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Abstract: This study aimed to develop and validate a deep learning system for diagnosing glaucoma
using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma)
with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with
1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images
were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion
cell–inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for
glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19)
model. The diagnostic abilities of deep learning models using different OCT maps were evaluated,
and the best model was compared with the diagnostic results produced by two glaucoma specialists.
The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness
map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the
RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL
deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map
showed the highest diagnostic ability, showing similar results when tested via an external validation
dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of
the deep learning system. The location of glaucomatous damage showed generally high level of
agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement
when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion,
our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and
deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing
promising results for future clinical application as an interpretable computer-aided diagnosis.
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1. Introduction

Artificial intelligence (AI) is a branch of computer science that seeks to simulate intelligent human
behavior in computers [1,2]. Deep learning, a state-of-the-art technique enabled by advancements
in graphics processing units and processing power, has revolutionized the use of AI since 2010 [3].
The resulting improvements in computer programming have allowed AI to become integral to medical
decision-making and have encouraged researchers to develop deep learning algorithms for diagnosing
vision-threatening ophthalmic diseases including glaucoma. Since accurate screening and proper
surveillance is essential to decrease the socioeconomic burden of patients suffering from glaucoma,
clinicians have developed and expanded the application of deep learning systems for diagnosing
glaucoma using various datasets and algorithms [4].

Spectral-domain optical coherence tomography (SD-OCT), which provides reproducible, objective,
and quantitative retinal nerve fiber layer (RNFL) and ganglion cell–inner plexiform layer (GCIPL)
thickness measurements, is currently one of the most commonly used diagnostic tools for glaucoma [5–7].
Along with providing actual thickness measurements, it also offers thickness maps and deviation
maps demonstrating diagnostic classification in comparison with a normative database, which aids
clinicians in the identification of glaucomatous damage [8]. However, it has limitations preventing its
use as a solitary glaucoma screening system, namely artifacts [9], segmentation errors [10], and the
possibility of both false-positive and false-negative results [11]. Thus, the development of a well-trained
deep learning system that can provide an interpretable computer-aided glaucoma diagnosis using
OCT images would be useful to overcome these limitations and to allow glaucoma screenings of
large populations.

Recently, deep learning with convolutional neural networks (CNN) has been widely used for
pattern recognition and classification of medical images [3,12]. A number of studies reported successful
diagnostic performance of CNNs for detection of glaucoma based on fundus photographs [13–15].
However, validation of deep learning systems using various OCT maps has not been explored fully.
SD-OCT can reveal glaucomatous damage in the optic nerve head (ONH) and peripapillary area as
well as in the macular area, and thus, the inclusion of such data is promising to improve the glaucoma
diagnostic ability of deep learning systems. Furthermore, the SD-OCT results represent an abundant
dataset that can easily train a deep learning system. Therefore, we developed and validated a deep
learning system for glaucoma diagnosis using OCT deviation and thickness maps of RNFL and GCIPL
analyses. We also evaluated heatmaps to visualize the diagnostic pattern of our deep learning system.

2. Materials and Methods

RNFL and GCIPL images acquired by SD-OCT (Cirrus SD-OCT; Carl Zeiss Meditec Inc., Dublin,
CA, USA) were consecutively collected between 2015 and 2019 from the glaucoma clinics of Samsung
Medical Center and Kangbuk Samsung Hospital. The present study was approved by the Institutional
Review Boards of Samsung Medical Center and Kangbuk Samsung Hospital, and adhered to the tenets
of the Declaration of Helsinki.

2.1. Subjects—Training, Internal Validation, and External Validation Datasets

Subjects who visited the glaucoma clinic of Samsung Medical Center between 2015 and 2019 were
divided into a training set and an internal validation set of glaucoma and control groups using random
sampling. To build the training set, four OCT images (thickness and deviation maps each of RNFL and
GCIPL analyses) were obtained from each of 1490 eyes of 967 primary open-angle glaucoma (POAG)
patients and 332 eyes of 245 healthy subjects, giving a total of 7288 OCT training images. OCT images
were acquired for the internal and external validation sets in the same manner used to acquire those
of the training set. The internal validation dataset consisted of images from 321 eyes of 299 POAG
patients and 104 eyes of 98 healthy subjects, giving 1700 OCT internal validation images. Images taken
from subjects at Kangbuk Samsung Hospital constituted the external validation set; these were taken
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from 247 eyes of 147 POAG patients and 108 eyes of 69 healthy subjects, giving 1420 OCT external
validation images.

