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Abstract

Objectives: To identify genes that confer MS risk via the alteration of cis-

regulated protein abundance and verify their aberrant expression in human

brain. Methods: Utilizing a two-stage proteome-wide association study (PWAS)

design, MS GWAS data (N = 41,505) was respectively integrated with two dis-

tinct human brain proteomes from the dorsolateral prefrontal cortex, including

ROSMAP (N = 376) in the discovery stage and Banner (N = 152) in the confir-

mation stage. In the following, Bayesian colocalization analysis was conducted

for GWAS and protein quantitative trait loci signals to prioritize candidate

genes. Differential expression analysis was then used to verify the dysregulation

of risk genes in white matter and gray matter for evidence at the transcription

level. Results: A total of 51 genes whose protein abundance had association

with the MS risk were identified, of which 18 genes overlapped in the discovery

and confirmation PWAS. Bayesian colocalization indicated six causal genes with

genetic risk variants for the MS risk. The differential expression analysis of

SHMT1 (PFDR = 4.82 9 10�2), FAM120B (PFDR = 8.13 9 10�4) in white mat-

ter and ICA1L (PFDR = 3.44 9 10�2) in gray matter confirmed the dysregula-

tion at the transcription level. Further investigation of expression found

SHMT1 significantly up-regulated in white matter lesion, and FAM120B up-

regulated in both white matter lesion and normal appearing white matter.

ICA1L was down-regulated in both gray matter lesion and normal appearing

gray matter. Interpretation: Dysregulation of SHMT1, FAM120B and ICA1L

may confer MS risk. Our findings shed new light on the pathogenesis of MS

and prioritized promising targets for future therapy research.

Introduction

Multiple sclerosis (MS) is a chronic inflammatory,

demyelinating and neurodegenerative disease of the cen-

tral nervous system that affects over 2.3 million people

worldwide.1 Identification of MS biomarkers to aid in the

diagnosis and treatment at an early stage is extremely

important due to the varied clinical characteristics of MS

and the poor effectiveness of current treatments.2 As the

final products of genetic effects, protein biomarkers are

ideal measurable molecules that provide a clue about the

development of MS. Protein abundance alteration in

human brain has been proved associated with MS. For

instance, protein abundance of glial fibrillary acidic pro-

tein (GFAP),3,4 myelin basic protein (MBP)3,5 and thy-

mosin b-46 was dysregulated in lesions from MS patients’

brain, and these proteins have been used for disease

severity prediction7 and targeted therapy8 lately. In addi-

tion, comparing with bodily fluid samples like cere-

brospinal fluid9–11 and plasma,9,12 human brain tissue

directly reflects the pathophysiology changes of MS and

has become increasingly important in disease biomarker

identification.5,13 However, few studies focused on a

specific subregion of human brain, which has ignored the

possible differences in protein types and abundance

between subregions with distinct functions.14,15 Recent
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transcriptomic16 and epigenetic17 investigations have

linked the dorsolateral prefrontal cortex (dlPFC) to MS

susceptibility. Insufficiency of dlPFC proteomic researches

remains ambiguity for MS pathogenesis and treatment

exploration.

Polygenic susceptibility is thought to be an important

factor in MS pathogenesis, and MS heritability was esti-

mated to be 0.64 (95%CI 0.36–0.76).18 Post genome-wide

association studies (GWAS) analyses provide an opportu-

nity for this void, for example, proteome-wide association

studies (PWAS) developed recently establish associations

between proteome abundance and disease phenotype using

protein quantitative trait loci (pQTL)19 to explain the

effects of genetic architectures in terms of downstream cis-

regulated proteins. The integrative analysis combining

PWAS and Bayesian colocalization to identify susceptibility

genes for certain diseases has recently been used in several

studies for risk loci excavation,20–22 paving the way for pri-

oritizing biomarkers that play a crucial role in pathogene-

sis of MS. In order to determine if susceptibility genes

identified by integrative analysis were expressed differently

in the MS postmortem brain, it is necessary to explore the

expression of risk genes from two dimensions successively,

distribution (white and gray matter) and lesion degree

(lesion and normal appearing tissue). MS was formerly

regarded as a demyelinating disease involving white mat-

ter, recently seizures23 and cognitive impairment24 are two

symptoms of MS that may be brought on by inflammatory

lesions that damage gray matter rich in neurites and neu-

ron cell bodies. Thus, in addition to white matter, cortical

lesions which have an important role in MS pathophysiol-

ogy25–27 also need to be explored.

In the current study, we combined high-throughput

proteomics with genetic summary statistics in order to

identify genomic architecture-associated protein biomark-

ers for MS and to provide promising targets for future

pathogenesis studies. A three-step approach was used to

systematically link protein biomarkers to MS. Figure 1

summarizes the overall analysis workflow applied in this

study. First, we performed a two-stage PWAS analysis

using two independent human brain protein quantitative

trait loci (pQTL) data and summary statistics from a

large-scale MS GWAS. At the discovery stage, we used

human brain pQTL data from the dlPFC of 376 individu-

als collected by the Religious Order Research (ROS) or

the Rush Memory and Aging Project (MAP) (ROSMAP

dataset). At the confirmation stage, we used pQTL data

from the dlPFC of 152 individuals collected at the Banner

Sun Health Institute (Banner dataset). Second, Bayesian

colocalization was used to highlight genes with pQTL/

GWAS signals driven by shared causal variants. Finally,

differential expression analysis was performed to explore

the risk gene dysregulation in white matter and cortical

gray matter in precentral gyrus for MS cases when com-

pared with healthy controls.

