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Data quality control and preprocessing are often the first step in processing next-
generation sequencing (NGS) data of tumors. Not only can it help us evaluate the quality
of sequencing data, but it can also help us obtain high-quality data for downstream
data analysis. However, by comparing data analysis results of preprocessing with
Cutadapt, FastP, Trimmomatic, and raw sequencing data, we found that the frequency
of mutation detection had some fluctuations and differences, and human leukocyte
antigen (HLA) typing directly resulted in erroneous results. We think that our research
had demonstrated the impact of data preprocessing steps on downstream data
analysis results. We hope that it can promote the development or optimization of
better data preprocessing methods, so that downstream information analysis can be
more accurate.

Keywords: the next generation sequencing, data preprocessing, mutation, cancer, HLA typing

INTRODUCTION

In recent years, sequencing technologies, especially next-generation sequencing (NGS), have
been widely used in scientific research and clinical applications. It allows for higher sequencing
throughput and lower sequencing costs, and with the development and optimization of
experimental and data analysis methods, the subsequent analysis results are increasingly accurate.
For example, important techniques for detecting cancer-associated biomarkers using liquid biopsy
techniques (Esposito et al., 2017) are essentially done using the NGS technology platform, especially
in the detection of cell-free tumor DNA (ctDNA) in plasma, such as Duplex sequencing (Schmitt
et al., 2012), Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) (Newman et al., 2014),
and Targeted Error Correction Sequencing (TEC-Seq) (Phallen et al., 2017). However, ctDNA
sequencing data have strong background noise, contamination of sequencing adapters, unbalanced
base distribution, sequencing quality and errors introduced during the experiments; these factors
have a crucial impact on the accuracy of detecting low-frequency and even ultra-low-frequency
mutations in ctDNA. Therefore, quality control and data preprocessing are especially important
for obtaining downstream high-quality and high-confidence analytical data to reduce false positives
and false negatives.
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Illumina reads are commonly 36–300 nucleotide bases
produced by a reversible-terminator cyclic reaction associated to
base-specific colorimetric signals within the sequencing machine.
Reads can be separated “single-end” or “paired-end” reads, in
which case they are representing both extremities of the same
nucleotide fragment. These colorimetric signals are translated
into base calls by an internal Illumina software (CASAVA),
represented in the FASTQ format (Cock et al., 2010), where each
nucleotide is associated to an ASCII-encoded quality number
corresponding to a PHRED score (Q) (Ewing and Green, 1998),
which is in recent Illumina runs ranges from 0 to 41 and the
error rate at each position ranges from 7.94e-5 to 1. Whatever
the original cause of low quality or high error chance nucleotides,
such as air bubbles, spot-specific signal noise, malfunctioning
laser or lens, and so on, the Q value if encoded and stored together
with the sequence information, and this confidence information
can be used for subsequent analysis, together with the sequence
information itself.

At present, there are many software programs for data quality
preprocessing. Cutadapt (Martin, 2011), which is widely used,
is the only stand-alone tool that can correctly trim color space
reads. It can search for multiple adapters in a single run
of the program and removes the best matching one. It can
optionally search and remove an adapter multiple times, which
is useful when (perhaps accidentally) library preparation has
led to an adapter being appended multiple times. It can either
trim or discard reads in which an adapter occurs. Reads that
are outside a specified length range after trimming can also be
discarded. In addition to adapter trimming, low-quality ends of
reads can be trimmed using the same algorithm as Burrows-
Wheeler Aligner (BWA). FastP (Chen et al., 2018b), as an all-
in-one FASTQ preprocessor, provides functions including quality
profiling, adapter trimming, read filtering, and base correction.
It supports both single-end and paired-end short read data and
provides basic support for long-read data, which are typically
generated by PacBio and Nanopore sequencers. Trimmomatic
(Bolger et al., 2014) includes a variety of processing steps for read
trimming and filtering, but the main algorithmic innovations
are related to the identification of adapter sequences and
quality filtering. Trimmomatic uses a pipeline-based architecture,
allowing individual “steps” (adapter removal, quality filtering,
and so on) to be applied to each read/read pair in the order
specified by the user. Each step can choose to work on the
reads in isolation or work on the combined pair, as appropriate.
The tool tracks read pairing and stores “paired” and “single”
reads separately.