Each subject underwent a complete ophthalmic examination including intraocular pressure
measurement by Goldmann applanation tonometry, gonioscopy, biomicroscopy, and fundus
examination by glaucoma specialists. They also underwent automatic refraction (KR-800A; Topcon
Medical Systems Inc., Oakland, NJ, USA), stereo optic disc and red-free RNFL photography (TRC-50DX;
Topcon Medical Systems Inc., Oakland, NJ, USA), central corneal thickness measurement by ultrasound
pachymetry (Tomey SP-3000; Tomey Ltd., Nagoya, Japan), axial length measurement (IOL Master;
Carl Zeiss Meditec Inc., Dublin, CA, USA), SD-OCT examination, and standard automated perimetry
using the Swedish interactive threshold algorithm with the 30-2 standard program (Humphry Field
Analyzer II; Carl Zeiss Meditec Inc., Dublin, CA, USA).

For POAG diagnosis, the inclusion criteria were eyes with the presence of typical glaucomatous
changes in the ONH, including rim notching, thinning, and/or wedge-shaped RNFL defect or
diffuse RNFL atrophy; open angle on gonioscopy; no history of retinal disease, optic neuropathy,
or systemic/neurologic disease that could affect RNFL/GCIPL OCT scans or visual field (VF) tests;
and glaucomatous VF defect, as confirmed by at least two consecutive VF examinations. Reliable VF
tests were defined as those having false-negative rates less than 15%, false-positive rates less than 15%,
and fixation losses less than 20%. Glaucomatous defects were assigned for VF tests showing any cluster
of three points or more with p < 0.05 on the pattern deviation map in at least one hemifield, including
one point or more with p < 0.01; a pattern standard deviation of p < 0.05; or glaucoma hemifield test
results outside the normal limits [16]. Glaucomatous eyes were further classified by severity into VF
severity grades [17] of early (MD > −6 decibels (dB)), moderate (−12 dB < MD ≤ −6 dB), and advanced
glaucoma (MD ≤ −12 dB).

For healthy controls, the inclusion criteria were eyes with best corrected visual acuity ≥20/25;
open angle on gonioscopy; absence of glaucomatous optic neuropathy and RNFL defect; no history of
elevated intraocular pressure; no history of intraocular surgery except simple cataract surgery; no history
of retinal disease or any kinds of optic neuropathy that could affect OCT scans; and normal VFs.

2.2. Glaucoma Diagnosis by Glaucoma Specialists

Initial diagnosis (glaucoma or control) was made by two experienced glaucoma specialists
(C.K., J.M.K.) independently of each other and served as a reference standard. Each diagnosis was
determined based upon observation of disc and RNFL photographs and VFs without knowledge
of the patient’s clinical information. Discrepancies were resolved by consensus through discussion;
if no consensus was reached, the case was excluded from the final dataset. Moreover, for representative
comparison of the diagnostic ability between the deep learning system and glaucoma specialists,
two additional experienced glaucoma specialists (J.C.H., K.E.K.) independently diagnosed each case
in a blind manner using the RNFL thickness map, the same image dataset used to test the deep
learning system.

2.3. Spectral-Domain Optical Coherence Tomography Examination

The SD-OCT examination was performed after pupil dilation. One macular scan focusing on
the fovea and one peripapillary scan focusing on the optic disc (all 200 × 200 cube protocol) were
acquired for every subject. Only OCT images with scans of good quality were included for analysis.
Data with segmentation errors, motion artifacts due to eye movements or involuntary blinking, fixation
error, or signal strength index <7 were excluded from analysis. OCT images with severe resolution
reduction or significant artifacts were also excluded. Among the various OCT maps, deviation and
thickness maps from ONH/RNFL analysis and macular ganglion cell analysis were included in the
dataset; left eye images were mirrored to a right eye orientation.

