
����������
�������

Citation: Belu, S.; Coltuc, D. A

Hybrid Data-Differencing and

Compression Algorithm for the

Automotive Industry. Entropy 2022,

24, 574. https://doi.org/10.3390/

e24050574

Academic Editor: Luis Javier

Garcia Villalba

Received: 7 March 2022

Accepted: 14 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Hybrid Data-Differencing and Compression Algorithm for
the Automotive Industry
Sabin Belu and Daniela Coltuc *

Doctoral School of Electronics, Telecommunications and Information Technology, Politehnica University
of Bucharest, 061071 Bucharest, Romania; sabin24@hotmail.com
* Correspondence: daniela.coltuc@upb.ro

Abstract: We propose an innovative delta-differencing algorithm that combines software-updating
methods with LZ77 data compression. This software-updating method relates to server-side software
that creates binary delta files and to client-side software that performs software-update installations.
The proposed algorithm creates binary-differencing streams already compressed from an initial phase.
We present a software-updating method suitable for OTA software updates and the method’s basic
strategies to achieve a better performance in terms of speed, compression ratio or a combination of
both. A comparison with publicly available solutions is provided. Our test results show our method,
Keops, can outperform an LZMA (Lempel–Ziv–Markov chain-algorithm) based binary differencing
solution in terms of compression ratio in two cases by more than 3% while being two to five times
faster in decompression. We also prove experimentally that the difference between Keops and other
competing delta-creator software increases when larger history buffers are used. In one case, we
achieve a three times better performance for a delta rate compared to other competing delta rates.

Keywords: big data; automotive; delta encoding; bsdiff; vcdiff; OTA software update; Lempel–Ziv;
LZ77; LZFG; LZMA

1. Introduction

The exponential increase in data, also known as big data, within the last decade has
made once-popular data compression unable to fulfill its basic tasks. Compressing big data
to achieve a workable or more feasible form for easier storage or transfer is now one of the
challenges of the century. New technologies are needed to address it, and delta encoding
seems to be one of them. Delta encoding is a concept that tries to fill in gaps by recording
only data that has changed between two versions of the same ‘object,’ e.g., a file, a buffer, or
a stream of bytes. This recorded information on differences can be further encoded with an
entropy coder or further compressed by using a fully-fledged dictionary-based compressor.

In many domains, and, in particular, in the automotive industry, huge amounts of
time and resources are invested in testing to fulfill all specifications and requirements
and comply with all regulations. Any major or minor software-release version is coupled
with huge test logs and test result catalogs containing Excel sheets, files, screenshots, test
cases, action step recordings, etc. Thus, software projects are becoming more and more
complex every day, and developers must handle hundreds of thousands of lines of code
per module or component on average. Nonetheless, software bugs and glitches tend to
occur despite all the effort put into testing phases. Moreover, perhaps more than any other
domains—except aviation—automotive software is supposed to be 100% reliable in any
situation, from performing an e-call from the roadside following the deployment of an
airbag to emergency braking to prevent an imminent collision or alert drivers of a vehicle’s
presence in a blind spot. The best software reliability can be achieved only by staying
up-to-date, and every time a software glitch has been detected and fixed, the ‘old’ software
must be updated or patched. Usually, software fixes are prioritized and deployed through

Entropy 2022, 24, 574. https://doi.org/10.3390/e24050574 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050574
https://doi.org/10.3390/e24050574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24050574
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050574?type=check_update&version=2


Entropy 2022, 24, 574 2 of 20

a unified system to each registered device linked to a specific vehicle series or type that is
supposed to receive a certain update or patch.

Most vehicle OEMs (Original Equipment Manufacturers) issue software updates
periodically for a variety of reasons other than bug fixes. For instance, quality patches are
regularly added to improve overall performance, ranging from updating the infotainment
device(s) for a better user experience inside the vehicle, to security-related updates, such as
air-bag deployments or gas -consumption check-up software.

These software updates are must-haves if vehicle computers—and, by default, auto-
mobiles—are meant to function at their expected qualities.

The automotive industry creates and uses various types of data, which may include
portions of compressed streams. Simply using classical data compression is not sufficient
when dealing with such data, which are commonly embedded. For example, consider
PDX files, which are mostly collections of ZIP [1] files intermixed with other data and are
re-zipped together later. The process can be repeated or combined many times. These
files are extremely hard to compress since they may have already been packed in different
‘onion’-shaped layers of compressed streams. Delta encoding is the only solution to this
problem since even if the source and target streams are compressed, there is a chance these
streams may share identical portions, depending on the intermix of similar data between
the source and the target files or the data streams included.