Materials and Methods

GWAS

We focused on the GWAS result conducted by the Inter-

national Multiple Sclerosis Genetics Consortium

(IMSGC)28in the current integrative study. Briefly,

IMSGC conducted genome-wide meta-analysis through

using 14,802 MS cases and 26,703 controls in discovery

phase, containing 15 datasets including UK, CE, Medi,

Nordic, US, AUS, FINLAND, GeneMSA DU, GeneMSA

SW, GeneMSA US, IMSGC, BWH/MIGEN, ANZ, Berke-

ley and Rotterdam. The fixed effects inverse-variance

meta-analysis was performed. More details about the sam-

ple description, genotyping, quality control, and statistical

analyses could be found in original paper.28

pQTL in the discovery PWAS

The discovery ROSMAP dataset was generated by Wingo

et al20,29 using dlPFC tissues of 376 individuals of Euro-

pean ancestry. Removing the effects of clinical characteris-

tics and technical factors (protein batch, MS2 versus MS3

reporter quantitation mode, sex, age at death, post-

mortem interval, and study (ROS vs. MAP)), the normal-

ized abundance of 8356 proteins were calculated, among

which 1475 protein could find significant cis associations

with genetic variation. The weights for these 1475 protein

were used for the discovery PWAS in the study. More

details about the sample description, proteomic analysis,

quality control, and statistical analyses are provided in the

original paper.20,29

pQTL in the confirmation PWAS

Wingo et al produced Banner dataset20,30 using dlPFC tis-

sue samples of 152 individuals of European ancestry. The

procedure of proteomic analysis applied to Banner dataset

was the same as described above for ROSMAP dataset.

Among 8168 proteins passed quality control, a total of

1139 was heritable. The weights of these 1139 proteins

were used for confirmation PWAS in this study. More

details about the sample description, proteomic analysis,

quality control, and statistical analyses are provided in the

original paper.20,30

Proteome-wide association studies

Genotypes and protein abundance were combined to

acquire the weights to predict the protein abundance
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according to SNPs information in GWAS. We used

FUSION.assoc_test.R default parameter to combine the

genetic effect of MS (MS GWAS z-score) with the protein

weights by calculating the linear sum of z-score9weight

for the independent SNPs at the locus to perform the dis-

covery and confirmation PWAS. The P value adjust for

false discovery rate (FDR) using the Benjamini–Hochberg

(BH) method were calculated to evaluate the significance

level of each locus. Other settings complied with default

FUSION parameters.31

Colocalization analysis

We also conducted colocalization analysis using the coloc

R package.32 Only genes with PFDR <0.05 in discovery

and confirmation PWAS were included in the subsequent

analysis. In this approach, the association of signals from

GWAS and pQTL with SNPs was assigned to five

hypotheses (Hx) as follows: H0, No association with either

GWAS or pQTL; H1, Association with GWAS, not with

pQTL; H2, Association with pQTL, not with GWAS; H3,

Figure 1. The integrated analysis approach used in present study to systematically link protein biomarkers to MS. Firstly, a two-stage PWAS anal-

ysis was performed using independent pQTL data (ROSMAP and Banner datasets) and summary statistics from a large-scale MS GWAS. Subse-

quently, we conducted Bayesian colocalization to identify risk genes with pQTL/GWAS signals driven by shared SNPs. Finally, differential

expression analysis was carried out to explore the risk gene dysregulation in MS white matter and cortical gray matter with different histological

manifestation (WM/GM lesions and NAWM/NAGM) as compared to healthy controls. pQTL, protein quantitative trait locus; ROSMAP, Religious

Orders Study and Rush Memory and Aging Project; MS, multiple sclerosis; GWAS, genome-wide association study; PWAS, proteome-wide associa-

tion study; SNP, single nucleotide polymorphism; WM, white matter; GM, gray matter; NAWM, normal appearing white matter; NAGM, normal

appearing gray matter.
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Association with GWAS and pQTL, two independent

SNPs; H4, Association with GWAS and pQTL, one shared

SNP. Coloc calculates the posterior probability of these

five hypotheses based on Bayesian test. H4>0.7 was con-

sidered as the threshold in colocalization analysis.

Differential expression analysis in brain

Differential expression analysis in global white
matter

Differential expression analysis facilitates to validate the

dysregulation of risk genes identified in integrated analysis

at the level of transcription. Normalized gene expression

profiles from white matter were obtained from two inde-

pendent, well-characterized studies. (1) RNA-seq dataset

contained the expression of white matter lesions from

specific histological brain areas in progressive MS cases

and controls without neurological disease.33 A total of 98

snap-frozen white matter tissue blocks were harvested

from UK Multiple Sclerosis Society Tissue Bank, including

52 white matter lesion, 21 normal appearing white matter

(NAWM) and 25 white matter control blocks. The classifi-

cation of tissue blocks in two pathologies (NAWM and

demyelinated lesions) was based on myelin oligodendro-

cyte glycoprotein (MOG+) staining showing demyelinated

lesions and HLA-DR+ staining showing the inflammatory

state using the definition described previously.34 Total

RNA was isolated and sequenced by Illumina NextSeq550

after quality control by RNA integrity number. Transcripts

were filtrated using Trimmomatic35 and counted with

strict mode in HTSeq-count.36 Differential gene expression

was performed using DEseq2 R package. The BH corrected

threshold of PFDR <0.05 was set for multiple comparison

to determine if mRNA expression level of risk genes were

statistically different between MS cases and controls. To

determine whether the specificity of risk gene dysregula-

tion in different histological areas, we compared expression

in lesion and NAWM respectively with heathy controls33

using Student’s T Test. (2)The microarray dataset in white

matter included tissue blocks from MS cases and healthy

individuals provided by Netherlands Brain Bank.37 In brief,

15 white matter lesion, 15 NAWM and 10 controls were

harvest and classified according to activity measured by

the staining of myelin proteolipid protein (PLP) and HLA-

DP/Q/R defined previously.38,39 Total RNA was extracted

and hybridized on Agilent Human Gene Expression

4 9 44 K v2 Microarray, followed by normalization using

loess and Gquantile algorithm in limma R package. Differ-

ential expression analysis was performed using limma R

package. Investigation of risk genes expression in lesion

and NAWM comparing with healthy controls33 was per-

formed with the same methodology mentioned above.