The methods have been described in detail previously [8]. Briefly, an optic disc cube obtained from
a three-dimensional dataset that covers a 6 mm2 area is centered on the optic disc. After generating
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an RNFL thickness map from the cube dataset, the software automatically determines the center of
the disc and then positions a calculation circle 3.46 mm in diameter from the cube dataset for RNFL
thickness measurement. The ganglion cell analysis algorithm detects and measures macular GCIPL
thickness within an annulus of inner vertical and horizontal diameters of 1 and 1.2 mm, respectively,
and outer vertical and horizontal diameters of 4 and 4.8 mm, respectively. Based on these automatic
measurement data of RNFL and macular GCIPL thickness, SD-OCT provides a thickness map and
a deviation map. For both RNFL and GCIPL deviation maps, the areas appear as yellow or red to
represent thicknesses less than the lower 5% or 1% in comparison with age-matched normative data,
respectively. Uncolored areas indicate RNFL or GCIPL thickness within the normal range.

2.4. Deep Learning Framework

We used a CNN–based framework for classification in this study; the architecture of the
deep learning model is presented in Figure 1. The visual geometry group deep CNN (VGG-19),
the state-of-the-art image classification task proposed by Simonyan and Zisserman [18], was our base
deep learning model architecture for glaucoma diagnosis using OCT maps. This VGG-19 network
consists of 19 layers that are grouped into five stacks of convolutional layers with 3 × 3 kernels and
maximum pooling. A stack of convolutional layers is followed by three fully connected layers with
4096, 4096, and 1000 channels, respectively. The convolutional neural layers were used to extract local
feature representations to the next layer, while the fully connected layers were used to predict the
classification (glaucoma/normal) result. It has been widely adopted to solve image classification tasks
in both medical and general fields and has shown excellent results [12].
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Figure 1. Schematic overview of the proposed deep learning model of convolutional neural network
(CNN)-based visual geometry group deep (VGG-19) architecture. The input data were a stack of
two-dimensional images (176 × 176 pixel) composed of four optical coherence tomography images
(thickness and deviation maps of retinal nerve fiber layer (RNFL) and ganglion cell–inner plexiform
layer (GCIPL) analyses) and a matrix image with an ocular axial length value.

We trained the network from scratch with the input of a stack of two-dimensional images
(176 × 176 pixel) composed of four OCT images (thickness and deviation maps of RNFL and GCIPL
analyses) and a matrix image with an ocular axial length value. For comparison of the diagnostic
performance of combination models, the number of input images ranged from 1 to 5. By performing
convolution and fully connected layer training, the output of the softmax layer represents the probability
of glaucoma diagnosis. For the training model, we used the stochastic gradient descent optimizer with
a momentum of 0.9, a learning rate of 0.01, a batch-size of 8, and a maximum learning epoch of 100.
During training, we snapshot the model every 1 epoch and selected one with the highest validation
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accuracy as the final model. This framework was implemented in PyTorch 1.2 on Windows 10 with
Nvidia GTX 1080Ti graphics processing unit support.

2.5. Heatmap Analysis

As a visual aid to help explain the results produced by the deep learning–based diagnosis
system, heatmaps highlighting the important regions in each OCT image for predicting glaucoma
were generated using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm [19].
Heatmaps from the internal validation dataset were reviewed by glaucoma specialists to validate the
model. Two experienced glaucoma specialists (J.C.H., K.E.K.) independently evaluated the locations of
RNFL and macular GCIPL defects on original OCT maps in a masked manner. Discrepancies between
the two specialists’ findings were resolved through discussion. Agreements upon defect locations
between glaucoma specialists and heatmaps produced based upon the deep learning model were
scored as either excellent, partial, or no agreement.

2.6. Statistical Analyses

The baseline characteristics of glaucomatous eyes and controls were compared using the
independent t-test for continuous variables and the chi-square test for categorical variables. Comparison
of baseline characteristics between eyes of different glaucoma severities (early, moderate, and severe)
was performed using the one-way analysis of variance test for continuous variables and the chi-square
test for categorical variables. The Tukey test was used for post hoc analysis. Sensitivities and
specificities were assessed to analyze the diagnostic ability of glaucoma specialists when using
the RNFL thickness map. The McNemar test was used to compare the automated diagnosis of the
deep learning system against the reference standard and against glaucoma specialists’ diagnosis of
OCT maps. For comprehensive evaluation of the diagnostic performance of the trained deep learning
model, it was tested with the independent datasets (i.e., the internal and external validation datasets),
and the area under the receiver operating characteristic curve (AUROC) as well as 95% confidence
intervals (CIs) and sensitivities at the fixed specificities of 80% and 90% were calculated. The DeLong
test was used to test the statistical significance of the diagnostic performance difference (represented as
AUROC) between any two parameters [20]. The AUROCs of different variables were compared using
MedCalc software version 12.0 (MedCalc Statistical Software, Marakierke, Belgium). Other statistical
analyses were performed using Statistical Package for the Social Sciences version 21.0 for Windows
(IBM Corp., Armonk, NY, USA). Statistical significance was defined as p < 0.05.