Few publicly available solutions for delta encoding and binary differencing are worth
mentioning. The secure delta binary-differencing engines [2]—developed by agersoftware
in collaboration with NetLUP Xtreme Technologies— and XtremeDELTA [3]—solely de-
veloped by NetLUP—are two of them. The two companies have developed an in-house
solution that implements a hybrid technology extremely suitable for embedded platforms
as well as any operating system due to a light decoding footprint; these engines use only
a few megabytes of memory for decoding, and they are highly effective with very large
files due to fast encoding and decoding operations [4]. XtremeDELTA uses more memory
to encode, but it achieves the best results while using less memory to decode and apply a
delta patch, and it works as fast as SecureDELTA.

Among other binary differencing engines [5], there is an open-source solution provided
by xDelta.org, although it seems to be part of an abandoned project today [6]. It employs
the vcdiff format in RFC (3284) [7], briefly described in Section 2. The last project entry for
the engine is dated 23 April 2016.

In the automotive industry, software-updating applications are compounded in two parts:
a server-based system, dealing with creating and deploying updates, and client-side software,
factory-installed on each vehicle’s hardware and performing secure update installations.

In this article, we propose a method related to both the server-side software that is
designed to create a binary delta file and push it, typically, through over-the-air (OTA)
channels to all vehicles that need an update [8]. The method also relates to the client-side
software that eventually performs a secure update installation on all required vehicles or
computer stations requiring the update.

Our method is an innovative delta-encoding algorithm that embodies data compres-
sion as well. We call it Keops. In contrast with other delta algorithms, Keops creates
binary-differencing fileswith the main advantage that it outputs a compressed stream even
from an initial phase. This is achieved by using a compression distance for comparing the
files [9].

This article presents the method and some underlying strategies that help one achieve
better performance in terms of speed, compression ratio, and a convenient combination of
both. Section 2 presents some existing solutions for delta encoding and relative compression;
in Section 3, we cover Keops strategies related to speed and compression improvement. In
Section 4, we give some experimental results obtained for automotive big data and present
a comparison with publicly available solutions.



Entropy 2022, 24, 574 3 of 20

2. Related Work

In recent years, different industries began using delta-encoding techniques on a large
scale, from genome-information data storing, indexing and retrieving to source-code
repositories for the automotive, gaming industries or even executable compression [10].
Other examples are project artifacts and source code repositories like Github (a provider of
Internet hosting for software development and version control using Git), which display,
store, and process source code directly while allowing users to interact with each other and
write code remotely in a shared environment. The repositories apply specific algorithms
and scripts [11] that allow storing, merging and finding differences within source code [12]
while allowing users to better understand code modifications and communicate them
among themselves. This helps developers keep track of changes that are performed on
source code during different activities, whether they are code formatting or editing, writing
new code or just maintaining original code and project artifacts [13].

Most of the references that relate to this subject either implement a modified version
of the diff algorithm [7] or use some sort of modified tree [14,15] or graph data structure,
which is then noted under different names, such as the abstract syntax tree (AST) and
semantic graphs [16].

Falleri et al. [17] introduced an algorithm to compute-edit scripts to tackle abstract
syntax-tree granularity, which was modified to include move actions. Their objective was
to compute-edit scripts that are shorter and closer to the original intent of a developer. The
proposed algorithm was based on analyzing two ASTs, the former made from original
source code and the latter made from a modified version of the source code [15]. It is
composed of two successive phases: a greedy top-down algorithm that finds isomorphic
sub-trees of decreasing height and a bottom-up algorithm in which two nodes match if
their children nodes include a large number of common anchors. A search for additional
mappings is conducted only when two initial nodes match.

Gerardo et al. [18] proposed an approach that combines vector space models with
Levenshtein edit distance to determine if source-code repository differences are due to
line additions, deletions, or modifications. It is mostly based on the work of Zimmer-
mann et al. [19] and Ying et al. [20], who computed the differences between classes and
methods by matching their names for the purpose of identifying fault-prone modules. Zim-
mermann et al. [19] introduced the notion of the annotation graph, which is a data structure
that represents the line-by-line evolution of a software project over time. The authors’ ap-
proach in the present paper improves such a data structure by handling changed lines.