The data preprocessing software and algorithms have shown
excellent results in published articles. We have also used them to
obtain high-quality clean data to do downstream analysis, such
as alignment and mutation detection. Generally, when there are
false-positive or false-negative results, we tend to think this may
be due to unreasonable parameter settings in the analysis process
or other experimental reasons, but this may not always be the
case. We analyzed and compared the raw sequencing data with
commonly used data preprocessing software, such as Cutadapt,
FastP, and Trimmomatic, and found that the data preprocessing
results affected the subsequent detection results. Therefore, we

realized that in the data preprocessing, we need to choose the
software and algorithms carefully, and the data preprocessing
algorithms need to be further improved according to actual data
features. It is necessary to make different choices according to
specific data analysis.

MATERIALS AND METHODS

Sample Collection
HD753, a reference genomic DNA (gDNA), is used as the
reference standard (Horizon DiagnosticsTM, Waterbeach,
United Kingdom) and contains 10 mutation variations:
AKT serine/threonine kinase 1 (AKT1) p.E17K (5%),
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (PIK3CA) p.E545K (5.6%), epidermal growth factor
receptor (EGFR) p.745-750del (5.3%), EGFR p.V769delinsVASV
(5.6%), KRAS proto-oncogene, GTPase (KRAS) p.G13D (5.6%),
notch receptor 1 (NOTCH1) p.P668S (5%), MET proto-
oncogene, receptor tyrosine kinase (MET) p.V237fs (2.5%),
BRCA2 DNA repair associated (BRCA2) p.A1689fs (5.6%), EGFR
p.G719S (5.3%), B-Raf proto-oncogene, serine/threonine kinase
(BRAF) p.V600E (18.2%), and PIK3CA p.H1047R (16.7%). The
original HD753 reference has two replicates. We then used
the standard sample to do three fivefold dilution experiments
and every five-diluted sample has also two replicates, while the
negative control sample, a healthy human white blood cells, also
has two replicates.

All five human leukocyte antigen (HLA) typing samples and
75 mutation detection samples were obtained from lung cancer
patients and informed written consent was obtained from the
patients and de-identification. The 80 clinical samples we used
were collected from October 2017 to May 2018.

Experiment Workflow
gDNA for NGS-based mutation variations analysis was extracted
using the GONOROAD Kit (Qiagen, Hilden, Germany) for
formalin-fixed and paraffin-embedded (FFPE) tissue. DNA
(200 ng) was used to build the library by using NEBNext Ultra
II DNA library Prep Kit for Illumina (96 reactions) (NEB,
Ipswich, MA, United States). Integrated DNA technologies (IDT,
Skokie, IL, United States) customized probes were used for
hybridization capture. We used the Genesis 41 gene tumor
hotspot mutation customized panel (Supplementary Sheet 1) for
eight gDNA standard samples and two negative control samples.
Quantification was performed with a Library Quantification
Kit – Illumina/Universal (Kapa Biosystems, Wilmington, MA,
United States) on an ABI 7500 Real Time PCR system (Applied
Biosystems, Waltham, MA, United States). A Quality control
Agilent 2100 Bioanalyzer with a High Sensitivity DNA Kit
was used for quality control (Agilent Technologies, Santa
Clara, CA, United States). NGS analysis was performed on
a Nextseq500 instrument according to the manufacturer’s
instructions (Illumina, San Diego, CA, United States). With a
NextSeq500/550 High Output V2 kit, Illumina Nextseq500 was
used for DNA sequencing in 302 cycles, standing for paired-
End 151bp.
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The 75 clinical samples’ cell-free DNA was extracted using
a QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The
obtained DNA (20 ng/sample) was then used to build libraries
using Accel-NGS R© 2S Plus DNA Library Kits (96 reactions;
Swift Biosciences, Ann Arbor, MI, United States). Customized
probes were obtained from Integrated DNA technologies (IDT,
Skokie, IL, United States) and were used for hybridization
capture. All cfDNA libraries utilized the Genesis 41 gene
tumor hotspot mutation customized panel and were quantified
using a Universal Library Quantification Kit (Kapa Biosystems,
Wilmington, MA, United States) on an ABI 7500 Real-Time
PCR system (Applied Biosystems, Waltham, MA, United States).
Sample quality was evaluated using a high sensitivity DNA kit
(Agilent Technologies, Santa Clara, CA, United States) with an
Agilent 2100 Bioanalyzer per the manufacturer’s instructions.
NGS with fusion detection was performed using a NextSeq
500/550 High Output v2 kit with a NextSeq 500 sequencer
(Illumina, San Diego, CA, United States) for 302 cycles, with
standing paired-end reads of 151 bp.