3. Results

Table 1 presents baseline characteristics of included subjects. In the training dataset, the glaucoma
group had significantly higher mean age, lower RNFL and GCIPL thicknesses, and lower mean
deviation values compared to the control group (all p ≤ 0.001). Similar results were also found in
respective group comparisons from the internal and external validation datasets. Table 2 summarizes the
characteristics of subjects from the internal validation set according to glaucoma severity. No significant
difference was found among them in age, gender, and axial length. However, lower RNFL and GCIPL
thicknesses and lower VF MD values were found in eyes with more severe degrees of glaucomatous
damage (all p < 0.001).

Comparison between glaucomatous eyes with different severities was performed using the one-way
analysis of variance test (for continuous variables) and the chi-square test (for categorical variables).

The Tukey test was used for post hoc analysis. In the post hoc analysis, p < 0.05 was regarded as
the significance criterion.
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Table 1. Baseline characteristics of subjects included in the training, internal validation, and external validation datasets.

Training Dataset Internal Validation Dataset External Validation Dataset

Control
(n = 332)

Glaucoma
(n = 1490)

Control
(n = 104)

Glaucoma
(n = 321)

Control
(n = 108)

Glaucoma
(n = 247)

Age (years) 54.0 ± 14.5 59.1 ± 13.8 55.9 ± 13.1 58.7 ± 13.7 53.4 ± 15.5 58.4 ± 14.5
Male (n) 121 (49.4%) 569 (58.9%) 42 (42.9%) 177 (59.2%) 64 (59.3%) 151 (61.1%)

Axial length (mm) 24.2 ± 1.1 25.1 ± 1.6 24.3 ± 1.5 25.0 ± 1.7 24.2 ± 1.3 24.7 ± 24.4
Average RNFL thickness (µm) 94.7 ± 8.9 71.6 ± 11.9 91.1 ± 9.5 69.7 ± 11.2 93.7 ± 7.2 73.5 ± 52.3
Average GCIPL thickness (µm) 82.1 ± 6.7 67.6 ± 10.5 80.3 ± 9.2 66.0 ± 9.2 82.3 ± 4.3 67.7 ± 9.1

HVF MD (dB) −0.9 ± 2.6 −7.2 ± 7.6 −0.9 ± 2.4 −7.9 ± 7.0 −0.9 ± 1.2 −7.8 ± 7.2

RNFL, retinal nerve fiber layer; GCIPL, ganglion cell–inner plexiform layer; HVF, Humphrey visual field; MD, mean deviation.

Table 2. Comparisons among subjects from the internal validation set according to glaucoma severity.

Early Glaucoma
(MD > −6 dB)

n = 162 (A)

Moderate Glaucoma
(−6 dB ≥MD > −12 dB)

n = 79 (B)

Severe Glaucoma
(MD ≥ −12 dB)

n = 80 (C)
p Post Hoc Analysis

Age (years) 57.1 ± 13.5 58.8 ± 14.9 61.7 ± 12.6 0.074
Male (n) 88 (56.4%) 41 (59.4%) 48 (64.9%) 0.475

Axial length (mm) 25.2 ± 1.7 25.2 ± 1.6 25.1 ± 1.4 0.869
Average RNFL thickness (µm) 74.7 ± 10.4 67.9 ± 9.2 61.1 ± 8.3 <0.001 A > B > C
Average GCIPL thickness (µm) 69.3 ± 8.8 64.8 ± 7.9 60.1 ± 7.9 <0.001 A > B > C

HVF MD (dB) −2.5 ± 1.9 −8.9 ± 1.9 −17.9 ± 4.9 <0.001 A > B > C

RNFL, retinal nerve fiber layer; GCIPL, ganglion cell–inner plexiform layer; HVF, Humphrey visual field; MD, mean deviation.
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3.1. Diagnostic Ability of Deep Learning Systems Using OCT Maps

The AUROC of the deep learning system using OCT maps was high, ranging from 0.903 to
0.987 (Table 3). The diagnostic ability of the deep learning system based on single OCT maps was
the highest when using the RNFL thickness map (AUROC 0.987), followed by the RNFL deviation
map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map
(AUROC 0.903). For deep learning systems using combinations of OCT maps, the combination of
RNFL and GCIPL deviation maps demonstrated the highest diagnostic performance (AUROC 0.979),
followed by that of all four OCT maps (AUROC 0.977), and that of RNFL and GCIPL thickness
maps (AUROC 0.964).

