemic
and the role of mobility on this transmission. To model
transmissions between different regions, we employed the
mobility-enhanced SEIR-compartmental model in [3]. We
obtained suitable parameter values for this model using com-
muter data and information on the seroprevalence of SARS-
CoV-2. In particular, we developed an MLE approach to fit
suitable transmission rates for the compartmental model.
Using the initialized model, we are able to provide accurate
forecasts of the development of the transmission on the
level of municipalities for up to 14 days.

We found that taking mobility into account generally
improves the model fit and forecast quality, but that this
improvement is insignificant when mobility and contacts are
restricted by national preventive measures. More precisely,
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we observed that the partial lockdown measures of 4 Novem-
ber 2020 led to sudden changes in parameter estimates and
forecast accuracy. These observations suggest that these
measures were particularly effective in reducing contacts and
more so than those of the first partial lockdown on 14 October
2020. In particular, the closing of public places might have
forced a significant part of the working population to work
from home again. Such a change inmobility would be detected
directly by the current model since the used mobility data
consist purely of commuting information.

Manyof themunicipalities with an exceptionally high error
are part of the so-called Dutch ‘Bible belt’ which may have a
local contact structure and intensity that deviates substantially
from the average. Moreover, municipalities with a higher level
of international travel, for instance at the border, seem to have a
higher forecast error on average than their direct neighbours
that are not at the border. These observations suggest that
there is a certain heterogeneity in terms of the number of con-
tacts that is not captured by the current model. An initial
intuitive approach to account for this heterogeneity could be
to introduce separate contact rates for eachmunicipality. How-
ever, as we show in electronic supplementary material,
appendix F, this cannot be achieved by simply extending the
currently used mobility-enhanced compartmental model.

We observe that the estimated parameters and forecast
accuracy of the model generally remain relatively stable
during periods where no new measures are being enforced.
However, our work also shows that this changes dramatically
when there is a change in mobility-restricting measures since
the historic data used for initialization are no longer representa-
tive for the future. One way to correct for this, which we also
aim to address in future work, is to integrate the most recent
information on people’s behaviour into the estimation pro-
cedure, which could be obtained from, e.g. contact tracing apps.

We conclude by discussing several limitations of the
research in this paper. First, we focus solely on inter-regional
mobility and do not take other traits into account that influ-
ence susceptibility, infectivity, contact patterns and virus
transmission, such as age, behaviour or household compo-
sition, into account. In comparison, the models used by the
national public health institute RIVM take the latter traits
into account, but do not explicitly include mobility. Thus,
although our focus on inter-regional mobility is a limit, it
does complement the focus of the models by RIVM. Also,
we focus on the early phases of the pandemic, when vaccines
were not yet available and hence the proportion of people
who were protected was relatively small and only resulting
from natural infection. It would be easy to add vaccination
to the model, but it would add yet another layer of complex-
ity because one would need to include how vaccinated
individuals change their susceptibility, infectivity, contacts
and mobility. Additionally, as vaccinations increased, adher-
ence to preventive measures changed in the population, as
well as testing strategy and willingness to get tested.

Second, we use only commuter travel information as a
mobility proxy. This is a limitation because we cannot test
hypotheses and draw conclusions on general relations
between mobility and, say, forecast quality. We also do
not take other reasons for travel and travel destinations
other than workplaces into account where transmission can
occur such as social gatherings, mass events and holidays.
Moreover, with regard to the used mobility data, the combi-
nation of pre-pandemic commuting information and relative
changes in workplace mobility yields a limitation since the
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latter is not given per pair of origin-destination municipalities
but only per municipality.

To obtain a more realistic proxy for the mobility data,
sources other than commuter information should be incorpor-
ated as well. One option for this is travel behaviour obtained
via track-and-trace apps or location data obtained from cell-
phones [49]. However, these data typically contain privacy-
sensitive information, for which the risk exists that observed
movements are traced back to individual users. Therefore,
these data must be sufficiently anonymized and/or aggre-
gated to circumvent this issue. However, even when the data
are anonymized, often permission for its usage is required.
Summarizing, it is difficult, if not impossible, to obtain such
detailed data. Therefore, one reasonable question for future
research is how alternative data sources may be used to
obtain suitable proxies for the actual mobility.

Finally, a similar problem occurs when certain epidemio-
logical data are not available or no longer representative. For
instance, an increase in vaccinated individuals leads to a
decrease in hospitalizations. As a consequence, the difference
between the number of new infections and new hospitaliz-
ations becomes larger, meaning that the latter becomes less
representative of the number of infectious people. Since the
latter is used to initialize a crucial parameter in our model
(namely the fraction of positively tested infectious people),
we expect the performance of the model and our initialization
procedure in its current form to decrease when applied to a
time period when a substantial part of the population has
been vaccinated. One way to solve this issue could be to esti-
mate the number of infectious people using other statistics
that are known to correlate with this information, such as
the daily fraction of positive tests.

Data accessibility. All used data and source code are freely accessible. The
data on reported COVID-19 cases were obtained from the Dutch
National Institute for Public Health and the Environment (RIVM)
via https://data.rivm.nl/covid-19/. The commuting data were
obtained from Statistics Netherlands (CBS) via https://opendata.
cbs.nl/#/CBS/nl/dataset/83628NED/table?dl=489D. The data on
relative changes in mobility were obtained from Google LLC via
www.google.com/covid19/mobility/. The source code that was
used to conduct the numerical experiments is available at https://
github.com/MartijnGosgens/mobility-forecasting-covid.
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