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Emergence of TNIK inhibitors in cancer therapeutics
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The outcome of patients with metastatic colorectal cancer remains unsatisfactory.

To improve patient prognosis, it will be necessary to identify new drug targets

based on molecules that are essential for colorectal carcinogenesis, and to

develop therapeutics that target such molecules. The great majority of colorectal

cancers (>90%) have mutations in at least one Wnt signaling pathway gene.

Aberrant activation of Wnt signaling is a major force driving colorectal carcino-

genesis. Several therapeutics targeting Wnt pathway molecules, including porcu-

pine, frizzled receptors and tankyrases, have been developed, but none of them

have yet been incorporated into clinical practice. Wnt signaling is most frequently

activated by loss of function of the adenomatous polyposis coli (APC) tumor sup-

pressor gene. Restoration of APC gene function does not seem to be a realistic

therapeutic approach, and, therefore, only Wnt signaling molecules downstream

of the APC gene product can be considered as targets for pharmacological inter-

vention. Traf2 and Nck-interacting protein kinase (TNIK) was identified as a regu-

latory component of the b-catenin and T-cell factor-4 (TCF-4) transcriptional

complex. Several small-molecule compounds targeting this protein kinase have

been shown to have anti-tumor effects against various cancers. An anthelmintic

agent, mebendazole, was recently identified as a selective inhibitor of TNIK and

is under clinical evaluation. TNIK regulates Wnt signaling in the most down-

stream part of the pathway, and its pharmacological inhibition seems to be a

promising therapeutic approach. We demonstrated the feasibility of this

approach by developing a small-molecule TNIK inhibitor, NCB-0846.

C arcinoma of the colon and rectum is a major health prob-
lem worldwide, accounting for over 700 000 deaths annu-

ally.(1) The majority of colorectal cancer patients without
lymph node or distant organ metastasis can be readily cured
by surgical resection alone,(2) but the outcome of patients with
distant metastasis remains unsatisfactory. Recent advances in
combinational chemotherapy and molecular therapeutics direc-
ted against vascular endothelial growth factor (VEGF) (beva-
cizumab) and the epidermal growth factor receptor (EGFR)
(cetuximab and panitumumab) have significantly prolonged the
survival of patients with metastatic colorectal cancer, and the
median overall survival time of such patients now exceeds
30 months. However, cure is still exceptional, and the 5-year
survival rate of patients with stage IV colorectal cancer is
around 15%.(3,4)

In a recent international phase 3 trial named CORRECT, a
multikinase inhibitor, regorafenib (BAY 73-4506), was shown
to provide significant survival benefits for patients with meta-
static colorectal cancer that was refractory to all other preced-
ing conventional chemotherapies.(5) Although the survival
benefits were statistically significant, prolongation of the med-
ian overall survival period was limited to only 1.4 months.
Another more recent phase 3 trial (RECOURSE) employing
TAS-102 (a combination of the nucleoside analogue trifluridine
and tipiracil hydrochloride, a thymidine phosphorylase

inhibitor) showed significant survival benefit in patients with
previously treated metastatic colorectal cancer; however, only
minimal prolongation of the median overall survival period,
which increased from 5.3 months (placebo group) to
7.1 months (TAS-102 group), was observed.(6) Therefore, it is
necessary to identify molecules that are essential for colorectal
carcinogenesis as new drug targets, and to develop therapeutics
that target them.