Table 3. Diagnostic ability of deep learning system for diagnosing glaucoma based on retinal nerve
fiber layer (RNFL) and ganglion cell–inner plexiform layer (GCIPL) spectral-domain optical coherence
tomography maps when testing the internal validation set.

AUROC
(95% Confidence

Interval)

Sensitivity at
90% Specificity

(%)

Sensitivity at
80% Specificity

(%)

RNFL analysis
Thickness map 0.987 (0.971–0.995) 97.8 98.2
Deviation map 0.974 (0.954–0.987) 93.2 97.2

Thickness map and axial length 0.975 (0.956–0.988) 93.5 95.3
GCIPL analysis
Thickness map 0.966 (0.943–0.981) 92.5 94.6
Deviation map 0.903 (0.871–0.929) 86.6 93.1

Thickness map and axial length 0.950 (0.925–0.969) 88.8 93.7
Combination set

RNFL deviation and GCIPL deviation map 0.979 (0.961–0.991) 94.1 97.2
RNFL deviation and GCIPL thickness map 0.963 (0.941–0.979) 91.6 96.2
RNFL thickness and GCIPL deviation map 0.952 (0.927–0.970 94.4 95.9
RNFL thickness and GCIPL thickness map 0.964 (0.942–0.980) 96.4 97.5

All 4 maps (RNFL/GCIPL thickness and
deviation maps) 0.977 (0.958–0.989) 93.5 96.6

All 4 maps with axial length 0.961 (0.938–0.977) 92.8 94.0

AUROC, area under the receiver operating characteristic curve.

The diagnostic ability of the deep learning system using the RNFL thickness map did not differ
statistically significantly from that using the RNFL deviation map (p = 0.10), but it significantly
outperformed that using the GCIPL thickness map (p = 0.022). It also showed no significant difference
in diagnostic performance compared to the deep learning system based on the combination of RNFL
and GCIPL deviation maps (p = 0.24) but was significantly better than the deep learning system based
on combination of RNFL and GCIPL thickness maps (p = 0.033) and that based on all four OCT maps
(p = 0.013). Similar results were found when tested by using the external validation dataset (Table S1).

The glaucoma diagnostic performance of the deep learning system was compared among different
glaucoma severity subgroups using the internal validation dataset (Table 4). Despite its overall excellent
ability, the diagnostic ability increased with increasing disease severity. In early glaucoma, use of the
RNFL thickness map alone showed the highest diagnostic ability (AUROC 0.974), followed by the
combination of RNFL and GCIPL deviation maps (AUROC 0.965). In moderate and severe glaucoma,
most of the maps except the GCIPL deviation map (AUROC 0.935) showed excellent diagnostic
performance, with AUROC ranging between 0.965 and 0.999.

As the deep learning system using only the RNFL thickness map showed the best diagnostic
performance, its diagnostic ability was compared with that of two glaucoma specialists for representative
comparison. The sensitivities of the two glaucoma specialists were 96.9% and 97.5% and their specificities
were 88.5% and 93.3%, respectively, showing similar results to the deep learning system (Figure 2).
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Table 4. Area under the receiver operating characteristic curve (AUROC) results of deep learning system
for diagnosing glaucoma using retinal nerve fiber layer (RNFL) and ganglion cell–inner plexiform
layer (GCIPL) spectral-domain optical coherence tomography maps in the internal validation dataset
according to glaucoma severity.

AUROC (95% Confidence Interval)

Early Glaucoma
(n = 162)

Moderate
Glaucoma

(n = 79)

Severe Glaucoma
(n = 80)

RNFL analysis
Thickness map 0.974 (0.948–0.990) 0.999 (0.979–1.000) 0.999 (0.980–1.000)
Deviation map 0.956 (0.924–0.977) 0.993 (0.967–1.000) 0.993 (0.967–1.000)

Thickness map and axial length 0.951 (0.918–0.974) 0.999 (0.980–1.000) 0.999 (0.979–1.000)
GCIPL analysis
Thickness map 0.940 (0.905–0.965) 0.991 (0.964–0.999) 0.992 (0.965–0.999)
Deviation map 0.879 (0.834–0.916) 0.919 (0.869–0.954) 0.935 (0.889–0.966)