Five DNA samples for HLA typing analysis were extracted
from the FFPE tumor tissues using the GeneRead DNA
FFPE Kit (Qiagen, Hilden, Germany). DNA samples were
normalized to yield a 100 − 250 ng input. Whole genome
libraries were prepared using NEBNext R© UltraTM II DNA
Library Prep (NEB, Ipswich, MA, United States) and through
a series of steps including covaris shearing, end-repair, A-base
addition, barcoded adapter ligation, and PCR amplification.
Libraries were quantitated using a Qubit dsDNA HS Kit
(Invitrogen, Carlsbad, CA, United States) and quality assessed
with Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, United States) as per the manufacturer’s protocol.
Targeted enrichment was carried out on the prepared libraries
to specifically pull down DNA fragments that contained
the target site using custom 5′ biotinylated capture probes.
Four libraries were then pooled at 125 ng each for a total
of 500 ng. Cot-1 DNA (Sigma-Aldrich, MO, United States)
and universal blocking oligonucleotides (IDT, Skokie, IL,
United States) were added to the pooled libraries and dried
in a SpeedVac. The dried mixture was then resuspended
in IDT Hybridization Buffer and Hybridization enhancer
(IDT, Skokie, IL, United States) and hybridized for 4 h with
custom 5′ biotinylated capture IDT probes (IDT, Skokie,
IL, United States) and BOKE probes (BOKE, Beijing,
China). Streptavidin DynaBeads (Invitrogen, Carlsbad,
CA, United States) were used for capture and washes were
performed using xGenLockdown-Reagents Kit (IDT, Skokie,
IL, United States). The final hybridized product was amplified
using KAPA Hifi HotStart Ready Mix (Kapa Biosystems,
Wilmington, MA, United States) and Illumina sequencing
primers for a total of 15 cycles. Final target capture library
quantification was performed using a Qubit dsDNA HS Kit
(Invitrogen) and quality assessed with Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). With
a NextSeq500/550 High Output V2 kit, Illumina Nextseq500
(Illumina) was used for DNA sequencing in 302 cycles, standing
for paired-End 151 bp.

Mutation Validation
EGFR-T790M (25), EGFR-L858R (26), BRAF-V600E (5),
PIK3CA-E545K (6), KRAS-G12C (11), and KRAS-G12V (2)
mutant allele frequencies were determined using a Digital
Droplet PCR system (Bio-Rad Laboratories, Inc., Hercules, CA,
United States), with a droplet size of 1 nL in a total reaction
volume of 20 µL with ∼20 ng of cfDNA library utilized. All
primers and probes were synthesized by IDT (Skokie, IL,
United States). Droplet counts were determined using the
QuantaSoft software (Bio-Rad) (Supplementary Sheet 7).