Genomics of Colorectal cancer

The genetic and epigenetic alterations of colorectal cancer
have been studied extensively over the past few decades.(7,8)

The most notable finding is that the great majority of colorec-
tal cancers carry mutations in genes that are involved in the
canonical Wnt/b-catenin signaling pathway; more than 80% of
colorectal cancers have mutations in the APC tumor suppressor
gene (Fig. 1). The genes encoding b-catenin (CTNNB1), friz-
zled 10 (FZD10), T-cell factors 3 and 4 (TCF3/4) (TCF7L1/2),
axis inhibitor 2 (AXIN2), and APC membrane recruitment pro-
tein 1 (AMER1, WTX or FAM123B) are also mutated recur-
rently in colorectal cancer.(9) In total, more than 90% of
sporadic colorectal cancers carry mutations in at least one Wnt
signaling gene. These findings suggest that Wnt signaling is a
major driving force of colorectal carcinogenesis and a potential
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therapeutic target. However, most Wnt signaling genes mutated
in colorectal cancer, including APC, are tumor suppressors and
cannot be directly targeted for therapeutic purposes. b-Catenin
is a proto-oncogene product, but it is a ubiquitously expressed
cell adhesion molecule and, therefore, cannot be used as a
drug target.

Druggable Targets in the Wnt Signaling Pathway

There are a few technically “druggable” molecules (secreted
proteins, cell surface receptor proteins and kinases/enzymes)
in the Wnt signaling pathway (Table 1). Therapeutics target-
ing porcupine (LGK974, Novartis Pharmaceuticals, Basel,
Switzerland)(10) and frizzled (FZD) receptors (OMP-18R5 and
OMP-54F28, OncoMed Pharmaceuticals Redwood City,
CA)(11,12) have been developed, and their safety and toxicities
have been evaluated in phase 1 clinical trials.(13) Porcupine is
a membrane-bound O-acyltransferase enzyme that is essential
for the extracellular secretion of Wnt proteins. LGK974 is a
small-molecule compound that inhibits the enzyme activity of
porcupine. OMP-18R5 (vanituctumab) is a fully humanized
monoclonal antibody that recognizes an epitope that is con-
served across the extracellular domains of five FZD receptors
(1, 2, 5, 7 and 8). OMP-54F28 is a recombinant FZD8 protein
that is fused to the Fc portion of immunoglobulin. OMP-54F28
acts as a decoy receptor by competing with endogenous FZD8
for binding to its ligand.(12)

At present, these anti-Wnt therapeutics appear to be clini-
cally safe, and no long-feared adverse effects in the gastroin-
testinal tract have been observed.(13) However, in the great
majority of colorectal cancers, Wnt signaling is activated by
loss of function of the APC tumor suppressor gene, which
means that it will be necessary to block Wnt signaling in the
pathway downstream of APC. Unfortunately, LGK974, OMP-
18R5 and OMP-54F28 are presumed to block Wnt signaling
by inhibiting the binding of secreted Wnt ligands to FZD
receptors and, therefore, these agents cannot be used for the
treatment of such colorectal cancers.
XAV939 has been shown to target the enzymes tankyrase 1

and 2 (TNKS1/2)(14) that poly-ADP-ribosylate axins (axin-1

and axin-2). Poly (ADP-ribosylated) axins are subjected to
ubiquitination and subsequent degradation. The inhibition of
tankyrases results in the stabilization of axins and blocks Wnt
signaling. XAV939 inhibited the proliferation of APC-deficient
colorectal cancer cells. A more selective TNKS inhibitor,
NVP-TNKS656, which was identified through structure-based
optimization of XAV939,(15) was orally available, and its early
clinical application is anticipated.

Targeting Wnt Signaling Inside the Nucleus

As mentioned earlier, restoration of the loss-of-function muta-
tion of the APC gene in colorectal cancer cells does not seem
to be a realistic therapeutic approach, and only signaling mole-
cules downstream of the APC gene product can be considered
as therapeutic targets. The T-cell factor (TCF)/lymphoid
enhancer factor (LEF) and b-catenin transcriptional complex is
the most downstream effector of Wnt signaling. Nuclear pro-
teins associated with the transcriptional complex seem to be
feasible targets for molecular therapy against colorectal cancer.