Thickness map and axial length 0.916 (0.876–0.947) 0.981 (0.950–0.996) 0.988 (0.960–0.998)
Combination set

RNFL deviation and GCIPL deviation map 0.965 (0.936–0.984) 0.988 (0.959–0.998) 0.999 (0.979–1.000)
RNFL deviation and GCIPL thickness map 0.947 (0.912–0.970) 0.980 (0.947–0.995) 0.981 (0.949–0.995)
RNFL thickness and GCIPL deviation map 0.939 (0.903–0.965) 0.965 (0.927–0.987) 0.965 (0.927–0.986)
RNFL thickness and GCIPL thickness map 0.952 (0.919–0.975) 0.976 (0.942–0.993) 0.976 (0.942–0.993)

All 4 maps (RNFL/GCIPL thickness and
deviation maps) 0.955 (0.923–0.977) 0.999 (0.980–1.000) 0.999 (0.979–1.000)

All 4 maps with axial length 0.932 (0.895–0.959) 0.990 (0.962–0.999) 0.990 (0.963–0.999)
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Figure 2. Area under the receiver operating characteristic curve (AUROC) of a deep learning system
for glaucoma diagnosis based on a retinal nerve fiber layer thickness map of spectral-domain optical
coherence tomography, in comparison with that of glaucoma specialists.

3.2. Heatmap Analysis

For visualization of our deep learning–based diagnostic system and to confirm the areas
contributing most to the diagnosis, heatmaps were generated by using the Grad-CAM algorithm.
Specifically, heatmaps generated from the deep learning system using the RNFL and GCIPL thickness
maps were evaluated in particular, which showed the highest AUROC in the deep learning system
using RNFL and GCIPL maps. Analysis was conducted on the agreement regarding the location of
glaucomatous damage on RNFL and GCIPL thickness maps between the heatmaps from the deep
learning system and those from glaucoma specialists (Figure 3). The location of RNFL damage on the
heatmap produced using the RNFL thickness map generally agreed with that indicated by glaucoma
specialists, with 90.0%, 8.0%, and 2.0% of excellent, partial, and no agreement, respectively. The location
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of GCIPL damage indicated on the heatmap produced using the GCIPL thickness map also showed
an excellent level of agreement with that indicated by glaucoma specialists, with 88.0%, 6.4%, and 5.6%
of excellent, partial, and no agreement, respectively.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 9 of 14 
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Figure 3. Heatmaps highlighting the region of high probability for glaucoma diagnosis were generated
to validate the deep learning system using retinal nerve fiber layer (RNFL) and ganglion cell–inner
plexiform layer (GCIPL) thickness maps of spectral-domain optical coherence tomography. Images
are representative RNFL and GCIPL thickness maps and corresponding heatmaps for which the
deep learning system produce predictions resulting in (A,B) excellent, (C,D) partial, and (E,F) no
agreement with glaucoma specialists on RNFL and GCIPL defect locations. A. Glaucoma specialists
confirmed superotemporal and inferotemporal RNFL defect from the RNFL thickness map; the heatmap
showed that the deep learning system detected the same lesion, showing high agreement between them.
B. Glaucoma specialists and the heatmap agreed on an inferotemporal GCIPL defect. C. Superotemporal
and inferotemporal RNFL defects were confirmed by glaucoma specialists, but only the inferotemporal
lesion was demonstrated on the heatmap, thus showing partial agreement. D. A whole inferior GCIPL
defect was confirmed by a glaucoma specialist, but only part of the lesion was shown on the heatmap.
E. Discrepancy between the colored lesion on the heatmap and the thin, superotemporal RNFL defect
detected by glaucoma specialists, showing no agreement. F. A thin, inferotemporal GCIPL defect was
confirmed by glaucoma specialists, but the heatmap showed an irrelevant lesion.

4. Discussion

The SD-OCT is currently one of the most commonly used ancillary tests to diagnose
glaucoma [5–8,21]. Despite its high sensitivity and specificity [8], OCT maps have limitations in
intelligently elucidating the final diagnosis, and thus, clinicians have to make their own interpretations.
However, with the help of an extensively trained deep learning system, a final diagnosis can be
automatically generated. Such diagnoses could help ophthalmologists with rapid clinical decision
making and furthermore facilitate glaucoma screening. In light of these possibilities, we investigated
and validated the diagnostic ability of a deep learning–based glaucoma diagnostic system using
VGG-19 and various OCT maps. The strength of our study is that we used all the currently available
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RNFL and GCIPL deviation and thickness maps from glaucomatous eyes of various disease severities
and provided heatmap analysis to visualize the diagnostic patterns of the deep learning system.