Later, Zimmermann et al. [19] proposed an automated tool called a difference extractor
(Dex), which analyzes syntactic and semantic changes in large source-code repositories.
This is then applied to source-code repository patches, each of which comprises code
changes made to accomplish a particular task. The Dex tool produces summary statistics
characterizing these changes for all of the patches that are analyzed. Dex applies a graph-
differencing algorithm to abstract semantic graphs (ASGs) representing each version. These
differences are then analyzed, and higher-level program changes are then identified.

A binary code update based on binary differencing is also used in the automotive
industry. Nowadays, there are hundreds of small electronic control units (ECUs) and
controller devices located in modern vehicles; they are mostly responsible for controlling
specific functions); thus, updating and maintaining them so they are up to date is a serious
task. Once a vehicle leaves its manufacturer, software updates related to bug fixes, security,
or any feature update are required to keep the ECUs up and running and updated with
the latest software [21]. In Borui et al. [22], the authors discussed a differencing algorithm
for reprogramming resource-constrained IoT devices. Called S2, this algorithm was said
to be used to achieve small memory and flash footprints by leveraging a topological sort
based on an in-place reconstruction mechanism and a stream reconstruction technique; it
also achieved a smaller delta size by using prediction-based encoding. The algorithm is
based on the bsdiff [7] algorithm, which is known to be very slow at generating patches and



Entropy 2022, 24, 574 4 of 20

only suitable for working with small data buffers. Furthermore, it is well known that time
increases linearly by the size of the data buffer while the buffer is processed by using bsdiff.

Westerberg [8] proposed an alternative algorithm based on the update engine from
Android. This standalone version of the Android A/B update was implemented and
compared with bsdiff [7]. The notion of A/B updates comes from the fact that most ECUs
have two identical partitions so that one can be updated while the other is running. The
goal is to apply an update as seamlessly as possible. Without a second partition, a car
would have to be turned off during the update process. With two partitions, any ECU
just requires a restart to be able to switch to the newly updated partition. This is also a
‘backup’ for if the update process goes wrong, allowing a switch back to the old code. The
A/B update utilizes different compression methods to generate a patch that is as small
as possible. Simplified, it looks at each file in the image and decides what compression
method generates the smallest compressed version of that file. An operation representing
that compression method is generated for that file [23]. The operations and the data needed
to transfer the older version to the newer version are added to a patch file. Once all the
operations have been generated, the patch file is sent to a client, where it is applied to the
old image in order. That way, a new image identical to the requested version is generated.

In the genome area, a plethora of papers addressed the problem of DNA -information
storage and retrieval using relative compression [24,25]. Many data -compression algo-
rithms proposed and implemented within the last two decades, not based on the referenced
compression schemes, seemed to perform well but on relatively small sets, such as mito-
chondrial DNA [26,27]. This pushed them close to impracticality when large sets, such as
the human genome [28,29], were in works [30]. The year 2009 saw a rise of referenced-based
compression schemes in bioinformatics [31–33], with the public release of DZA ZIP [34].
Brandon et al. (2009) added some modifications, and Pavlichin et al. [35] further improved
these compression schemes by adding some integer-mapping distribution parameters [36].
As was noted by Ochoa et al., in a genome analysis [37], these algorithms pose some limi-
tations when it comes to a reference-based string, which may need to belong to a specific
database available for the human genome only. They further assume that the mapping
from the target to the reference is also given.

In 2010, Kurupy et al. [38] proposed a relative LZ (RLZ) compression of genomes
for a reference-based compression of an entire set of genomes. Subsequent improvements
of this compression scheme, released in the next year, addressed only a modification of
greedy parsing into an optimized parsing scheme, which yielded a better compression at
the expense of a slower operating time.

Another compression scheme was released in 2011 by Deorowicz and Grabosky [24];
it was called a genome differential compressor (GDC). Surprisingly, this was based on the
previously released method RLZ opt [39]. GDC replaced the suffix-tree sub-string search
with a hashing-based search, which in the end outperformed RLZ opt, but this was in terms
of only compression ratio.

Later, two proposed algorithms, GRS and GReEN, were considered to be state-of-
the-art when it came to reference-based genomic data compression. The authors were
Wang and Zhang (2011) [40,41], respectively. Few differences arose from the previous work
presented. GRS and GRSeEN used only one genome as a reference instead of a set of
genomes, and they also assumed a reference was available; thus, no storage of one was
required. While GRS considers only pairs of targets and a reference genome sequence,
GRSeEN is based on arithmetic coding instead of Golomb encoding. This makes GRSeEN
superior to GRS and to the non-optimized RLZ version. However, this was observed only
with small sets of genomes, such as bacteria and yeast.