Colorectal adnocarcinoma

APC
CTNNB
TCF 4

>90% Wnt signal genes

Frequent canonical Wnt/ -catenin 
pathway gene mutation

in colorectal cancer

Fig. 1. Frequent canonical Wnt/b-catenin signaling pathway gene
mutation in colorectal cancer. More than 80% of colorectal cancers
have mutations in the adenomatous polyposis coli (APC) tumor sup-
pressor gene. Recent large-scale sequencing efforts by the Cancer
Genome Atlas and others have revealed frequent (over 90%) genetic
alterations in Wnt signaling molecules.

Table 1. Therapeutic targets in the Wnt signaling pathway

(modified from Masuda et al., 2015)

Target molecule Localization Agent
Clinical

development

Porcupine Extracellular LGK974/Wnt974 Phase 1

Wnt5a Extracellular Foxy-5 (Wnt5a

mimic peptide)

Phase 1

FZD receptor 8 Extracellular OMP-54F28 (decoy

receptor)

Phase 1

FZD receptors (1, 2,

5, 7, 8)

Membrane OMP-18R5

(vanituctumab)

Phase 1

LRP6 co-receptor Membrane Salinomycin Preclinical

Niclosamide Phase 1

Silibinin Phase 2

Rottlerin Preclinical

Salinomycin Preclinical

Niclosamide Phase 1

Dvl Cytoplasm NSC668036 Preclinical

FJ9 Preclinical

3289-8625 Preclinical

TNKS1/2 Cytoplasm XAV939 Preclinical

NVP-TNK656 Preclinical

JW55 Preclinical

CK1a Cytoplasm Pyrvinium Preclinical

CK1d/ɛ Cytoplasm TAK-715 Preclinical

AMG-548 Preclinical

PPI between b-

catenin and CBP

Nucleus ICG-001 Preclinical

PRI-724 Phase 2

TNIK Nucleus/

cytoplasm

NCB-0846 Preclinical

CBP, cAMP response element binding protein (CREB)-binding protein;
CK, casein kinase; Dvl, disheveled; FZD, frizzled; LRP6, low-density
lipoprotein receptor-related protein 6; PPI, protein-protein interaction;
TNIK, Traf2 and Nck-interacting protein kinase; TNKS, tankyrase.

Kinase
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1   289  514 1047 1360

CNH domain

Fig. 2. Domain structure of TNIK (modified from Shitashige et al.,
2010). CNH, citron homology.
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Groucho/transducin-like enhancer (TLE) protein,(16) C-terminal
binding protein-1 (CtBP),(17,18) CREB-binding protein (CBP)/
p300,(19,20) smads,(21) NEMO-like kinase (NLK),(22) chibby(23)

and other proteins(24–40) have been reported to interact with the
TCF/LEF and b-catenin nuclear complexes and modulate their
transcriptional activity.
Of these proteins, CBP and its closely related homolog p300

participate in the TCF/LEF and b-catenin complex as tran-
scriptional coactivators.(41) A peptide mimetic small-molecule
compound, ICG-001,(42) has been shown to selectively inhibit
the protein-protein interaction (PPI) between b-catenin and
CBP and induce apoptosis of colorectal cancer cells. The sec-
ond generation CBP/b-catenin PPI inhibitor, PRI-724,(43) has
been shown to have an acceptable safety profile in early-phase
clinical trials and its evaluation in a phase 2 trial of metastatic
colorectal cancer is planned (ClinicalTrials.gov Identifier:
NCT02413853).

Identification of TNIK as a Druggable Target of Wnt
Signaling

The TCF/LEF transcription factor family comprises LEF1
(LEF1), TCF-1 (TCF7), TCF-3 (TCF7L1) and TCF-4 (TCF7L2),
of which only TCF-4 is ubiquitously expressed in colorectal can-
cer cells.(44) Induction of dominant-negative TCF-4 restored the
epithelial cell polarity of a colorectal cancer cell line and con-
verted the cell line into a single layer of columnar epithelium.(45)