HLA Typing Validation
Human leukocyte antigen typing was performed at the BFR
Medical Laboratory (BFR, Beijing, China) by the high–resolution
HLA sequence-based typing method (HLA-SBT).

Data Analysis for Mutation Detection
We used Cutadapt (version 1.3, parameter: -b AGATCGGA
AGAGCACACGTCTGAACTCCAGTCAC -b AGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGTA -e 0.01 -m 15), FastP (version
0.20.0, parameter: -trim_poly_g), and Trimmomatic (version
0.39, parameter: PE -threads 4 -phred33 ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10 MINLEN:15) to preprocess the raw
sequencing data (Fastq), filtering out the adapter contamination
reads, low-quality reads, and unpaired reads to get clean data.
We used the Bwa aln (Version: 0.7.12-r1039) algorithm to align
the clean data to the human reference genome (hg19) and
get the Sequence Alignment/Map format (sam) file. For the
Binary Alignment/Map format (bam) file, the sam file was sorted
by samtools (Version: 0.1.19-44428cd). According to the bed
interval file of the Genesis 41 gene tumor hotspot mutation
customized panel, we used freebayes (version: v1.0.2-6-g3ce827d,
parameter: -j -m 10 -q 20 -F 0.001 -C 1 -t bed.file –f hg19.fa)
to call single nucleotide polymorphisms (SNPs) and insertions
or deletions (indels), and then used ANNOVAR to do the
annotation (Figure 1).

Data Analysis for HLA Typing
The method and parameters of data preprocessing were
consistent with the above. We used Novoalign (version: V3.09.02,
parameter: -t 30 -o SAM -r all -l 80 -e 100 -i PE 200 140) to
align the clean data to the HLA reference sequence. We then
used samtools (version: 1.3.1) to sort the sam files to get the bam
files. We used Athlates (version: 1.0, default parameter) for typing
analysis of HLA-A∗, HLA-B∗, and HLA-C∗ (Figure 1).

RESULTS

No Significant Difference in the Impact
on Data Quality After Data Preprocessing
For the 10 standard samples data, calculating the number of
reads, GC content, Q20 ratio, average depth, capture efficiency,
and duplication rate after data preprocessing (Figures 2A–F
and Supplementary Sheet 2), we found that the data of
the three software-processed indicators, except the Q20 ratio,
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FIGURE 1 | The pipeline of data analysis. The blue section was the three method of data preprocessing: Cutadapt, FastP, Trimmomatic, and raw sequencing data;
the yellow section was the pipeline of data analysis for mutation detection; the green section was the pipeline of data analysis for HLA typing.

showed no significant difference (the p-value of the two-
tailed heteroscedastic T-test was > 0.05). The Q20 ratio after
FastP treatment was significantly improved, and the two-tailed
heteroscedastic T-test p-values were 0.036 (vs. Raw data), 0.040
(vs. Cutadapt), and 0.026 (vs. Trimmomatic).

For the 75 clinical samples data, we also found the same
conclusion that the data, except the Q20 ratio, showed
no significant difference (Supplementary Figure 1 and
Supplementary Sheet 6). The Q20 ratio after FastP treatment
was significantly improved, and the two-tailed heteroscedastic
T-test p-values were 1.69476E-10 (vs. Raw data), 3.05502E-10
(vs. Cutadapt), and 2.24745E-11 (vs. Trimmomatic).

