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Enhanced proliferation of rabbit 
chondrocytes by using a well 
circulated nanoshock system
Sitansu Sekhar Nanda1, Tuntun Wang1, Hong Yeol Yoon2, Seong Soo A. An3, 
K. P. S. S. Hembram5, Kwangmeyung Kim2,4* & Dong Kee Yi1*

The gold nanorods (GNRs) embedded alginate-chitosan (scaffold), which was designed and fabricated 
to produce efficient handling of the cell proliferations. Scaffold embedded GNR (SGNR) and NIR 
(near infrared) irradiations are developing into an interesting medical prognosis tool for rabbit 
chondrocyte (RC) proliferation. SGNR contained a pattern of uniform pores. Biocompatibility and 
cellular proliferation achieved by disclosures to NIR irradiations, providing high cell survival. SGNR 
and NIR irradiations could produce mechanical and biochemical cues for regulating RCs proliferations. 
To determine the thermal stress, it exposed RCs to 39–42 °C for 0–240 min at the start point of the 
cell culture cycle. It produced photothermal stress in cellular surrounding (cells located adjacent to 
and within scaffold) and it deals with the proliferation behavior of RC. All the processes were modeled 
with experimental criteria and time evolution process. Our system could help the cell proliferation 
by generating heat for cells. Hence, the present strategy could be implemented for supporting cell 
therapeutics after transplantation. This implementation would open new design techniques for 
integrating the interfaces between NIR irradiated and non-irradiated tissues.

Stem cell injections to injury regions were assumed as an essential step for the renewal of  tissues1. To maintain 
in the influential overhaul on tissues, stem cells must continue to restore under adverse conditions. One of the 
important factors could be the temperature, which could control many cellular processes. Alekseenko et al. 
observed the frequent occurrences of abrupt fluctuations of  temperature2. They also detected the drastic increases 
in temperatures under many medical conditions, such as infections and contagious  diseases2. More or less, the 
patients would produce fever (temperature higher 39 °C) as the relocation of stem cells  progressed3. The cellular 
reactions to the heat production would be one of the best scrutinized cellular stress responses. Before and after 
transplantation, Heat shock protein (HSP) is an effective way to protect  cells4,5. It can improve the therapeutic 
effect of bone marrow stem cells on a chemotherapy-induced premature ovarian insufficiency rat  model6. Mild 
heating provides thermo-tolerance to cells from heat induced cellular  damage7,8. HSP associated with bone, 
cartilage and mammalian osteoblast  differentiation9,10. An elevated heating of 1.5–3 °C plays an important role 
in rat and dog bone growth  stimulation11.

After the in vivo damages, the native diathermy could sponsor the reconstruction of the  bone12. Local hyper-
thermia (38–41 °C) management could initiate the growth of the new bone in rats’ by distribution of heat. Mostly, 
radio waves, microwaves and ultrasound used to convey heat as local hyperthermia. In case of the musculoskeletal 
sicknesses, hyperthermia applied as a thermotherapy for recoveries of the  disorder12. Hence, hyperthermia may 
affect the bone absorption and stimulate the native bone  creation13. In addition, cartilage growth after the injury 
obtained by the microwave warming on the linkages of animal  osteoarthritis14. The restricted temperature could 
also influence the direct heating of chondrocyte, osteoblasts, and osteoprogenitor cells, which were useful in 
recovering cells at the articular junctions. Initial reports of results showed that the mild heat (1.5–3 °C above 
regular body temperature) encouraged the advancements and in embryonic improvements of the bone in the 
 animals11,15. They reported the mild increases from the native temperature at the sites of bone fractures, which 
could enhance the formation of new  bone16.
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Cell proliferation could be meliorated by translocations of proteins, ensuring correct folding and repairing 
denatured  proteins17. Balancing the protein homeostasis was closely related with proinflammatory mechanisms, 
nitric oxide synthase activity and NF-κB signal  pathways18. Heat shock proteins (HSPs) were over-expressed 
under stress conditions in cells, which could play a key role in the maintenance of protein homeostasis in cells 
through proper activations and the folding of client  proteins19–21. Hence, controlling HSPs in cells may influ-
ence cell properties with correct conformations of proteins, helping cellular proliferations and differentiations.