Differential expression analysis in cortical gray
matter from precentral gyrus

Normalized gene expression profile in gray matter from pre-

central gyrus was generated using 20 cortical gray matter

lesions, 20 normal appearing gray matter (NAGM) and 10

controls from UK Multiple Sclerosis Society Tissue Bank.40

Tissue selection and classification were based on the results of

MOG and MHC class II immunostaining as previously

described.41 Only subpial cortical lesions extending at least

up to layer V were dissected, then Type III gray matter lesion

and NAGM were prepared for RNA extraction. Total RNA

was extracted and hybridized on Illumina whole genome

HumanRef8 v2 BeadChip arrays, following normalization

with Rosetta Biosoftware.42 Differential gene expression anal-

ysis was performed with the same methodology mentioned

above. Detailed information of expression profiles on each

sample, including lesion classification, sequencing, quality

control has been published previously.33,37,40

Results

Two-stage PWAS identified 18 overlapped
proteome-wide significant risk genes for MS

We performed a two-stage PWAS via integrating two dis-

tinct human brain pQTL datasets and MS GWAS results.

In the discovery stage, ROSMAP PWAS identified 35

proteome-wide significant (PWS) genes for MS at a FDR-

adjusted P value (PFDR) threshold of 0.05, indicating the

protein abundance of these genes were associated with MS

risk (Table 1). To further confirm the identified risk genes,

we conducted Banner PWAS in the confirmation stage and

found another 16 PWS genes. A total of 18 genes in the

discovery ROSMAP PWAS successfully replicated in the

Banner PWAS (14 genes up-regulated with positive z-score

including ZC2HC1A, TSFM, POGLUT1, TRAF3, DHRS11,

SHMT1, GIMAP4, MTHFR, HMGCL, FAM120B, DOC2A,

LRP4, WARS and GALC, whereas 4 genes down-regulated

with negative z-score including ICA1L, TRIM47, AUH and

PANK4), and other 32 significant PWAS associations

existed only in one dataset (ROSMAP or Banner). We

focused on these 18 genes overlapped in the two-stage

PWAS in the following integrated analysis, as they may

confer MS risk by regulating the protein abundance.

Bayesian colocalization analysis highlighted
11 risk genes whose pQTL/GWAS signals
were driven by shared genetic variants

To verify whether associations between MS and pQTL for

the18 genes overlapped in previous two-stage PWAS were

driven by a shared causal variant, we next performed
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Table 1. The discovery ROSMAP PWAS identified 35 proteome-wide significant genes, of which 18 genes were replicated in Banner PWAS.

Discovery PWAS Confirmation PWAS
Evidence for

confirmationGene Chromosome PWAS z-score PWAS P PWAS FDR P PWAS z-score PWAS P PWAS FDR P