Frequency of Mutations Detected After
Data Preprocessing May Be Affected
For the 10 standard samples data, we found that all of the
hotspot mutations were detected in raw data, Cutadapt, FastP,
and Trimmomatic preprocessing data in the two replicate
reference standard gDNAs and the fivefold diluted HD753
specimens (Supplementary Sheet 3), while false positive results
of EGFR p.G719S were found in all the negative control samples
(HD753-NB). It may have been caused by sequencing errors
or contamination introduced during the experiment. We found
that the four preprocessing data analysis results had lower

mutation frequencies than the expected frequencies of HD753-
0A and HD753-0B (Figure 3A), which may be related to
the experimental capture operation. There was no statistical
difference between the distribution of frequencies of the four
data types (the p-values of the two-tailed heteroscedastic T-test
were > 0.05). But for the repeated dilution samples, the
detected mutation frequency fluctuated greatly (Figures 3B,C).
We assumed that a mutation frequency greater than 1% was
used as a threshold for positive result for the FFPE or tissue
samples. For a hotspot mutation AKT1 p.E17K in HD753-1A, the
detection results after Cutadapt and FastP data pretreatment were
positive, and the detection frequencies were 1.06% (41/3869)
and 1.00% (38/3785), respectively. Meanwhile, the raw data
and Trimmomatic treatments were negative, with detection
frequencies of 0.95% (34/3579) and 0.96% (34/3549), respectively.
For EGFR p. 745_750del of HD753-2A, the results were negative
after pretreatment with Cutadapt and FastP data, and the
detection frequencies were 0.97% (20/2055) and 0.98% (20/2051),
respectively. The results of the raw data and Trimmomatic
treatment were positive, and the detection frequencies were
1.05% (20/1900) and 1.06% (20/1889), respectively. While the
mutation of NOTCH1 p.P668S in HD753-2A was detected as
a positive result, which was preprocessed by FastP data, the
detection frequency was 1.12% (32/2860). The data preprocessed
by Cutadapt, Trimmomatic, and the raw data were negative,
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FIGURE 2 | Quality control statistical distribution of Cutadapt, FastP, and Trimmomatic preprocessed data and raw sequencing data. (A) Statistical distribution of the
number of reads, (B) statistical distribution of the GC content, (C) statistical distribution of the Q20 ratio, (D) statistical distribution of the average depth, (E) statistical
distribution of the capture efficiency, and (F) statistical distribution of the duplication rate.

and the detection frequency was 0.98% (28/2857), 0.98%
(26/2659), and 0.97% (26/2686), respectively. We also found that
the results of Trimmomatic data pretreatment were basically
consistent with the raw sequencing data, and the results of
Cutadapt and FastP data pretreatment were consistent. It
showed that there were no significant differences in the four
methods of mutation support reads number. However, the
sequencing depth of the mutation sites were quite different.
That may be because Cutadapt and FastP only trim the reads,
making the sequence shorter and achieving multi-alignment
in the alignment process, which could be increasing the
probability of the alignment. In contrast, in our paired-end
preprocessing data, Trimmomatic retained the sequenced full-
length sequence to be consistent with the raw sequencing data
(Supplementary Sheet 3).

For the 75 clinical samples data, we used digital droplet
PCR system to determine the mutations’ frequency, and the
frequency limit was 0.1%. Consistent with the results found
in the results of the standard, there was some fluctuation in
the detection frequency after 4 data preprocessing method,

but the coefficient of determination R2 of raw data, Cutadapt,
Fastp, and Trimmomatic was 0.9386, 0.9381, 0.9416, and 0.9416,
respectively. Compared with the result of ddPCR, the detection
rate of data preprocessing by raw data, Cutadapt, Fastp, and
Trimmomatic was 94.67% (71/75), 100% (75/75), 98.67% (74/75),
and 96.00% (72/75), respectively (Supplementary Sheet 7). We
found that the false negatives had a low mutation frequency
(Table 1), and the effect of Cutadapt was the best compared to
the other three methods.