Along with similar approaches, Chen et al.22 developed self-assembling hydrogel materials with peptides, 
which could generate the heat and control the cellular proliferations. For the cell-based therapies, various pro-
teins were used to regenerate tissue, drug delivery, and cellular pathways for tissue renewals, including stem and 
immune  cells23. In terms of the successful cellular therapy, it would be important to control the cellular prolif-
erations and differentiations with enhanced capacity to alter the disease circumstances as described in Fig. 1.

In this study, we hypothesized that the circulatory nanoshock system may induce the heat shock proteins in 
cells, and the increased expressions of heat shock proteins could enhance the cellular proliferations. To address 
our hypothesis, SGNR was prepared by simple mixing methods. Scaffold showed in the multi pored network 
structure, which RCs could proliferate successfully for 21 days without in vitro toxicity.

Materials and methods
Materials. Rabbit chondrocytes were obtained from the New Zealand white rabbits. Cetyltrimethylammo-
nium bromide (CTAB) was obtained from Alfa Aesar. Gold chloride trihydrate  (HAuCl4∙3H2O), sodium boro-
hydride  (NaBH4), Silver nitrate  (AgNO3), ascorbic acid, chitosan, calcein AM, MitoTracker and sodium alginate 
were purchased from Sigma-Aldrich. HSP 27, HSP 27 and HSP 90 were obtained from abcam.

Instruments and methods. JEOL JSM-7500F with an acceleration voltage of 15 kV was used for field 
emission scanning electron microscopy (FE-SEM) study. JEOL 2000 FX microscopy was used for transmission 
electron microscopy (TEM) study with an acceleration voltage of 200 kV. An NIR laser with irradiation wave-
length of 633 nm (MW-GX-980/3000 mW China) was used for the photothermal study. Varian instrument was 
used for the study of UV–Vis–spectroscopy.

Isolation of chondrocyte from white rabbits. All experiments with animals were performed in com-
pliance with the relevant laws and institutional guidelines of Institutional Animal Care and Use Committee 
(IACUC) in Korea Institute of Science and Technology (KIST), and IACUC approved the experiment (approved 
number of 2017-005). The animal study complies with ARRIVE guidelines.

Figure 1.  Schematic illustration of fabricating the biocompatible scaffold imbedded GNRs with NIR 
irradiation. Rabbit chondrocytes were seeded in scaffold imbedded GNRs with NIR irradiation at 633 nm laser. 
Rabbit chondrocyte proliferation occurred due to thermal circulation of GNRs.
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Chondrocytes were isolated from the knee joint of New Zealand White rabbits (6-week-old, female; Orient, 
Korea)24. Briefly, the knee joint (articular cartilage) was chopped into small pieces to be digested in 0.05% type 
II collagenase containing DMEM–F12 (Dulbecco’s modified Eagle’s medium–F12). After 12 h of digestion, the 
digested tissue was filtrated through a 40 µm pore sized cell strainer (Fisher Scientific, Pittsburgh, PA). Phosphate 
buffered saline (PBS; pH 7.4) with 1% penicillin/streptomycin used for the wash and cell isolation, and they 
were maintained in DMEM–F12 supplemented with 10% (v/v) fetal bovine serum (FBS; Welgene) and 100 µg/
mL streptomycin and 100 U/mL penicillin. The cells were cultured in a humidified 5%  CO2 atmosphere at 37 
°C, and the culture medium was changed every 3 days.

RC culture technique. RC were suspended in chondrocyte culture medium (DMEM), and the number 
and viability of the RC were determined using a hemocytometer with trypan blue dye exclusion. The viability 
of isolated RC was over 95%. The freshly isolated RC were cultured in a petri dish in 5%  CO2 atmosphere at 37 
°C, grown to almost confluent and then passage by trypsin treatment. The chondrocyte at the third passage was 
used in this study.

The SGNR were immersed in the chondrocyte culture medium for 1 h prior to RC seeding. RC suspension 
(8 ×  106 cells/mL, 100 mL) was inoculated into the scaffold and incubated in a petri dish for 4 h RC attachment. 
During these 4 h, NIR irradiation was performed.