FRESCO is another algorithm that was proposed in 2013; it was designed for the
same purpose: to compress a collection of human and non-human genomes. Designed
by Wandelt and Ulf (2013) [42], as an innovation, FRESCO allows frequent rewrites of a
reference section and embodies a second-order entropy coder.



Entropy 2022, 24, 574 5 of 20

Part of the reference-based compression schemes is the iDoComp algorithm [37].
It embodies ideas proposed by multiple authors, as described in Christley et al. [34],
Brandon et al. [43] and Chern et al. [44]. iDoComp compresses individual genome se-
quences, assuming a reference is available for both the compressor and the decompressor.
The creators chose to use a suffix array to parse the target into a reference due to its at-
tractive memory requirements, especially when compared to other structures, such as the
suffix tree. However, the algorithm uses 2 GB of RAM to parse an entire human genome,
which makes it less appealing for multi-disciplinary or generic usage.

After carefully reviewing the most important articles, solutions and ideas, we found
that the majority of the publicly available solutions do not address the fact that regardless
of how good the internally deployed delta algorithm is, there will always be some sort of
redundancy the delta algorithm is not addressing. This is simply because by design, a delta
algorithm is not a data-compression algorithm. It is a de-duplication algorithm at the best
of its abilities.

This is where the novelty of our method comes in. Unlike the vcdi f f [7] or ldi f f [45,46],
bsdi f f [7] and the other methods presented in this section, Keops can output already-
compressed differencing data streams, even from an initial phase, while performing ex-
tremely quickly in a decompression phase. Considering the solutions presented above,
xDelta3 [6] can also output already-compressed output streams but does not allow users
the possibility of choosing different operating methods to adapt to the ever-changing nature
of the input data, which is either highly redundant or less compressible. That is exactly
what Keops is able to do. By implementing three strategies, Keops allows users to apply
different methods to different types of data by tuning an algorithm depending on whether
or not the data are highly compressible.

3. Keops Algorithm

Our innovative Keops algorithm derives from the ubiquitous LZ77 [47] data-
compression algorithm and uses it as a preferred compression method internally. LZ77
achieves compression by splitting a stream of data to be compressed, also known as an
input stream, into two portions; the data are divided by using a current processing pointer
called the current or compression pointer cp. The two sections are called LZ77 History
and LZ77 Look Ahead, respectively (Figure 1). LZ77 History represents past data that has
already been processed and compressed up to the current pointer. Obviously, past the
current point (including the cp) are data yet to be processed, which creates the LZ77 Look
Ahead section—hence the name.

Figure 1. LZ77 and the two sections that form the LZ77 buffer together.

LZ77 achieves compression by replacing a common sub-string in the Look Ahead
area with pointers for the exact same data and length from the LZ77 History part. The
search mechanism employs various data structures and algorithms, such as hash tables,
binary search trees and PATRICIA trees [48]. Several heuristic methods are implemented as
well, among which, it is worth mentioning, are the greedy and lazy heuristic methods [49].
However, the optimal search strategy [50] is an entirely new domain that we do not cover
in this paper.



Entropy 2022, 24, 574 6 of 20

LZ77, in its original form until the 1982 variation from Store and Szymansky [51],
encoded a sub-string or matched text into a triplet < D, L, c > denoting the distance, the
length and the uncompressed symbol c following this match.

With respect to binary differencing methods, there is one worth mentioning: the
vcdiff [52], described in IETF’s RFC 3284 [7]. Just like LZ77, this algorithm replaces common
sub-strings between two files but encodes them in a series of commands:

• ADD: Specifies a sequence of bytes to be copied.
• COPY: Specifies a sub-string that must be copied from source to target.
• RUN: Specifies a single symbol that will be copied from source to target.

The algorithm coins the terms ‘source’ and ‘target’ windows. In vcdiff [7,52], ‘source’
refers to an old version of a file and ‘target’ refers to a newer version of that file. Three
commands are applied to the ‘source’ window in order to extract the differences from the
‘target’ windows. In short, the algorithm replaces sub-strings found between an old and a
new file with the above commands, thus instructing a decoder to reconstruct the content in
the newer file based on the old file content. No compression is achieved during this process.