HLA Typing Data After Preprocessing
Had a Significant Impact on Data Quality
We calculated the reads number, GC content, and Q20
ratio for 10 HLA typing samples after data preprocessing
(Figures 4A–C and Supplementary Sheet 4). We found that
the data distribution after the three software treatments had
significant fluctuations. The Q20 ratio was statistically significant
based on the two-tailed heteroscedasticity test. The number of
reads after Trimmomatic data preprocessing was significantly
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FIGURE 3 | Distribution of hotspot mutation detection in the reference standard samples: (A) frequency distribution of the hotspot mutation detection in the two
experimental replicates of the reference standard samples, (B) frequency distribution of the hotspot mutation detection in each experimental repeat of the fivefold
dilution standard samples, and (C) average frequency distribution of the hotspot mutation detection in each experimental repeat of the fivefold dilution standard
samples.

TABLE 1 | Compared with ddPCR results, the false negative results of data preprocessing by raw data, Cutadapt, Fastp, and Trimmomatic.

Sample_ID Mutation_Type ddPCR (%) Raw_data (%) Cutadapt (%) Fastp (%) Trimmomatic (%)

T790M-sample21 EGFR:p.T790M 0.17 0.00 0.14 0.00 0.00

L858R-sample19 EGFR:p.L858R 0.32 0.00 0.15 0.15 0.15

V600E-sample8 BRAF:p.V600E 0.31 0.00 0.26 0.26 0.00

E545K-sample10 PIK3CA:p.E545K 0.24 0.00 0.16 0.14 0.00

*Mutations’ frequency limit was 0.1%.

different from the distribution of the remaining three data
types (Figure 4D).

Data Preprocessing May Affect HLA
Typing Analysis
We performed HLA typing data analysis on five samples captured
by BOKE and IDT probes. We obtained incorrect typing
results with the data after pretreatment of Cutadapt and FastP
(Tables 2a, 2b and Supplementary Sheet 5). After pretreatment

with Cutadapt and FastP data, the sample NZTD181200662
showed errors in the typing analysis of HLA-A and HLA-C,
whether it was the BOKE probe capture or IDT probe capture,
which was inconsistent with the validation results (such as
Table 1, the red background was shown). The results of the
raw data and Trimmomatic data preprocessing were consistent
with the validation results. Since the NZTD181200690 sample
was classified incorrectly in the four analysis results, it may have
been caused by experiments or sequencing errors. Therefore,
for the overall result of the BOKE probe capture, the accuracy
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FIGURE 4 | Quality control statistical distribution of Cutadapt, FastP, Trimmomatic preprocessed data, and raw sequencing data for 10 HLA typing samples.
(A) Statistical distribution of the GC content, (B) statistical distribution of the Q20 ratio, (C) statistical distribution of the reads number, and (D) significant level for the
four data types in the Q20 ratio and the reads number.

after treatment with Cutadapt, FastP, raw data, and Trimmomatic
was 86.67, 80.00, 93.33, and 93.33%, respectively. For the overall
results of the IDT probe capture, the accuracy rates after
treatment with Cutadapt, FastP, raw data, and Trimmomatic were
86.67, 86.67, 93.33, and 93.33%, respectively.

For the NZTD181200662 sample, we extracted the reads ID
of the sequencing data captured by the BOKE probe capture
and the IDT probe (Figures 5A,B), and we wanted to know
if the sequence reads causing the typing error had certain
characteristics. We found that the three preprocessed data
were highly consistent with the raw sequencing data, but the
Trimmomatic preprocessed data also had many specific reads,
accounting for 32.64 and 47.52% of the FastP preprocessing
data captured by the BOKE and IDT probes, respectively. This
phenomenon was basically the same in the remaining samples
(Supplementary Figures 3–6). Due to the high accuracy of the
raw data and Trimmomatic preprocessed data, we assumed that
the read features that caused the incorrect HLA typing data of the
Cutadapt and FastP data were in their specific reads compared
with the raw data and Trimmomatic data. We extracted this
part of the read and analyzed the length distribution of the
reads. We found that the length of the read from 143 bp to

149 bp was significantly reduced (Figure 5C). Therefore, we
extracted the 143–149 bp reads from the NZTD181200662’s
BOKE and IDT probes captured data processed by Cutadapt
and FastP for HLA-A and HLA-C typing, respectively. The
results were consistent with the validation results for the BOKE’s
capture probes. The HLA-A typing results of Cutadapt and
FastP processed data were A∗02:01:01/A∗02:01:01 and the HLA-
C typing results were C∗08:22/C∗08:22. For the IDT’s capture
probe, the HLA-A typing results of Cutadapt and FastP processed
data were A∗02:01:01/A∗02:01:01 and the HLA-C typing results
were C∗08:22/C∗08:22.