1 ZC2HC1A 8 5.65 1.61E-08 5.86E-06 5.68 1.38E-08 2.24E-06 Yes

2 TSFM 12 6.42 1.38E-10 6.70E-08 6.49 8.41E-11 1.91E-08 Yes

3 POGLUT1 3 4.76 1.98E-06 4.81E-04 3.89 9.84E-05 5.33E-03 Yes

4 TRAF3 14 3.84 1.21E-04 1.18E-02 4.36 1.32E-05 1.15E-03 Yes

5 DHRS11 17 4.17 3.02E-05 4.40E-03 4.37 1.27E-05 1.15E-03 Yes

6 SHMT1 17 3.82 1.32E-04 1.20E-02 4.16 3.19E-05 2.42E-03 Yes

7 GIMAP4 7 3.97 7.27E-05 8.15E-03 3.91 9.08E-05 5.16E-03 Yes

8 MTHFR 1 3.79 1.52E-04 1.30E-02 4.77 1.81E-06 2.29E-04 Yes

9 ICA1L 2 �3.92 8.89E-05 9.25E-03 �4.48 7.40E-06 8.41E-04 Yes

10 HMGCL 1 3.71 2.04E-04 1.47E-02 3.71 2.04E-04 9.55E-03 Yes

11 FAM120B 6 4.05 5.10E-05 6.19E-03 4.05 5.10E-05 3.22E-03 Yes

12 DOC2A 16 4.43 9.28E-06 1.69E-03 4.15 3.40E-05 2.42E-03 Yes

13 TRIM47 17 �3.68 2.35E-04 1.56E-02 �3.46 5.38E-04 2.18E-02 Yes

14 LRP4 11 3.47 5.12E-04 2.82E-02 3.71 2.10E-04 9.55E-03 Yes

15 WARS 14 3.49 4.87E-04 2.82E-02 3.98 6.81E-05 4.08E-03 Yes

16 GALC 14 3.44 5.93E-04 2.98E-02 4.37 1.25E-05 1.15E-03 Yes

17 AUH 9 �3.35 8.14E-04 3.71E-02 �3.43 5.97E-04 2.34E-02 Yes

18 PANK4 1 �3.30 9.67E-04 4.03E-02 �4.10 4.05E-05 2.71E-03 Yes

19 C4A 6 7.83 4.93E-15 3.59E-12 �14.16 1.65E-45 9.38E-43 Noa

20 HLA-DRB5 6 20.18 1.57E-90 2.29E-87 - - - No

21 PREX1 20 5.30 1.15E-07 3.35E-05 - - - No

22 TMEM160 19 �4.61 4.05E-06 8.43E-04 - - - No

23 LMAN2 5 4.19 2.85E-05 4.40E-03 - - - No

24 LLGL1 17 4.14 3.49E-05 4.62E-03 - - - No

25 FUCA1 1 �3.71 2.08E-04 1.47E-02 - - - No

26 RAB24 5 �3.71 2.08E-04 1.47E-02 - - - No

27 FKBP2 11 �3.70 2.12E-04 1.47E-02 - - - No

28 PRICKLE1 12 �3.52 4.29E-04 2.72E-02 - - - No

29 PDE2A 11 �3.48 4.98E-04 2.82E-02 - - - No

30 SLC44A2 19 �3.47 5.22E-04 2.82E-02 - - - No

31 CARM1 19 �3.45 5.51E-04 2.87E-02 - - - No

32 WBP2 17 �3.39 6.90E-04 3.35E-02 - - - No

33 STX1A 7 �3.38 7.30E-04 3.43E-02 - - - No

34 SH3GL1 19 �3.31 9.20E-04 4.03E-02 - - - No

35 TYW5 2 3.30 9.60E-04 4.03E-02 - - - No

36 C4B 6 - - - �16.92 3.28E-64 3.73E-61 No

37 PSMB9 6 - - - 7.63 2.28E-14 8.64E-12 No

38 IFI30 19 - - - 7.08 1.40E-12 3.98E-10 No

39 OS9 12 - - - 6.04 1.57E-09 2.98E-07 No

40 OGFOD2 12 - - - 5.01 5.48E-07 7.79E-05 No

41 CHCHD2 7 - - - �4.33 1.46E-05 1.19E-03 No

42 ACOX1 17 - - - 3.83 1.31E-04 6.77E-03 No

43 SMIM8 6 - - - 3.72 1.99E-04 9.55E-03 No

44 MERTK 2 - - - �3.60 3.21E-04 1.40E-02 No

45 MADD 11 - - - 3.48 5.07E-04 2.14E-02 No

46 ATXN3 14 - - - 3.39 7.10E-04 2.69E-02 No

47 ALG11 13 - - - 3.35 8.04E-04 2.95E-02 No

48 RAB5C 17 - - - 3.27 1.07E-03 3.80E-02 No

49 ARHGEF25 12 - - - 3.25 1.15E-03 3.96E-02 No

50 IQGAP1 15 - - - �3.20 1.38E-03 4.61E-02 No

51 ARF4 3 - - - 3.17 1.51E-03 4.91E-02 No

The table provides the z-scores for proteome-wide significant genes (PWAS FDR P < 0.05) with their corresponding P values and FDR-adjusted P

values in the ROSMAP and Banner PWAS. A total of 51 proteome-wide significant associations were identified in ROSMAP discovery and Banner

confirmation PWAS, among which 18 PWAS associations could be replicated, and 32 existed only in one dataset.
aC4A was not regarded as replicated due to the z-scores in opposite directions in the two-stage PWAS.
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Bayesian colocalization analysis, the results are as follows

(Table 2). In ROSMAP dataset, we observed strong poste-

rior probability (H4 > 0.7) for hypothesis 4 (H4, pQTL/

GWAS signals driven by a shared causal variant) in 9

genes, suggesting MS risk may be mediated by causal

genetic variants that have effects on protein abundance.

In Banner dataset, the strong H4 was found for 8 genes.

Notably, a total of 6 genes including ZC2HC1A, TSFM,

SHMT1, ICA1L, HMGCL and FAM120B were identified

independently in both ROSMAP and Banner datasets,

indicating associations between these genes and MS risk

were of high confidence. In general, 6 genes out of 18

PWS genes overlapped in the two-stage PWAS provided

evidence of colocalization. We defined these 6 genes as

candidate risk genes.

Differential expression analysis validated
dysregulation of SHMT1, FAM120B and
ICA1L in MS cases

To validate if the 6 candidate risk genes (ZC2HC1A,

TSFM, SHMT1, ICA1L, HMGCL and FAM120B) were

dysregulated at transcriptional level in MS cases, we

examined the expression in MS cases comparing with

healthy controls.

We examined the expression in white matter and gray

matter to explore the specificity of risk genes in brain

parenchyma. In the white matter, SHMT1 (PFDR = 4.82E-

02) and FAM120B (PFDR = 8.13E-04) were significantly

up-regulated in effect direction consistent with PWAS

(positive z-score in PWASs means up-regulated, negative

means down-regulated) (Fig. 2A,C). In the gray matter,

ICA1L (PFDR = 3.44E-02) was considerably down-

regulated (Fig. 2F). Besides, we also examined the expres-

sion of genes other than candidate risk genes that had

one co-localized signal and found DOC2A (PFDR = 2.56E-

02), WARS (PFDR = 2.72E-05) and MTHFR

(PFDR = 1.11E-03) were also significantly up-regulated in

MS as compared to controls (Table 3, Fig. S1). After-

wards, we examined the expression in lesion and NAWM/

NAGM respectively comparing with healthy controls to

further investigate the dysregulation of SHMT1, FAM120B

and ICA1L in tissue blocks with varying degrees of patho-

logical changes. According to the Student’s T Test results,

SHMT1 (P = 2.51E-02) was dramatically up-regulated in

white matter lesions instead of NAWM comparing with

healthy controls (Fig. 2B). Further investigation of specific

lesion types revealed SHMT1 was mainly up-regulated in

active lesion (P = 4.00E-02) and inactive lesion

(P = 2.61E-02) (Fig. S2). Whereas the up-regulation of

FAM120B could be observed in both lesion (P = 2.83E-

04) and NAWM (P = 1.19E-03) comparing to controls

(Fig. 2D,E). Similarly, ICA1L was dramatically down-

regulated in both lesions (P = 4.41E-03) and NAGM

(P = 1.70E-02) comparing to controls (Fig. 2G,H). Dys-

regulation of SHMT1, FAM120B and ICA1L was con-

firmed at transcription level, further indicating these risk

genes affected protein abundance via the process of tran-

scription and confer MS risk.

Discussion

Elucidating the pathogenesis of disease is a key goal of

human genetics research, especially for neurodegenerative

Table 2. Bayesian colocalization analysis found 11 risk genes with pQTL/GWAS signals driven by a shared causal SNP, 6 of which overlapped in

ROSMAP dataset and Banner dataset.

ROSMAP Banner
Evidence for

confirmationGene Chromosome H4
a Causal variant H4 Causal variant

1 ZC2HC1A 8 0.987 Yes 0.980 Yes Yes

2 TSFM 12 0.957 Yes 0.974 Yes Yes

3 SHMT1 17 0.965 Yes 0.963 Yes Yes

4 ICA1L 2 0.869 Yes 0.877 Yes Yes

5 HMGCL 1 0.757 Yes 0.757 Yes Yes

6 FAM120B 6 0.913 Yes 0.808 Yes Yes

7 TRAF3b 14 0.991 Yes - - No

8 DOC2Ab 16 0.707 Yes - - No

9 MTHFRb 1 0.707 Yes - - No

10 WARSc 14 - - 0.791 Yes No

11 DHRS11c 17 - - 0.751 Yes No

The table provides the results of Bayesian colocalization analysis for 11 genes that found causal variants, 6 of which overlapped in ROSMAP and