3.1. Delta File

Inside Keops, the LZ77 encoder acts the same within the vcdiff ‘source’ and ‘target’
windows, but unlike vcdiff, it instructs the decoder to reconstruct the content of the ‘target’
using the triplets < D, L, c >. Thus, it achieves compression in the binary delta file. The
differences from the original LZ77 structure are that LZ77 History consists entirely of the
old version of the file and the LZ77 Look Ahead is entirely made up of the newer version.
To process LZ77 History, portions from the old file are moved into the LZ77 History location
and portions of the new version are moved into the LZ77 Look Ahead location (Figure 2).
We call these portions buffers or chunks. The files partition into chunks; their pairings are
discussed further in the next section.

Figure 2. The LZ77 algorithm inside Keops for delta differencing.

The delta file created by Keops is a sum of all the LZ77 compression operations applied
to the LZ77 Look Ahead buffer—in a finite number of steps and various history-buffer
combinations. The way the steps are controlled and how the two buffers are combined will
be further explained.

The first step to creating the Keops delta file is starting with a cp initialized with zero
and advancing it all the way through the LZ History buffer. This buffer is parsed, but an
output is neither recorded nor saved into the final delta file. When step one completes,
the cp is set at the end of the LZ History, regardless of the data size within the LZ History
buffer. The cp then matches half of the LZ Buffer, and while advancing it, the LZ77 starts
parsing the rest of its buffer. While parsing the LZ Look Ahead buffer, the LZ77 output is
recorded into the delta file. At the end of the LZ Look Ahead parsing, Keops outputs all
the triplet < D, L, c > it can find, which include encoded matches from the LZ Look Ahead
to the LZ History and all uncompressed symbols, if any. Eventually, the Keops archive
will be a sum of all the output series from all the buffers from the new file, regardless of
the strategy employed to pair the buffers. The pairing strategies that make up the Keops
modelling techniques will be discussed further in the next section.



Entropy 2022, 24, 574 7 of 20

3.2. Strategies for Buffer Pairing

With LZ77, the more alike the History and Look Ahead buffers are, the better the
compression is. In Keops, when source buffers are paired with target buffers, we have the
liberty of choosing, as a history, the most similar buffer to the source. This buffer may have
the same index as the current target buffer, may be shifted upward or backward because of
a block removal or a new code insertion in the target or may simply vanish because the
code update was too radical. Any search supposes the calculation of a distance. In the
case of Keops, since the main goal is to obtain a delta file as small as possible in size, we
choose to use a generalized compression distance. This distance is calculated by applying
LZ77 to the source and target buffers as described in the previous section. The size of the
compressed target buffer represents the distance between the two buffers.

In the following sections, we present three strategies for pairing the buffers. They
are designed to optimize either the compression time or the compression rate or to bal-
ance them.

3.2.1. One-to-One Strategy (Time Optimized)

When a set of changes is designed to update or improve a software or its associated
data file, it is usually called a patch. Called bug fixes or simply fixes, patches are usually
designed to improve the functionality of a program or fix a coding flaw. Design flaws
are more complicated and they involve many, if not structural, changes to the software.
However, for bug fixes and small changes, most of the time, it is easier and more economical
to distribute patches to users rather than to redistribute a newly recompiled or reassembled
program. Software patches are pictured in Figure 3.

Figure 3. Two file versions before and after software patches are applied. The patches are in yellow.

In the case of patches, the one-to-one strategy is the best solution. Since modifications
are small and usually localized within the same code block of the flawed code, there is a
higher chance for the change to also be within the same code block. There is also a very
high chance that the code block will also maintain the same size. The one-to-one strategy
pairs buffers with the same positions in the source and target codes.



Entropy 2022, 24, 574 8 of 20

These buffers are, with a high probability, rather similar if not identical, which means
a high compression of a generated delta file. The other advantage is that no search of
a corresponding buffer has be done at the level of the target, its position being known
in advance. This significantly increases the processing speed of Keops. The one-to-one
strategy is depicted in Figure 4.

Figure 4. Buffer pairing in one-to-one strategy, best suited for software patching and time optimized.

3.2.2. Brute-Force Strategy (Rate Optimized)

When differences between the old and the new file are numerous, the one-to-one
strategy cannot offer a good compression anymore. Consider the case in Figure 5, where
in the new file, data are mostly new, but data from the old file are still present. It should
be noted that because of code additions, modifications or substitutions, the one-to-one
mapping is no longer preserved, since in this situation, the files are out of sync. This is a
classic example of software being redesigned when very little old code will be kept.

Figure 5. A typical software-update scenario with interleaved matching data at byte level.