The deep learning system showed great potential to enhance glaucoma diagnosis as confirmed in
a number of studies. Along with the excellent glaucoma diagnostic ability of deep learning systems
when using fundus photographs [13–15,22], deep learning systems using OCT for classification of
glaucomatous change in the peripapillary and macular areas also have shown good results [23–28].
Deep learning systems have been trained to automatically diagnose glaucoma based on OCT
measurements including RNFL/GCIPL thickness, minimum rim width relative to Bruch’s membrane
opening measurements, or ONH volume scans, demonstrating sensitivity and specificity over 90.0%.
Different from previous studies, the present study developed and validated a deep learning system
trained on all of the commonly used OCT maps, namely the thickness and deviation maps of RNFL and
GCIPL analyses. Among the four OCT maps, use of the RNFL thickness map alone yielded the highest
AUROC of 0.987, and the use of the macular GCIPL thickness map ranked second. The thickness
map may be more accurate than the deviation map as an information provider as it presents real
thickness change in an easily identified, colored pattern. The diagnostic performance of deep learning
systems using deviation maps can be limited, particularly in cases showing false-positive diagnostic
classification, which can train the neural network to imitate the original errors on deviation maps.
Interestingly, the diagnostic ability of a deep learning system based on RNFL maps was generally better
than that of a deep learning system based on GCIPL maps. This is probably in line with previous results
that the diagnostic ability of RNFL thickness measurements or RNFL maps was relatively better than
that of GCIPL thickness measurements of GCIPL maps, regardless of statistical significance [29–31].
Nonetheless, the overall diagnostic performance was high for single maps and combinations of
thickness and deviation maps, suggesting that use of the deep learning system with various OCT maps
has potential as a valuable diagnostic aid in glaucoma.

One major limitation of OCT is that its results are affected by the patients’ myopic degree
(represented by axial length or refractive measurements) [11,32,33], and thus, we additionally evaluated
whether providing the deep learning system with axial length would alter its diagnostic performance.
Our hypothesis was that if the deep learning system could identify the difference in OCT findings
between myopic and non-myopic eyes using axial length as a diagnostic cue, it would lower the
false-positive rates in myopic eyes, leading to increased specificity. However, adding axial length did
not significantly improve the diagnostic ability of our deep learning system in any case. We speculate
that the observed results occurred for the following reasons. First, although our dataset included
a large proportion of myopic eyes, the proportion of extremely highly myopic eyes having eccentric,
ungradable OCT findings was low, and thus the deep learning system did not have difficulty in
diagnosing glaucoma in myopic eyes. Second, the deep learning system may already have acquired
other unknown algorithms that can differentiate myopic eyes with glaucoma from healthy myopic
eyes. In such a case, axial length might provide no additional benefit. Finally, due to the high level of
diagnostic performance of the deep learning system using only a single OCT thickness map, the effect
of axial length may have been too subtle to elicit a statistically significant difference. These results may
indicate that, even for myopic eyes, the deep learning system can be trained to achieve a high standard
of glaucoma diagnostic ability by using only OCT maps.