Banner datasets.
aH4 is the Bayesian posterior probability based on hypothesis that pQTL and GWAS signals are regulated by a shared causal variant.
bGenes without evidence of colocalization in the Banner dataset.
cGenes without evidence of colocalization in the ROSMAP dataset.
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Figure 2. Differential expression analysis for SHMT1, FAM120B and ICA1L validated dysregulation of risk genes at transcription level. The boxplot

shows the differential expression analysis results of SHMT1, FAM120B and ICA1L out of 6 candidate risk genes verified by coloc. Firstly,

comparisons of expression between MS tissue blocks and controls were conducted in white matter and gray matter. Next, we further explored

dysregulation in different lesion types, including lesion, NAWM/NAGM and control. (A) SHMT1 was significantly up-regulated in white matter in

MS cases comparing with healthy controls; (B) Further investigation of subgroups showed SHMT1 was mainly up-regulated in white matter lesion

instead of NAWM when comparing with healthy controls; (C) FAM120B was significantly up-regulated in white matter in MS cases comparing

with healthy controls; (D) Further investigation revealed FAM120B was up-regulated in white matter lesion as compared to healthy controls; (E)

Further investigation revealed FAM120B was up-regulated in NAWM as compared to healthy controls; (F) ICA1L was significantly down-regulated

in gray matter in MS cases comparing with healthy controls; (G) Further investigation revealed ICA1L was down-regulated in gray matter lesion

comparing with healthy controls; (H) Further investigation revealed ICA1L was down-regulated in NAGM comparing with healthy controls. MS,

multiple sclerosis; HC, healthy control; NAWM, normal appearing white matter; NAGM, normal appearing gray matter.
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diseases like MS whose pathogenesis still remains obscure.

In this study, we performed a two-stage PWAS by inte-

grating human brain pQTL data and genome-wide associ-

ations, identifying 51 MS risk genes whose protein

abundance levels were associated with disease phenotype.

By comparing the results of PWAS in the discovery and

replication stages, we identified 18 overlapped MS risk

genes (14 genes up-regulated including ZC2HC1A, TSFM,

POGLUT1, TRAF3, DHRS11, SHMT1, GIMAP4, MTHFR,

HMGCL, FAM120B, DOC2A, LRP4, WARS, GALC,

whereas 4 genes down-regulated including ICA1L,

TRIM47, AUH and PANK4). These genes showed consis-

tent associations with MS in the two-stage PWAS. The

following integrative analysis of bayesian colocalization

identified 6 genes with colocalization evidence in both

ROSMAP and Banner datasets. Our results suggested that

efficient integration of brain pQTLs and MS-associated

GWAS signals facilitates the excavation for MS risk genes

whose genetic variation confer MS risk through modulat-

ing protein abundance. Three MS risk genes of high-

confidence including SHMT1, ICA1L and FAM120B were

validated at transcription level through differential expres-

sion analysis.

In the present results, we not only replicated and high-

lights genes already identified in current MS studies such as

SHMT1, but also identified novel risk genes like FAM120B

and ICA1L. As for SHMT1, the gene encodes a serine

hydroxymethyl transferase that plays an important role in

the folate cycle. It catalyzes the transfer of carbon units for

subsequent synthesis of nucleotides and methionine.43,44

Previous GWAS studies have identified SHMT1 as a novel

susceptibility locus for MS.45 We observed SHMT1 signifi-

cantly up-regulated in MS cases, which was consistent with

effect direction from eQTL and mQTL analysis in previous

publication.45 Interestingly, we noticed that both SHMT1

and MTHFR (a PWS MS risk gene identified in PWAS and

provided colocalization evidence in ROSMAP dataset) are

both key enzymes in the folate metabolic pathway. MTHFR

encodes methylenetetrahydrofolate reductase, which cat-

alyzes the conversion of 5,10-methylenetetrahydrofolate to

5-methyltetrahydrofolate. The association of MTHFR poly-

morphisms with MS has been validated in individuals of

various descent.46–48 Our findings indicated that the disor-

der of the one-carbon metabolic pathway may be closely

associated with the pathogenesis of MS, and more

researches are in need in the future.

FAM120B and ICA1L are novel MS risk genes.

FAM120B has been confirmed as a transcriptional co-

activator of PPARc,49 and PPARc activation could sup-

press the inflammatory state of macrophages as previous

study has shown.50 Recent studies have related PPARc
downregulation with MS and emphasize PPARc agonists

as a promising treatment in MS.51 What role the up-

regulation of FAM120B play indeed in PPARc pathway

need further study in the future. ICA1L has been identi-

fied as a risk gene for cerebrovascular disease by several

GWAS,52–54 and recent PWAS found that diseases associ-

ated with ICA1L include in cerebrovascular disease.55 A

causal relationship between MS and a range of cardiovas-

cular diseases has been found in a mendelian randomiza-

tion study,56 providing insights into the network of

diseases and their interactions, which could attribute to

some shared etiological pathways such as immune

system-related inflammatory responses and their contri-

bution to neurodegeneration.57 In general, our findings,

as well as the extant literature, revealed an important role

for SHMT1, ICA1L, FAM120B in the central nervous sys-

tem. They may confer MS risk by their protein-

abundance related effects on specific metabolic pathways.

Our study found that risk gene dysregulation had

specificity in distribution, as SHMT1 and FAM120B were

significantly up-regulated in the white matter, while

ICA1L was considerably down-regulated in the gray mat-

ter. Several studies have explored differences of genetic

effects between white and gray matter in MS and have

reported the differences at both the proteome13 and

Table 3. Overview of the analysis performed and genes identified in the study.