Entropy 2022, 24, 574 9 of 20

The de-synchronization of the code necessitates a search for the most similar buffer in
the target. In Keops, the search is conducted by using the LZ77-based compression distance.
The brute-force strategy supposes an exhaustive search over the entire source code. This
increases the probability of a good match, although it is not optimal as long as the buffers in
the target file are processed sequentially. However, our experiments have shown that with
this strategy, we are close to the optimal pairing, and consequently, the best compression for
this type of updated software. Figure 6 depicts the buffer pairing by using the brute-force
strategy. The drawback of this strategy is the longer overall processing time of Keops, but
this is the price of preserving a close-to-optimal compression.

Figure 6. Brute-force strategy when applied to a software update with structural modifications.

3.2.3. Flexi Strategy

Within updated code or data which may count numerous differences, the most similar
buffer of the source is usually in the vicinity of the considered target buffer. This is explained
by the fact that the de-synchronization is produced by both removing and adding code
blocks; thus, the blocks’ shift is not accumulated. An example is in Figure 7. The flexi
strategy addresses this aspect by searching in a limited domain around the position of the
considered target buffer. This may be a good compromise between the compression and
processing speeds. In Figure 7, with the flexi strategy, the search is done up and down with
four positions.



Entropy 2022, 24, 574 10 of 20

Figure 7. Flexi strategy for search domain limited to four indexes upward and downward.

4. Experimental Results

We tested the Keops binary delta encoder on five types of data. The first test series
comprised the minGW compiler binaries for Windows platform (mingw). We created
binary delta files between versions 4.4 and 4.5 using various sizes for the History and Look
Ahead buffers.

The second type consisted of formatted text files representing software performance
logging files, or trace files, combined together into a single file. The files are called ALog
and ALog2. The latter represents the same archived files as ALog, minus certain files that
have been removed. They contain English-language text among which there is a high
frequency of file names, operation dates and times, file sizes, file paths, etc.

For the third test package, we chose two binary images from a collection of ECU binary
images specifically used in one of our automotive projects. We chose sw f k ver. 20 and
sw f k ver. 18.

Replay was the fourth test package, which contains a specific media-related Windows
software. We used real instances of this software: versions 31.2, 31.4 and 31.5.

For the last test package, we chose silezia corpus files, a well-known collection of
English text and binary data files commonly used in data compression tests [53]. We
removed file osdb from the content of the first corpus, thus creating two corpus instances:
silezia 1 and silezia 2.

Three out of five test packages—ALog, sw f k and Replay—are specific to the auto-
motive environment.

The test packages were chosen to be representative of various or homogeneous data,
low- and high-redundancy files and structured and binary files. The files’ sizes and their
roles (targets or sources) are mentioned in Tables 1–3. The tests were done for five buffer
sizes: 2, 4, 8, 16 and 32 MB. We used equal History and Look-Ahead buffers. All tests were
run on a Windows 10 PC running on an Intel i3-4130 CPU at 3.40GHz with 8 GB of RAM.



Entropy 2022, 24, 574 11 of 20

We tested Keops using the three strategies presented in Section 2: one to one, brute
force and flexi. For each of them, we recorded the delta rate, the encoding and decoding
time and the memory requirements. The delta rate was the compression rate in percentage,
expressed as the ratio of the sizes of the targets after the Keops compressions and before
them. The results are presented in Table 1 (one-to-one strategy), Table 2 (brute-force
strategy) and Table 3 (flexi strategy). To evaluate the effectiveness of the differencing
concept with respect to a simple compression, we compared the delta rate with the ZIP
rate calculated as the ratio of the size of the ZIP-compressed target and the size of the
uncompressed target.

Table 1. Results for one-to-one strategy (time optimized).

Source
[Bytes]

Target
[Bytes]

History
Buffer
[MBs]

Encoding Delta
Rate
[%]

Decoding ZIP
Rate
[%]

Time
[s]

RAM
[MiBs]

Time
[s]

RAM
[MiBs]

mingw ver. 4.4 mingw ver. 4.5 2 85.671 325 48.67 3.843 273

52.77
116.858.661 159.723.368 4 125.657 363 47.28 3.766 277

8 182.000 439 45.85 3.375 286
16 232.203 583 43.56 2.85 302
32 312.078 887 42.88 5.265 350