We have, therefore, been searching for druggable molecules in
the TCF-4 and b-catenin transcriptional complex. Through com-
prehensive mass spectrometry analyses we identified fusion/
translocated in liposarcoma (FUS/TLS),(46) poly(ADP-ribose)
polymerase-1 (PARP-1),(47) Ku70 (70-kD thyroid autoanti-
gen),(48) Ku80,(48) DNA topoisomerase IIa (Topo IIa),(49) splic-
ing factor-1 (SF1),(50) ras-related nuclear protein (Ran),(51) Ran-
binding protein-2 (RanBP2),(51) Ran GTPase-activating protein-
1 (RanGAP1),(51) promyelocytic leukemia (PML) protein(52) and
TNIK(51) as putative regulatory components of the TCF-4 and
b-catenin transcriptional complex.
Among these identified proteins, TNIK attracted our inter-

est as a potential drug target because various ATP-competi-
tive small-molecule kinase inhibitors have been applied

successfully to cancer treatment. Mahmoundi et al.(53) also
identified TNIK as a protein that interacts with Tcf-4 in the
mouse intestinal crypt. In the mouse system, TNIK was
found to be a component of the Tcf-4 and b-catenin tran-
scriptional complex and was essential for the expression of
Wnt target genes.

Regulation of Wnt Signaling by TNIK

We identified TNIK by analyzing the composition of proteins
that were immunoprecipitated from two colorectal cancer cell
lines with an anti-TCF4 antibody using highly tuned liquid
chromatography and mass spectrometry (LC-MS).(51) TNIK
was originally identified as a new member of the Germinal
Center Kinase (GCK) family by Fu et al.(54) It is known that
TNIK regulates the c-Jun N-terminal kinase (JNK) pathway
through its C-terminus(55) and the nuclear factor-jB (NF-jB)
signaling pathways through its N-terminal kinase domain
(Fig. 2).(55) In addition, TNIK has been shown to regulate the
filamentous-actin (F-actin) cytoskeleton.(56)

TCF-4, b-catenin and TNIK proteins form a complex in col-
orectal cancer cells. TNIK phosphorylates the TCF-4 protein at
the conserved serine 154. This phosphorylation is essential for
full activation of Wnt signaling. Knockdown of TNIK
decreased the transcriptional activity of the TCF-4 and b-cate-
nin complex and inhibited the growth of colorectal cancer cells
and xenografts (Fig. 3). This growth inhibition was abrogated
by expression of the catalytic domain of TNIK.(57) A recent
clinical study showed that increased expression of the TNIK
protein was significantly associated with the poor postsurgical
outcome of patients with stage 2 and 3 colorectal cancer.(58)

The regulation of Wnt signaling by TNIK is conserved
across species. Xenopus TNIK lacks the C-terminal regulatory
portion that is present in human TNIK, but the kinase domain
is conserved. Xenopus TNIK is also essential for b-catenin-
mediated determination of the dorsal axis.(59)

Development of a TNIK Inhibitor

Wnt signaling is a major force driving colorectal carcinogene-
sis. TNIK is an essential regulatory component of Wnt

Essential for colorectal cancer growth

Regression of colorectal cancer xenografts

Fig. 3. TNIK is essential for colorectal cancer
growth. Knockdown of TNIK by small hairpin RNA
(shRNA) (TNIK 1, 2 and 3) and small interfering RNA
(siRNA) (TNIK 12 and 13) inhibits the growth of
colorectal cancer cells (TOP) and xenografts
(BOTTOM), respectively (modified from Shitashige
et al., 2010).
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signaling, and colorectal cancer cells are highly dependent
upon the expression and catalytic activity of TNIK for prolifer-
ation. Targeting of TNIK for pharmacological intervention
was, thus, anticipated to inhibit Wnt signaling and suppress the
growth of colorectal cancer cells.(60)

We screened a compound library in collaboration with Carna
Biosciences (Kobe, Japan) and identified a series of quinazo-
line analogues with high TNIK enzyme-inhibitory activity.(61)