Gene

PWAS Colocalization analysis
Differential

expression analysis

Discovery Confirmation Discovery Confirmation Brain

1 SHMT1 Yes Yes Yes Yes Yesa

2 FAM120B Yes Yes Yes Yes Yesb

3 ICA1L Yes Yes Yes Yes Yesc

4 MTHFR Yes Yes Yes No Yes

5 DOC2A Yes Yes Yes No Yes

6 WARS Yes Yes No Yes Yes

aGlobal white matter lesions.
bGlobal white matter including lesions and normal appearing white matter.
cCortical gray matter lesions and normal appearing gray matter from precentral gyrus.
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transcriptome levels.58,59 This may be due to the various

pathophysiological mechanisms of demyelination in gray

and white matter,60 as white matter lesions are accompa-

nied by activation of local glial cells and infiltration of

peripheral leucocytes, whereas gray matter lesions show a

lack of activated glial cells and few infiltration of periph-

eral leucocytes.61 Another finding was that risk gene dys-

regulation was associated with the degree of pathological

changes, as up-regulation of SHMT1 could only be

observed in macroscopic lesions comparing with healthy

controls, but not in NAWM. Further investigation of

lesion types found SHMT1 was considerably up-regulated

only in active lesions and inactive lesions, indicating its

potential role in the early formation of plaque, which

could be used for the MS progression prediction.62 Mean-

while, dysregulation might exist extensively in different

histological areas, since FAM120B was up-regulated in

both NAWM and lesion comparing with controls, like-

wise ICA1L down-regulated in NAGM and lesion, sug-

gesting that the presence of dysregulation may be

widespread and persist from early pathologic stages to

development of lesion.

The present study has several strengths. Firstly, to the

best of our knowledge, this is the first PWAS study for

MS that utilized pQTL derived from human dlPFC, tak-

ing into account factors of post-transcriptional regulation

and translation levels. As only 3 (50%) of the 6 candidate

risk genes provided evidence at mRNA level, our results

reflected the essentiality for carrying out studies at protein

level. Secondly, through differential expression analysis,

we found that MS susceptiblity gene dysregulation has

specificity in distribution (white matter and gray matter)

and degree of lesions, which indicated the materials

sources as an important issue to pay attention to in

future research.

The study has several limitations. First, age and ethnic

limitation between the GWAS and pQTL studies may be

the key factor leading to deviation. Since most of the

samples/summary statistics used in present study are of

European descent, our conclusions may be constricted to

specific population, and larger PWAS studies using

cross-ethnic sample are in need for the future. Second,

the small sample size included in the proteomic analysis

resulted in the identification of a limited number of

pQTLs. Therefore, the number of PWAS genes identified

in this study was relatively small. Third, 32 significant

PWAS associations could not be replicated, which means

they only existed in one dataset (ROSMAP or Banner),

indicating that more confirmation work to be done

when using the integration methodology of PWAS.

Finally, we recognized that not all candidate PWS risk

genes with colocalized evidence were validated dysregula-

tion in expression, and there are a variety of possible

reasons: (1)Different tissue sources used in PWAS and

differential expression analysis may have various expres-

sion characteristics of risk genes, since pQTLs were

derived from dlPFC, while differential expression analysis

was selected from lesions and nearby NAWM/NAGM.

(2) Potential methodological differences in tissue collec-

tion, classification and analysis pipeline also affected the

results.

Overall, we identified three genetic predictive effects

(SHMT1, FAM120B, and ICA1L) across the genome using

a distinct but integrated analysis pipeline (PWAS, Baye-

sian co-localization and differential expression analysis).

These findings implicated causal biological pathways

involved in the pathogenesis of MS, which illuminates the

direction for further exploration in the future. More stud-

ies are warranted to discover the underlying mechanism

of abnormal changes in these proteins and their related

pathways in MS. Meanwhile, our results also prioritized

unique protein biomarkers and potential therapeutic tar-

gets that could aid in MS diagnosis and advance the

development of new intervention.

Acknowledgements

All authors are grateful for participation in our research.

This work was partly funded by the China Postdoctoral

Science Foundation (2020 M673247), Key R & D projects

of Science and Technology Department of Sichuan Pro-

vince (2021YFS0248), the Postdoctoral Foundation of

West China Hospital (2020HXBH163), and College Stu-

dents’ innovation and entrepreneurship training program

(C2022121154).

Conflict of Interest

Nothing to report.

Author Contributions

Conceptualization, C.Z.; formal analysis, T.J., Y.M., F.Q.

and F.H.; writing—original draft preparation, T.J. and

Y.M.; writing—review and editing, C.Z.; visualization,

T.J., Y.M., F.Q. and F.H.; funding acquisition, C.Z. All

authors have read and agreed to the published version of

the manuscript.

References

1. Walton C, King R, Rechtman L, et al. Rising prevalence of

multiple sclerosis worldwide: insights from the atlas of

MS, third edition. Mult Scler. 2020;26(14):1816-1821.

2. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis.

N Engl J Med. 2018;378(2):169-180.

66 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Brain PWAS for multiple sclerosis T. Jia et al.



3. Fissolo N, Haag S, de Graaf KL, et al. Naturally presented

peptides on major histocompatibility complex I and II

molecules eluted from central nervous system of multiple

sclerosis patients. Mol Cell Proteomics. 2009;8(9):2090-

2101.

4. Ly L, Barnett MH, Zheng YZ, Gulati T, Prineas JW,

Crossett B. Comprehensive tissue processing strategy for

quantitative proteomics of formalin-fixed multiple sclerosis

lesions. J Proteome Res. 2011;10(10):4855-4868.

5. Broadwater L, Pandit A, Clements R, et al. Analysis of the

mitochondrial proteome in multiple sclerosis cortex.

Biochim Biophys Acta. 2011;1812(5):630-641.

6. Maccarrone G, Nischwitz S, Deininger SO, et al. MALDI

imaging mass spectrometry analysis-a new approach for

protein mapping in multiple sclerosis brain lesions. J

Chromatogr B Analyt Technol Biomed Life Sci.

2017;1047:131-140.

7. H€ogel H, Rissanen E, Barro C, et al. Serum glial fibrillary

acidic protein correlates with multiple sclerosis disease

severity. Mult Scler. 2020;26(2):210-219.

8. Severa M, Zhang J, Giacomini E, et al. Thymosins in

multiple sclerosis and its experimental models: moving

from basic to clinical application. Mult Scler Relat Disord.

2019;27:52-60.

9. Huang J, Khademi M, Fugger L, et al. Inflammation-

related plasma and CSF biomarkers for multiple sclerosis.

Proc Natl Acad Sci USA. 2020;117(23):12952-12960.