Preparation of the GNR. Seed-mediated method was used for synthesis of  GNR26. Briefly, 250 μL of 0.01M 
 HAuCl4 was added in 7.5 mL of 0.1M CTAB, 600 μL of ice-cold 0.01M  NaBH4 and the solution was kept under 
vigorous stirring condition at room temperature for preparation of seed solution. Separately, 400 μL of 0.01M 
HAuCl4, 64 μL of 0.1M ascorbic acid and 35.6 μL of 0.1 M  AgNO3 were added in sequence to the 9.5 mL of 0.1M 
CTAB for preparation of growth solution. Then the seed solution (10 μL) was added to the growth solution, and 
mixed for 24 h at room temperature. Silver nitrate controlled GNR formations for better shape, and ascorbic acid 
served as a reducing agent.

Scaffold synthesis. Alginate-chitosan-GNR slurry was prepared by addition of sodium alginate (1% w/v, 
0.5 mL), chitosan (1% w/v, 0.5 mL) and GNR (43 µL, 0.125 mg/mL) in Deionized (DI) water. Then the solution 
was stirred for 4 h to get a uniform solution. Subsequently, the solution was kept at freeze (at − 10 °C for 24 h). 
Afterward, the solution was cross linked with calcium chloride (1%) for 15 min. The solution was washed prop-
erly with DI water.

Center and edge temperature test of scaffold with GNR. SGNR was placed into a bottle and then 
add 1 mL media to hold the scaffold immersion in water. Test on the NIR laser which was placed at a fixed 10 cm 
distance away from the bottle to irradiate the scaffold. The laser power is 150 ± 2 mW. Using the thermocouple 
to test the scaffold center and edge temperature every 2 h for 24 h. All the experiment was repeated 3 times to 
ensure the accuracy.

Flow cytometry analysis. FACScan cytometer and CellQuest Pro software were used for flow cytometry 
analysis. Isotonic PBS buffer pH 7.4 with cell suspension was gated on linear gains for light scattered channels, 
on a logarithmic scale for fluorescence channels with a minimum 10,000 cells for analysis in a single condition.

Harvesting of cells and aliquot up to (1 ×  106 cells) in a small petri dish was carried out. The cells were washed 
2 times by adding 2 mL of PBS and centrifuging at 1200 rpm for 5 min, followed by decanting the buffer from 
the pelleted cells. The cells were resuspended in 100 µL of calcein AM staining buffer. To adjust flow cytometer 
settings for live, the live staining solution was added to a control tube of unstained cells. They were mixed and 
incubated for 15 min in the dark. Then it was rinsed with PBS two times. Then, 100 µL of Calcein AM staining 
solution was added to each sample just prior to live cell analysis. The point count of the viable cells was adjusted 
from a dot-plot of forward scatter versus calcein AM.

Cell proliferation study. Scaffold labeling was assessed using the MTS assay. Cells after 1, 3, and 5 days of 
culture were washed with PBS. Cells were incubated with DMEM media containing 20% MTS solution for 4 h at 
37 °C. The supernatant was collected and the absorbance values were measured at 490 nm (microplate reader). 
A blank sample containing no cells was subtracted from all measurements.

Cell viability. Cell viability was assessed following nanoparticle labeling using Calcein AM viability stain-
ing and mitotracker assay. Calcein AM staining was performed by incubating the cells with a working solution 
of calcein AM (4 mm) for 45 minutes at 37 °C. The cells were rinsed with PBS and imaged using fluorescence 
microscopy (Zeiss DMI2000B microscope equipped with a Zeiss DFC 290 camera).

Sulfated glycosaminoglycan (sGAG) quantitation. Sulfated Glycosaminoglycan (sGAG) Assay Kit 
was used for total sGAG quantitation. Briefly, 1,9-dimethyl-methylene blue dye (1 mL) reagent was added to 
50 μL of the extract and kept for 30 min. The blue dye binds to sGAG and forms a purple dye–sGAG precipitate, 
which was separated from the unbound dye solution by centrifugation at 10,000×g. 200 μL of dissociation rea-
gent was added to recover the sGAG-bound dye from the resulting pellet. Absorbance of chondroitin 4-sulfate 
standards, dye from sGAG samples, and blanks were quantified by using a microplate reader at 655 nm.
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Heat shock protein response. Staining of control, HSP 27, HSP 70 and HSP 90 in RC are done by Immu-
nofluorescence. Briefly, cells were fixed in methanol for 30 minutes at − 20 °C, washed with PBS, and incubated 
in blocking solution (10% Bovine serum albumin in PBS) for 1 h at room temperature. Cells were stained with 
goat anti-rabbit IgG HRP-conjugated antibody diluted in blocking solution for 12 h at room temperature in 
humidified chambers. Cells were washed with PBS and then incubated with secondary antibody diluted 1/200 
in blocking solution for 1 h at room temperature in opaque humidified chambers. The samples are analyzed by 
using fluorescence microscopy (530 nm wavelength). The standardized protocol was followed for control.