Alog Alog2 2 75.546 466 3.42 0.688 313

7.96
213.403.728 211.206.693 4 58.813 503 1.64 0.703 317

8 35.156 583 0.73 0.812 429
16 18.812 727 0.31 0.89 444
32 13.047 1047 0.15 0.453 396

swfk ver. 18 swfk ver. 20 2 251.547 692 24.72 10.406 640

30.42
340.375.413 319.794.721 4 323.000 732 22.86 9.594 646

8 372.625 807 19.97 8.469 654
16 427.843 967 17.18 7.406 678
32 488.266 1271 14.98 10.344 726

Replay ver. 31.4 Replay ver. 31.5 2 5.593 159 22.15 0. 360 107

75.78
50.941.859 51.583.426 4 5.016 199 11.44 0.250 113

8 4.860 279 5.83 0.234 125
16 4.300 439 2.67 0.187 149
32 3.750 727 1.33 0.704 181

silezia 1 silezia 2 2 97.047 458 13.36 4.125 405

41.75
211.961.968 201.876.111 4 146.563 495 13.05 3.437 409

8 204.625 575 12.81 3.313 422
16 178.194 727 8.04 2.453 438
32 101.359 1047 3.94 2.141 422

For the flexi strategy, the search of the most similar blocks in the source was conducted
up and down with K positions relative to the current block in the target file, where K had
a value of four by default. We chose this range after having observed the distribution
of the gap of similar blocks in our experimental data (Figure 8). The distribution tended
to be concentrated around zero, disregarding the file type. For Alog and silezia, where
the newer versions were obtained by using removals, the distribution was bi-modal with
a mode gap of two to six blocks, respectively. For mingw and sw f k, which have less
redundant versions, the distribution was more dispersed. In their case, limiting the search
at four gaps degraded the compression, as can be seen from Figure 9. A small block size
also spread the distribution (Figure 10), meaning that it is recommended to increase the
search area when such blocks are used.



Entropy 2022, 24, 574 12 of 20

Figure 8. Distribution of similar block gaps in the source and target files for the experimental data
and 2 MB block size buffers.

4.1. Compression Rate

We first analyzed the impact of the block size on the compression. The plots in Figure 9
show that generally, the delta rate improves with the block size. This effect tends to be
less important only when working with larger blocks, especially the 16 and 32 MiBs ones.
There are many exceptions to this rule of thumb because binary delta creation is a very
data-dependent process. If more differences are spotted between the old and the new data,
the fewer the matches between them are found by Keops. In conclusion, if data have an
extremely low redundancy stream comprised of old and new buffers (files, respectively),
the less important the block size becomes.

Concerning the strategies, the plots in Figure 9 show that brute force is generally the
best if the goal is a good compression. However, there are exceptions, e.g., for the Replay
package, for which all strategies gave the same delta rate (the plots were superposed) or
for the Alog package, for which brute force and flexi behaved identically.

It should be noted that delta-rate curves are convergent as block sizes increase. Thus, if
32 MiB blocks are used, one should choose the one-to-one strategy, which is time optimized.
There is no reason to do any block search and introduce delays as long as the compression
is the same.



Entropy 2022, 24, 574 13 of 20

Figure 9. Delta rates vs. block sizes.

Figure 10. Gap distribution of sw f k for various block sizes. The distribution stretching indicates that
search range of flexi should be adapted to the block size in order to keep the encoding time short
while maintaining a good compression.



Entropy 2022, 24, 574 14 of 20

Table 2. Results for brute-force strategy (rate optimized).

Source
[Bytes]

Target
[Bytes]

History
Buffer
[MBs]

Encoding Delta
Rate
[%]

Decoding ZIP
Rate
[%]

Time
[s]

RAM
[MiBs]

Time
[s]

RAM
[MiBs]

mingw ver. 4.4 mingw ver. 4.5 2 520.922 323 45.46 3.125 273

52.77
116.858.661 159.723.368 4 408.547 363 44.66 3 277

8 356.406 439 43.93 3 285
16 330.906 578 42.99 2.766 301
32 406.734 887 41.95 4.344 349

Alog Alog2 2 158.515 466 0.19 0.875 413

7.96
213.403.728 211.206.693 4 120.407 503 1.41 1.141 417

8 70.219 583 0.73 0.765 429
16 36.625 727 0.31 0.671 444
32 23.64 1047 0.15 0.438 396

swfk ver. 18 swfk ver. 20 2 2253.625 690 15.98 9.593 640

30.42
340.375.413 319.794.721 4 1253.062 727 16.12 7.719 646

8 890.218 807 16.2 7.844 654
16 744.282 962 16.34 7.297 678
32 633.297 1271 14.98 11.156 726