Subsequent lead optimization resulted in identification of the
novel compound NCB-0846 [cis-4-(2-(3H-benzo[d]imidazol-5-
ylamino)quinazolin-8-yloxy)cyclohexanol]. NCB-0846 inhib-
ited the Wnt signaling of HCT116 (carrying a CTNNB1 muta-
tion) and DLD-1 (carrying an APC mutation) colorectal cancer
cells. NCB-0846 reduced the expression of Wnt target genes
such as AXIN2 and MYC, suppressed Wnt-driven intestinal
tumorigenesis in Apcmin/+ mice (Fig. 4) and the stemness
(sphere formation and tumorigenicity) of colorectal cancer
cells. NCB-0846 was orally administrable and suppressed the
growth of different kinds of patient-derived colorectal cancer
xenografts.
The ATP-binding pocket of TNIK is structurally similar to

that of other protein kinases.(62) NCB-0846 also inhibited sev-
eral other oncogenic proteins, including FMS-like tyrosine
kinase 3 (FLT3), platelet derived growth factor-a (PDGFRa)
and cyclin-dependent kinase 2 (CDK2)/cyclin A2 (CycA2).
However, inhibition of other kinases is a common feature of
every ATP-directed kinase inhibitor and is not problematic for
its clinical development. By carefully including a diastereomer
(named NCB-0970) with 13-fold weaker TNIK enzyme-inhibi-
tory activity as a TNIK-specific negative control, we excluded
any off-target effects of NCB-0846.

Other TNIK Inhibitors

Various TNIK inhibitors with different chemical structures
have been developed by several pharmaceutical companies,
including Compound 3 (Celon Pharma, Lomianki, Poland),(63)

PF-794 (Pfizer)(64) and ON-1081050/ON-108600 (Onconova
Therapeutics, Newtown, PA). A series of 4-phenyl-2-phenyla-
minopyridine analogs with potent activity against TNIK have
also been reported by Astex Phamaceutical (Cambridge,
England).(65) A CK2 (casein kinase-2)/TNIK dual inhibitor,
ON108600, has been shown to target cancer stem cells and
induce apoptosis of paclitaxel-resistant triple-negative breast
cancer cells.(66) Furthermore, TNIK was identified as being

involved in the anti-cancer mechanism of a benzimidazole-qui-
nolinone compound, dovitinib, in multiple myeloma.(67)

An FDA-approved anthelmintic drug, mebendazole, was
recently identified as a selective inhibitor of TNIK.(62) Meben-
dazole showed anti-tumor effects in a broad range of pre-clini-
cal studies across a number of different cancer types, including
colorectal cancer,(68) and the combination of mebendazole with
a non-steroidal anti-inflammatory drug reportedly reduced
tumor initiation in ApcMin/+ mice.(69,70) Remarkable tumor
regression by the administration of mebendazole was observed
in a patient with drug-refractory metastatic colorectal can-
cer.(71) Based on promising preclinical efficacy data,(72)

mebendazole is currently under clinical evaluation in adult and
pediatric brain tumors (ClinicalTrials.gov Identifier:
NCT01729260 and NCT01837862). Medulloblastoma, a pedi-
atric brain tumor of the cerebellum, is known to harbor muta-
tions in the CTNNB1 and AXIN1 genes.(73,74)

Conclusion

The genetics of colorectal cancer has been extensively studied
over the past few decades, and frequent mutations of Wnt sig-
naling genes have been recognized since the 1990s. Several
inhibitors have been developed against various components of
the Wnt pathway, but so far none of them have been incorpo-
rated into oncology practice. Normal intestinal epithelium and
colorectal cancer cells have distinct Wnt pathways. However,
Wnt signaling can be blocked by targeting nuclear components.
We demonstrated the feasibility of this therapeutic approach by
developing a small molecule inhibitor of TNIK.(61) TNIK is
essential for Wnt signaling and colorectal cancer growth, and
its inhibition is a promising therapeutic approach. The clinical
development of TNIK inhibitors is warranted.
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