Statistical analysis. The statistical analysis was carried out by Graph-Pad Prism (6.0) software using one-
way ANOVA module. Different tests (e.g. Tukey test, Dunnett’s test) were performed for comparative mean and 
obtain P value. In our analysis the P values are less than 0.0001 in both the test which indicates better statistical 
significance. All experiments were repeated three times.

Result and discussion
Scanning electron microscopy (SEM) images of SGNR were shown in Fig. 2a. The larger mats (length ~ 2–20 µm, 
height ~ 5 µm) are shown. These mats are lamella clusters of GNRs. Magnified images of SGNR (43 µL, 0.125 mg/
mL) revealed high pore interconnectivity, randomly and densely packed in Fig. 2b, GNRs showed by asterisks.

Scaffold had a porous structure, ranging in sizes from 100 to 300 μm, which fitted into the appropriate size 
range for the growth of  RC25. Better interconnectivity and mechanical strength observed with smaller  pores26. 
Scaffold with larger pore are considered as  weaker27. Infrared irradiations on GNR for increasing the temperatures 
were reported in the  literature28–34.

The morphology of GNR from TEM revealed a width and length below 50 nm, as noted in Fig. 3a. The effects 
of time vs temperature were investigated for the surface and center temperature tests, as shown in Fig. 3b. The 
temperature saturated at 38.2 °C. This drastic and fast saturation was a unique feature of our ECM system using 
Au rods as heat islands around cells.

The visualized morphology of RC under the inverted optical microscopy revealed differences between cells at 
the SGNR with and without NIR irradiations, as shown in Fig. 4. The results revealed the scaffolds were homoge-
neous to distribute (see Fig. 4a). With the addition of GNR, RC was mixed in the scaffold. GNR became heated 
faster than DMEM. Hence, the local temperature of the DMEM media was less than GNR. Next, the evaporation 
of DMEM took a place in the GNR’s proximity. Overall, multiple RC colonies formed on the plate after NIR irra-
diation, as shown in Fig. 4c, unlike without IR irradiations (Fig. 4b). The images obtained after 3 days of culture.

RC was selected as the cell model for their morphological featured expressions and growth capability. RC was 
used to assess the cell proliferations on SGNR and without NIR irradiations. The only MTS assay was employed 
for the mapping of time, and the results were shown in Fig. 5. RC on both scaffolds (with and without NIR irra-
diations) showed the differences in the first day of cell culture, and their differences continued to increase over 
days. Significant differences in cell numbers were observed between the SGNR with and without NIR irradiations 
on day 1, day 3 and day 5 after cell culture. The RC numbers on the SGNR and NIR irradiation became higher 
than without the irradiation at day 1, day 3 and day 5, RC showed consistent viabilities in all locations of scaf-
fold, and the NIR irradiation did not affect GNR contents. The flow cytometry analysis was conducted for their 
survival rate after day 7, day 14 and day 21. Cellular proliferation observed for the SGNR and NIR irradiation as 
compared with only SGNR. The uniform pore size of SGNR with NIR irradiation seemed to enable the transports 
of metabolic waste and various nutrients, as a result of RC viability. RC prefer differentiation into functional 
chondrocytes. This support RC as an source for cartilage regenerative therapy.

The expression of Beer–Lambert–Bouguer law is I =  Io  e−(ϵcl)), where ϵ is the molar attenuation coeffi-
cient or absorptivity of the attenuating species, c is the concentration of the attenuating species, l is the optical 
path length, I is the observed intensity and  Io is the original intensity of the light. Basically, it is the relation of 

Figure 2.  (a) Top view SEM image of SGNR, (b) Magnified image of SGNR clearly indicates GNRs (showed by 
astericks).
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intensity with optical attenuation of physical material with certain concentration and the optical path length 
through the sample.

Although Beer–Lambert–Bouguer law could not be applied in the present case, due to immiscible/insoluble 
GNR in the scaffold, we tried to change the Beer–Lambert–Bouguer law with approximation. Hence, any change 
in the absorption intensity was related to the changes in these three parameters. Next, the absorption of SGNR 
can be expressed as (ϵ + µ) (c + δc) (l + δl). Again, the change in values i.e. µ, δc and δl, changed the intensity, 
as explained in Figs. 5a,b and 6a,b, respectively.