10. Mosleth EF, Vedeler CA, Liland KH, et al. Cerebrospinal

fluid proteome shows disrupted neuronal development in

multiple sclerosis. Sci Rep. 2021;11(1):4087.

11. Kroksveen AC, Opsahl JA, Guldbrandsen A, et al.

Cerebrospinal fluid proteomics in multiple sclerosis.

Biochim Biophys Acta. 2015;1854(7):746-756.

12. Malekzadeh A, Leurs C, van Wieringen W, et al. Plasma

proteome in multiple sclerosis disease progression. Ann

Clin Transl Neurol. 2019;6(9):1582-1594.

13. Rai NK, Singh V, Li L, Willard B, Tripathi A, Dutta R.

Comparative proteomic profiling identifies reciprocal

expression of mitochondrial proteins between White and

gray matter lesions from multiple sclerosis brains. Front

Neurol. 2021;12:779003.

14. Lee D, Rushworth MF, Walton ME, Watanabe M,

Sakagami M. Functional specialization of the primate

frontal cortex during decision making. J Neurosci. 2007;27

(31):8170-8173.

15. Rushworth MF, Noonan MP, Boorman ED, Walton ME,

Behrens TE. Frontal cortex and reward-guided learning

and decision-making. Neuron. 2011;70(6):1054-1069.

16. Olah M, Patrick E, Villani AC, et al. A transcriptomic

atlas of aged human microglia. Nat Commun. 2018;9

(1):539.

17. Sanchez-Mut JV, Heyn H, Vidal E, et al. Whole genome

grey and white matter DNA methylation profiles in

dorsolateral prefrontal cortex. Synapse. 2017;71(6):e21959.

18. Westerlind H, Ramanujam R, Uvehag D, et al. Modest

familial risks for multiple sclerosis: a registry-based study

of the population of Sweden. Brain. 2014;137(Pt 3):770-

778.

19. Brandes N, Linial N, Linial M. PWAS: proteome-wide

association study-linking genes and phenotypes by

functional variation in proteins. Genome Biol. 2020;21

(1):173.

20. Wingo AP, Liu Y, Gerasimov ES, et al. Integrating human

brain proteomes with genome-wide association data

implicates new proteins in Alzheimer’s disease

pathogenesis. Nat Genet. 2021;53(2):143-146.

21. Liu J, Li X, Luo XJ. Proteome-wide association study

provides insights into the genetic component of protein

abundance in psychiatric disorders. Biol Psychiatry.

2021;90(11):781-789.

22. Ou YN, Yang YX, Deng YT, et al. Identification of novel

drug targets for Alzheimer’s disease by integrating genetics

and proteomes from brain and blood. Mol Psychiatry.

2021;26(10):6065-6073.

23. Uribe-San-Mart�ın R, Ciampi-D�ıaz E, Suarez-Hern�andez F,

V�asquez-Torres M, Godoy-Fern�andez J, C�arcamo-

Rodr�ıguez C. Prevalence of epilepsy in a cohort of patients

with multiple sclerosis. Seizure. 2014;23(1):81-83.

24. Morgen K, Sammer G, Courtney SM, et al. Evidence for a

direct association between cortical atrophy and cognitive

impairment in relapsing-remitting MS. Neuroimage.

2006;30(3):891-898.

25. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al.

Cortical demyelination and diffuse white matter injury in

multiple sclerosis. Brain. 2005;128(Pt 11):2705-2712.

26. Lucchinetti CF, Popescu BF, Bunyan RF, et al.

Inflammatory cortical demyelination in early multiple

sclerosis. N Engl J Med. 2011;365(23):2188-2197.

27. Popescu BF, Lucchinetti CF. Meningeal and cortical grey

matter pathology in multiple sclerosis. BMC Neurol.

2012;12:11.

28. International Multiple Sclerosis Genetics Consortium.

Multiple sclerosis genomic map implicates peripheral

immune cells and microglia in susceptibility. Science.

2019;365(6460):eaav7188.

29. Wingo AP, Fan W, Duong DM, et al. Shared proteomic

effects of cerebral atherosclerosis and Alzheimer’s disease

on the human brain. Nat Neurosci. 2020;23(6):696-700.

30. Beach TG, Adler CH, Sue LI, et al. Arizona study of aging

and neurodegenerative disorders and brain and body

donation program. Neuropathology. 2015;35(4):354-389.

31. Gusev A, Ko A, Shi H, et al. Integrative approaches for

large-scale transcriptome-wide association studies. Nat

Genet. 2016;48(3):245-252.

32. Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian

test for colocalisation between pairs of genetic association

studies using summary statistics. PLoS Genet. 2014;10(5):

e1004383.

ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 67

T. Jia et al. Brain PWAS for multiple sclerosis



33. Elkjaer ML, Frisch T, Reynolds R, et al. Molecular

signature of different lesion types in the brain white

matter of patients with progressive multiple sclerosis. Acta

Neuropathol Commun. 2019;7(1):205.

34. Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D,

Howell O. The neuropathological basis of clinical progression

in multiple sclerosis. Acta Neuropathol. 2011;122(2):155-170.

35. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible

trimmer for Illumina sequence data. Bioinformatics.

2014;30(15):2114-2120.

36. Anders S, Pyl PT, Huber W. HTSeq--a python framework

to work with high-throughput sequencing data.

Bioinformatics. 2015;31(2):166-169.

37. Hendrickx DAE, van Scheppingen J, van der Poel M, et al.

Gene expression profiling of multiple sclerosis pathology

identifies early patterns of demyelination surrounding

chronic active lesions. Front Immunol. 2017;8:1810.

38. Hendrickx DA, Koning N, Schuurman KG, et al. Selective

upregulation of scavenger receptors in and around

demyelinating areas in multiple sclerosis. J Neuropathol

Exp Neurol. 2013;72(2):106-118.

39. van der Valk P, De Groot CJ. Staging of multiple sclerosis

(MS) lesions: pathology of the time frame of MS.

Neuropathol Appl Neurobiol. 2000;26(1):2-10.