DISCUSSION

Data quality control and preprocessing play an important role
in data analysis in scientific research and clinical fields, and it is
often the first step in data analysis. We believe that it can help
us evaluate the experimental steps or problems in the sequencing
process, and also reduce the sequence of low-quality or adapter
contamination, reduce the computational cost, and allow us
to obtain high-quality sequencing sequences for downstream
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TABLE 2a | Summary of HLA typing results in the four data types with BOKE capture probes.

Sample-BOKE Validation Cutadapt FastP Raw Trimmomatic

HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C

NZTD181200662 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22

A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:
01:01

A*02:53N/
A*02:96/. . .

B*81:02 C*08:
01:01

A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22

NZTD181200665 A*11:
01:01

B*52:01:
01:02

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*12:02:
02:01

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*11:
01:01

B*52:01:
01:02

C*12:
02:02

NZTD181200677 A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*03:
04:01

NZTD181200678 A*02:
01:01

B*41:01:
01:01

C*15:02:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*03:01:
01:01

B*51:
01:01

C*17:01:
01:05

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

NZTD181200690 A*11:
02:01

B*27:
04:01

C*12:02:
02:01

A*11:77 B*27:
04:01

C*12:
02:02

A*11:77 B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*51:01:
01:01

C*14:
02:01

A*11:
02:01

B*51:
01:01

C*14:
02:01

A*11:
02:01

B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

The color values represented that the predicted results were inconsistent with the validated results.
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TABLE 2b | Summary of HLA typing results in the four data types with IDT capture probes.

Sample-IDT Validation Cutadapt FastP Raw Trimmomatic

HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C HLA-A HLA-B HLA-C

NZTD181200662 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22 A*02:
01:01