The confocal microscopy images of RC (1) with scaffolds, (2) SGNR, and (3) SGNR with NIR irradiation 
were shown in (Fig. 7a,aʹ,b,bʹ,c,cʹ), respectively. In both scaffold experiments, most RC were alive on SGNR 
with NIR irradiation. We found a few RCs in SGNR (Fig. 7b,bʹ). On SGNR, most RC formed isolated cells, 

Figure 3.  (a) TEM images of GNR. (b) Time vs temperature graph shown for edge temperature test and time vs 
temperature graph shown for center temperature test.

Figure 4.  Optical image of rabbit chondrocyte (a) with scaffold, (b) immersed in SGNR, and (c) immersed in 
SGNR and treated with NIR irradiation.

Figure 5.  Above figure depicted as (a) Rabbit chondrocyte proliferation study with the scaffold (control). 
Rabbit chondrocytes proliferation study with SGNR. Rabbit chondrocyte immersed in SGNR were treated with 
633 nm NIR irradiation at 180 mW for 4 h. Intensity profile (b) was monitored as a function of days.
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exhibiting round-shape morphology. RC on SGNR with NIR irradiation formed fewer clusters than on the 
SGNR, exhibiting spread morphology. We observed excellent biocompatibility for SGNR with NIR irradiation. 
Mitotracker used for the study of the probable involvement of mitochondria in the pathways leading to prolifera-
tion (Fig. 8a,aʹ,b,bʹ,c,cʹ). The mitochondrial mass increased in case of SGNR with NIR irradiation, as shown in 
Fig. 8c,cʹ. Like the RC viability, mitochondrial change occurred.

RC proliferation, attachments and differentiation along the SGNR with NIR irradiation showed cellular 
compatibility and the suitability of novel techniques for tissue engineering applications. Our experimental results 
showed RC attached well to the SGNR with NIR irradiation for the enhanced cell proliferation techniques. SGNR 
and NIR irradiation techniques appeared to center on cellular proliferation property. The cell viability assay 
revealed the increased number of live cells on the SGNR after the NIR irradiation than without the irradiation 
(Fig. 5). These results showed our method promoted the cell expansion with excellent cell proliferation property.

Figure 6.  This above figure showed. (a) Intensity profile as a function of scaffold, SGNR, and SGNR with 
NIR irradiation. (b) Comparative flow cytometric histogram analysis of rabbit chondrocyte viability by using 
calcein-AM after 7, 14 and 21 days with specific conditions.

Figure 7.  Confocal microscopic images of rabbit chondrocyte viability study staining (a,aʹ) with live assay kit 
with scaffold, (b,bʹ) with live assay kit immersed in SGNR, and (c,cʹ) with live assay kit immersed in SGNR and 
treated with NIR laser.
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To examine the impact of SGNR and NIR irradiation, RC viability was examined after 7, 14 and 21 days. We 
compared the viability of RC with scaffold, SGNR and SGNR with NIR irradiation. In case of embedded scaffold 
GNR, loss of esterase activity was observed.

The most typical size of GNR (40 nm and 10 nm in diameter) used for photothermal activation in the local 
surface area. Next, with assumption and initial approximation, the attributions form the NIR irradiation would 
affect the interface of GNR and scaffold. The effective surface area A = n×2πrh (r + h), where n is the number of 
GNR, r and h are the average radius and height of the GNR. Hence, the molar attenuation coefficient should have 
been changed by the ϵ + δϵ and µ + δµ, where δϵ and δµ are the contribution form scaffold and GNR, respec-
tively. δϵ and δµ are proportional to the effective area. In our experimental procedures, the parametric values 
were placed to justify the equation, although the effect of other many parameters could not be neglected. Since 
no targeting agent was used to promote GNR uptake, the results would show the effects of uptake by RC were 
responsible for the NIR irradiation of GNR. GNR aggregated when suspended in cell culture medium, as clear 
from the change in temperature in Fig. S1a–s. Macroscopic image of scaffold and SGNR presented in Fig. S1t,u. 
GNR aggregation could most likely be attributed to the heat response on the surface of the SGNR. It could be 
possible that the heat response could promote the uptake of SGNR by the Rabbit chondrocyte. There would be 
several endocytosis pathways and effects of this HS technique, as shown in Fig. S1. The vibrational population 
(normally, the shock excited phonons and molecular vibrations) could have been relaxed because of the thermal 
 distribution35–37. A fast cycle of heating and cooling (quenching) was demonstrated in Fig. S1.