Ophthalmologists rely on pattern recognition of changes in the ONH and the peripapillary area to
diagnose glaucoma. This dependence on visualization of glaucomatous damage is well suited to benefit
from combinations of glaucoma diagnostic devices and deep learning systems. Various deep learning
algorithms, including ResNet, VGGNet, AlexNet, and GoogLeNet have been developed and improved
over time for classification of medical images [2,12]. These have been combined with various types of
OCT data for improvement in glaucoma diagnosis. Asaoka et al. [28] developed a CNN classifier to
diagnose early glaucoma using RNFL and macular ganglion cell complex thickness measurements
from RNFL and macular OCT images with an AUROC of 0.937. They presented outstanding results
by transfer learning using a large pretraining dataset. The ResNet was used by Ran et al. [26] for
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glaucoma detection using OCT volume scans of the optic nerve head. They also reported high
diagnostic performance in three external validation datasets, with AUROCs of 0.893–0.897 (sensitivities
of 78–90% and specificities of 79–86%). Direct comparison of our results with prior studies is difficult
due to different patient characteristics, validation methods, diagnostic modalities, and type of images
used as input data. Nonetheless, we initially conducted a comparison analysis between VGG-19 and
ResNet-34 models. Despite no significant difference in diagnostic performance between VGG-19
(AUROC 0.987, 95% CI 0.971–0.995) and ResNet-34 (AUROC 0.978, 95% CI 0.959–0.990; p = 0.076)
when using the RNFL thickness map, the VGG-19 showed diagnostic patterns more compatible with
those of glaucoma specialists than did the ResNet-34 in heatmap analysis. Consequently, we chose the
VGG-19, a well-known CNN in biomedical image analysis, for its strong advantages in large-scale
image processing and its high speed and outstanding performance. Different from fundus photographs,
OCT maps have smaller number of pixels, which might have required more sophisticated processing.
The VGG-19, based on our results, showed that it can provide reliable predictions in glaucoma diagnosis
even when using OCT images.

It is well known that the diagnostic sensitivity of OCT increases as the glaucoma stages advance [34].
The deep learning system showed a similar tendency, having slightly lower sensitivity for eyes with
early glaucoma compared to that for those in more severe stages. In addition, cases showing no
agreement between glaucoma specialists and the deep learning system were found mostly in eyes
with early glaucoma. Patients with early glaucomatous damage can be difficult to diagnose using
only a single OCT image without other relevant clinical information, even for glaucoma specialists.
The deep learning system using OCT maps, in general, showed good diagnostic ability even in early
stages. However, the deep learning system using the GCIPL thickness map showed a statistically
significantly decreased diagnostic ability for the early stage. Use of the GCIPL deviation map showed
no significant difference in diagnostic ability between stages, but this was attributed to relatively low
diagnostic ability throughout all stages. Despite the generally high diagnostic performance of the deep
learning system even for early glaucoma, further technical development is required to improve the
diagnostic ability of the deep learning system using GCIPL maps for the early stage.

The deep learning system can learn autonomously through training, but there is still a need
for ophthalmologists to supervise and confirm its detection pattern to allow its general application
in clinics. In this regard, we evaluated heatmap patterns for better understanding of the region of
interest detected by the deep learning system. Numerous studies have reported that glaucomatous
peripapillary RNFL damage mainly occurs in the superotemporal and inferotemporal regions, and the
same applies for macular GCIPL damage [35]. The deep learning system using OCT thickness maps
detected similar regions that were recognized by glaucoma experts with high levels of agreement.
Partial or no diagnostic agreement existed between them, but overall the deep learning system mostly
indicated the correct location of glaucomatous damage. The present study shows that if the interpretable
deep learning system–aided OCT can demonstrate regions with high probability of glaucoma as
a pre-interpreter, it will be able to reduce clinicians’ burden in busy clinics, and furthermore will be
beneficial in detecting progressive change.

Several limitations should be considered when interpreting the present study. First, although
we had two glaucoma specialists (C.K. and J.M.K.) to confirm the diagnosis of subjects from the
training and validation sets, non-glaucomatous eyes could have been included in the dataset. However,
as two separate glaucoma specialists (J.C.H. and K.E.K.) additionally evaluated the OCT images,
we believe that this likely minimized the possibility of such a problem. Second, to support the
generalizability of our deep learning system, we evaluated its diagnostic performance on an external
validation set received from Kangbuk Samsung Hospital. Nevertheless, all OCT images were only
from clinic-based samples of subjects with Asian ethnicities, and thus further investigation with a large
number of population-based samples including diverse ethnicities is needed to validate our results.
Finally, only gradable, good-quality OCT images were included in the present study, which may be
limited in reflecting real clinical settings. Therefore, further training and testing with both gradable
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and ungradable OCT images should be incorporated into our deep learning–based diagnostic system
to allow broader application.

In conclusion, the deep learning system using VGG-19 showed good glaucoma diagnostic ability
when using deviation and thickness maps of RNFL and GCIPL analyses. Deep learning systems using
various OCT maps have great potential to be used as a glaucoma diagnostic aid. Our findings may
have valuable implications for establishing the computer-aided automatic interpretation of OCT data
to serve as a good clinical decision-support tool.
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Table S1: Glaucoma diagnostic ability of deep learning system using retinal nerve fiber layer (RNFL) and ganglion
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validation set.
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