40. Magliozzi R, Howell OW, Durrenberger P, et al.

Meningeal inflammation changes the balance of TNF

signalling in cortical grey matter in multiple sclerosis. J

Neuroinflammation. 2019;16(1):259.

41. Magliozzi R, Howell OW, Reeves C, et al. A gradient of

neuronal loss and meningeal inflammation in multiple

sclerosis. Ann Neurol. 2010;68(4):477-493.

42. Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett

DE. Rosetta error model for gene expression analysis.

Bioinformatics. 2006;22(9):1111-1121.

43. MacFarlane AJ, Liu X, Perry CA, et al. Cytoplasmic serine

hydroxymethyltransferase regulates the metabolic

partitioning of methylenetetrahydrofolate but is not

essential in mice. J Biol Chem. 2008;283(38):25846-25853.

44. Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ.

Cytoplasmic serine hydroxymethyltransferase mediates

competition between folate-dependent

deoxyribonucleotide and S-adenosylmethionine

biosyntheses. J Biol Chem. 2002;277(41):38381-38389.

45. Andlauer TF, Buck D, Antony G, et al. Novel multiple

sclerosis susceptibility loci implicated in epigenetic

regulation. Sci Adv. 2016;2(6):e1501678.

46. Cakina S, Ocak O, Ozkan A, Yucel S, Ozısık Karaman HI.

Relationship between genetic polymorphisms MTHFR

(C677T, A1298C), MTR (A2756G) and MTRR (A66G)

genes and multiple sclerosis: a case-control study. Folia

Neuropathol. 2019;57(1):36-40.

47. Dashti M, Ateyah K, Alroughani R, Al-Temaimi R.

Replication analysis of variants associated with multiple

sclerosis risk. Sci Rep. 2020;10(1):7327.

48. Naghibalhossaini F, Ehyakonandeh H, Nikseresht A,

Kamali E. Association between MTHFR genetic variants

and multiple sclerosis in a southern Iranian population.

Int J Mol Cell Med. 2015;4(2):87-93.

49. Li D, Kang Q, Wang DM. Constitutive coactivator of

peroxisome proliferator-activated receptor (PPARgamma),

a novel coactivator of PPARgamma that promotes

adipogenesis. Mol Endocrinol. 2007;21(10):2320-2333.

50. Wouters E, Grajchen E, Jorissen W, et al. Altered PPARc
expression promotes myelin-induced foam cell formation

in macrophages in multiple sclerosis. Int J Mol Sci.

2020;21(23):9329.

51. Vall�ee A, Lecarpentier Y, Guillevin R, Vall�ee JN.

Demyelination in multiple sclerosis: reprogramming

energy metabolism and potential PPARc agonist treatment

approaches. Int J Mol Sci. 2018;19(4):1212.

52. Chung J, Marini S, Pera J, et al. Genome-wide association

study of cerebral small vessel disease reveals established

and novel loci. Brain. 2019;142(10):3176-3189.

53. Wang X, Mo X, Zhang H, Zhang Y, Shen Y. Identification

of phosphorylation associated SNPs for blood pressure,

coronary artery disease and stroke from genome-wide

association studies. Curr Mol Med. 2019;19(10):731-738.

54. Traylor M, Persyn E, Tomppo L, et al. Genetic basis of

lacunar stroke: a pooled analysis of individual patient data

and genome-wide association studies. Lancet Neurol.

2021;20(5):351-361.

55. Cullell N, Gallego-F�abrega C, C�arcel-M�arquez J, et al.

ICA1L is associated with small vessel disease: a proteome-

wide association study in small vessel stroke and

intracerebral Haemorrhage. Int J Mol Sci. 2022;23(6):3161.

56. Yang F, Hu T, He K, Ying J, Cui H. Multiple sclerosis and

the risk of cardiovascular diseases: a mendelian

randomization study. Front Immunol. 2022;13:861885.

57. Paolini Paoletti F, Simoni S, Parnetti L, Gaetani L. The

contribution of small vessel disease to neurodegeneration:

focus on Alzheimer’s disease, Parkinson’s disease and

multiple sclerosis. Int J Mol Sci. 2021;22(9):4958.

58. van Wageningen TA, Gerrits E, Brouwer N, et al. Distinct

gene expression in demyelinated white and grey matter

areas of patients with multiple sclerosis. Brain Commun.

2022;4(2):fcac005.

59. Chai K, Zhang X, Tang H, et al. The application of consensus

weighted gene Co-expression network analysis to comparative

transcriptome meta-datasets of multiple sclerosis in gray and

White matter. Front Neurol. 2022;13:807349.

60. Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino

S. The role of immune cells, glia and neurons in white

and gray matter pathology in multiple sclerosis. Prog

Neurobiol. 2015;127-128:1-22.

61. Prins M, Schul E, Geurts J, van der Valk P, Drukarch B,

van Dam AM. Pathological differences between white and

grey matter multiple sclerosis lesions. Ann N Y Acad Sci.

2015;1351:99-113.

68 ª 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Brain PWAS for multiple sclerosis T. Jia et al.



62. Frischer JM, Weigand SD, Guo Y, et al. Clinical and

pathological insights into the dynamic nature of the white

matter multiple sclerosis plaque. Ann Neurol. 2015;78

(5):710-721.

Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. Differential expression analysis of genes other

than candidate risk genes that had one co-localized signal

revealed dysregulation of DOC2A, WARS and MTHFR.

(A) DOC2A was significantly up-regulated in white mat-

ter in MS cases comparing with healthy controls. (B)

WARS was dramatically up-regulated in white matter in

MS cases comparing with healthy controls. (C) MTHFR

was considerably up-regulated in white matter in MS

cases comparing with healthy controls.

Figure S2. Further investigation of differential expression

analysis revealed specific lesion types that could observe

SHMT1 dysregulation. The boxplot shows the differential

expression analysis results of SHMT1 in different lesion

types, including active lesion and inactive lesion. There

was no significant difference between other lesion types

and healthy controls. (A) SHMT1 was dramatically up-

regulated in active lesion in MS cases comparing with

healthy controls. (B) SHMT1 was significantly up-regu-

lated in inactive lesion in MS cases comparing with

healthy controls. AL, active lesion; IL, inactive lesion.
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