By heating RC revealed a threshold of thermal dose for maximum HSP expression. HSP protocol identified 
240 min from this study for an excellent inspection time. So, heating purposes with higher thermal increase rates 
(such as by laser) should be corrected to determine whether it could affect the heating rate on HSP expressions. 
Interpretation of the correlation between the HSP 27 (Fig. S2a,aʹ), HSP70 (Fig. S2b,bʹ) and HSP 90 (Fig. S2c,cʹ) 
expressions demonstrated. One possible simple statement was that the HSP response mounted by RC was clas-
sified and susceptible. The variant of the HS response was that it expressed an attempt by the RC to enhance its 
effectiveness to eliminate misfolded HSP. This stand was confirmed because over expressing HSP 27, HSP 70 
and HSP 90 could suppress the aggregation of HSP, as illustrated in Fig. S2, the HSP response may suggest that 
HSP was penetrated the reasonable efficiency and supported in proliferation.

However, it was necessary to investigate how RC reacted to the use of biomaterials. Bone formation, followed 
by the cellular hierarchy, initiated the differentiation of RC from osteoprogenitor cells and then preosteoblasts 
and  osteoblasts38. Our results supported the above suggestions, where RC expressions were altered by culture 
temperature and  systems39. Our study revealed few limitations. The effects of culture temperature on protein lev-
els and the effect of culture temperature on RC metabolism were remaining to be investigated. Only one cell line 
from one individual was analyzed. Therefore, in order to generalize our findings, larger studies will be performed.

The regulation of different cellular behaviors, such as proliferation, adhesion, differentiation, could be influ-
enced by protein affinity and scaffold  surface40,41. As expected, shown in Fig. 9a, following a 5-day culture, SGNR 
with NIR irradiation, showed a significant increase in the GAG content. sGAG accumulation was greater in SGNR 

Figure 8.  Confocal microscopic images of rabbit chondrocyte proliferation study staining (a,aʹ) with 
mitotracker assay kit with scaffold, (b,bʹ) with mitotracker assay kit immersed in SGNR, and (c,cʹ) with 
mitotracker assay kit immersed in SGNR and treated with NIR laser.
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with NIR irradiation compared with SGNR and scaffold. Variation in extracellular matrix synthesis and cellular 
proliferation handled this dissimilar level of sGAG accumulation. Here, temperature was acting as gradients 
in nutrients and SGNR was functioning as regulatory molecules within the system. It was reported that heat 
stimulus is responsible for increase in viability of  chondrocytes42. Duration of heat exposure affects metabolism 
of chondrocyte. Heat stimulus reduce the apoptosis of chondrocytes, through the induction of  HSPs43. In order 
to evaluate the protein interactions of scaffolds embedded without and with GNR, BSA was used as a model 
protein. Higher adsorption levels of the BSA (765%) on SGNR and NIR irradiation were observed higher than 
without the NIR irradiation after 24 h. This adsorption capacity of BSA became saturated after 12 h, as shown 
in Fig. 9b. Higher concentrations of BSA were adsorbed on the SGNR after NIR irradiation and improved the 
protein affinity substrates. Other studies found that electrostatic interactions of nanomaterials handled the 
increased adsorptions of  DNA44,  proteins45, and small molecule  drugs46. Scaffold surface deposition of nutri-
tious components was suitable for cell survival and proliferations. This method promotes the RC adhesions and 
growth on SGNR and NIR irradiation.

Conclusions
In conclusion, it developed an alternative method for fabrication of SGNR and NIR irradiation. NIR irradia-
tions of the SGNR could reach the temperature of 39–42 °C. This temperature could facilitate to produce the 
photothermal stress in the cellular surroundings. The results of the responses of RC towards the SGNR and NIR 
irradiations would be the first report of such scaffold. We did not document this method for other cell types. It 
did not identify the response profiles of RC to such a thermal stress until the present finding. Thus, this study 
offered a strategy to define the dynamics of thermal inductions of RC in vitro.
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