B*40:06:
01:01

C*08:22

A*02:
01:01

B*81:02 C*08:22 A*02:
338

B*81:02 C*08:22 A*02:
338

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22 A*02:
01:01

B*81:02 C*08:22

NZTD181200665 A*11:
01:01

B*52:01:
01:02

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*01:
02:01

A*11:
01:01

B*54:
01:01

C*01:
02:01

A*24:
02:01

B*54:
01:01

C*12:02:
02:01

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

A*11:
01:01

B*52:01:
01:02

C*12:
02:02

A*24:
02:01

B*52:01:
01:02

C*12:
02:02

NZTD181200677 A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*40:
01:02

C*05:01:
01:02

A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*03:01:
01:01

B*40:
01:02

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*03:01:
01:01

B*44:
02:01

C*05:01:
01:02

A*03:01:
01:01

B*44:
02:01

C*03:
04:01

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

A*11:
01:01

B*44:
02:01

C*05:01:
01:02

NZTD181200678 A*02:
01:01

B*41:01:
01:01

C*15:02:
01:01

A*02:
01:01

B*41:01 C*17:
01:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*02:
01:01

B*51:
01:01

C*15:
02:01

A*02:
01:01

B*51:
01:01

C*17:
01:01

A*03:01:
01:01

B*51:
01:01

C*17:01:
01:05

A*03:01:
01:01

B*51:
01:01

C*15:
02:01

A*03:01:
01:01

B*41:01 C*15:
02:01

A*03:01:
01:01

B*41:01 C*17:
01:01

A*03:01:
01:01

B*41:01 C*15:
02:01

NZTD181200690 A*11:
02:01

B*27:
04:01

C*12:02:
02:01

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*27:
04:01

C*14:
02:01

A*11:
02:01

B*27:
04:01

C*12:
02:02

A*11:
02:01

B*51:01:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*14:
02:01

A*11:77 B*51:
01:01

C*12:
02:02

A*11:126 B*51:
01:01

C*14:
02:01

The color values represented that the predicted results were inconsistent with the validated results.
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FIGURE 5 | Statistics for the reads ID in the four data preprocessing types of sample NZTD181200662. (A) Four kinds of reads ID difference by BOKE probe
capture data processing, (B) four kinds of reads ID difference by IDT probe capture data processing, and (C) the length distribution in the Cutadapt preprocessing
data for the BOKE and IDT probes and the FastP preprocessing data for the BOKE and IDT probes.

analysis, making the analysis results more reliable. When false-
positive or false-negative results are obtained, we usually think it
is caused by (i) experimental factors, such as errors introduced
by PCR or sample contamination; (ii) sequencing factors, such
as sequencing quality and data contamination caused by index
hopping when splitting data; or (iii) analysis software parameters
setting factors, such as alignment software or specific parameter
adjustment of downstream personalized analysis. There have
been some studies that have done some comparisons of data
preprocessing methods, for example, Del Fabbro et al. (2013)
evaluated nine different trimming algorithms in four datasets and
three common NGS-based applications (RNA-Seq, SNP calling,
and genome assembly) (Chen et al., 2018a). But until now, we
still did not notice that the data preprocessing step may also have

a certain impact on the analysis results. We may even consider the
notion that the sole purpose of data preprocessing is to reduce the
downstream computing consumption and describe the quality of
the sequencing data, as the actual importance and meaning have
been previously neglected.

In this study, we compared commonly used data
preprocessing software and found differences in the detection
of hotspot mutations and HLA typing. Although the detection
results may be affected by the three factors described above, for
the different processing of the same data and the subsequent set
of analysis processes, this could reflect the difference between
the different pretreatment methods and the impact on the
detection results. For the current “liquid biopsy” method, the
sample testing requirements are to detect ctDNA mutations
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in the plasma to guide subsequent targeted drug therapy or
real-time monitoring, but the ctDNA’s content in the plasma
is very small (Bettegowda et al., 2014). For the accuracy of
detecting mutations, each step in the experiment and analysis
process should require strict quality control. Each step plays an
important role in the detection results and cannot be ignored.
Particularly for the detection of low-frequency or ultra-low-
frequency mutations such as hotspot mutations, we showed that
if the sequencing depth and mutation support reads number
changes, it may directly lead to false-positive or false-negative
results, which has a huge impact on clinical testing.

Currently, there are many available data quality control
and preprocessing software programs, in addition to the three
methods described in the article, such as FASTQC (Andrews,
2010), SOAPnuke (Chen et al., 2018c), and NGSQC (Dai
et al., 2010). But most methods for the strategy of data
preprocessing are to cut off all subsequent bases as long
as the average quality of the bases in a certain bin or
consecutive bases is below a certain threshold to reduce
memory consumption and I/O reading, increasing the speed
of operation. They do not notice the distribution of the
actual low-mass bases in the sequence, which could result
in many short sequences and may reduce the accuracy of
downstream alignment and increase the sequencing depth
of some reference sites. Thus, the analysis results may be
inaccurate, and the effect may not be as good as the result
of not doing data preprocessing, which was also confirmed in
our analysis results. As the sequencing throughput becomes
higher and higher, the sequencing read length becomes
longer and longer, but the longer the sequencing read
length, the worse the sequencing quality. Therefore, data
preprocessing becomes increasingly important in data analysis.
Existing principles and methods of data preprocessing for
the long sequencing read length are worth considering. Our
research explains the impact of data preprocessing steps on
downstream data analysis results. We hope that our study
can promote the development or optimization for the data
preprocessing methods, so that downstream information analysis
can be more accurate.
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