Replay ver. 31.4 Replay ver. 31.5 2 111.687 159 22.05 0.031 56

75.78
50.941.859 51.583.426 4 81.312 199 11.33 0.25 113

8 49.547 279 5.72 0.235 125
16 27.765 439 2.56 0.188 149
32 13.688 727 1.33 0.797 181

silezia 1 silezia 2 2 421.797 458 2.38 1.094 405

41.75
211.961.968 201.876.111 4 324.469 495 5.27 1.625 409

8 187.344 575 3.14 1.234 421
16 175.687 727 5.33 1.61 438
32 143.203 1047 3.94 4.907 422

As the results in Table 2 show, the delta rate of Alog reached 0.15%. This means the
delta file was less than 1% in size compared to the target size. It was a very good result in
line with our predictions, especially when compared to the ZIP rates of 7.96%. This shows
that the Keops algorithm performs extremely well when it is applied to highly redundant
data due to content similarities.

For mingw and sw f k, however, when having less redundant versions, the minimum
delta rates were 41.95% and 14.98%, but they were still lower than the actual ZIP (deflate)
compression rates shown in Table 2.

Generally, the difference between the delta rate and ZIP rate grew when large history
buffers were used by Keops. For example, Replay shows an improvement in the delta rate
from 22.15 to 1.33% as compared to a 75.78% ZIP rate.

We included the ZIP compression rate results of the new version (target file) in the
tables as well since many software applications, even today, do not have software-update
capabilities at the binary-differencing level. They simply allow users to download (possibly)
a new compressed version of their application. There are many cases in which users
download a ZIP file with an installer that handles a new version, i.e., uninstalls old
versions and installs a newer version of the same software. There is a noticeable difference
between the Keops binary delta file size and the ZIP archive, the compressed version of
the newer software version. Usually, any compatible ZIP or ZIP64 archiving software
works by implementing an LZ sliding window that cannot be larger than 32 KiB or 64 KiB,
respectively, in order to not abide by the zipping’s deflate-algorithm RFC specifications [54].
Since only the new file is compressed, there is no immediate history to be used within



Entropy 2022, 24, 574 15 of 20

the LZ algorithm; thus, the LZ table is empty at the start position zero. Even once the
compression pointer advances within this ZIP-compatible algorithm, no more than 32 or
64 KiB of previously seen data can be used as a history. This is a complete disadvantage
when comparing it with Keops, which starts with fully loaded previously ‘seen’ data (from
the old file) and works with a minimum of a 2 MiB buffer as an LZ History. As can be seen
from the tables, for our experimental data, the difference between the ZIP rate and the delta
rate may vary anywhere from 7 to 75.

Table 3. Results for flexi strategy.

Source
[Bytes]

Target
[Bytes]

History
Buffer
[MBs]

Encoding Delta
Rate
[%]

Decoding ZIP
Rate
[%]

Time
[s]

RAM
[MiBs]

Time
[s]

RAM
[MiBs]

mingw ver. 4.4 mingw ver. 4.5 2 152.98 325 46.38 3.66 273

52.77
116.858.661 159.723.368 4 201.36 363 45.28 3.20 277

8 270.00 439 44.7 2.94 285
16 358.97 583 42.89 2.63 301
32 453.77 887 42.03 4.75 349

Alog Alog2 2 22.53 466 0.23 0.81 413

7.96
213.403.728 211.206.693 4 52.25 503 1.41 1.38 417

8 44.14 583 0.73 1.11 429
16 30.53 727 0.31 0.66 444
32 22.36 1047 0.15 0.45 396

swfk ver. 18 swfk ver. 20 2 254.88 692 17.75 7.22 640

30.42
340.375.413 319.794.721 4 337.81 732 17.22 8.41 646

8 446.17 807 16.73 7.38 654
16 514.02 967 16.41 7.11 678
32 561.39 1271 14.98 10.83 726

Replay ver. 31.4 Replay ver. 31.5 2 39.94 159 22.05 0.33 107

75.78
50.941.859 51.583.426 4 51.03 199 11.33 0.24 113

8 49.72 279 5.72 0.28 125
16 31.00 439 2.56 0.19 149
32 15.28 727 1.33 0.66 181

silezia 1 silezia 2 2 155.83 458 10.89 4.13 405

41.75
211.961.968 201.876.111 4 142.24 495 5.36 3.44 409

8 116.80 575 3.19 3.31 422
16 165.92 722 5.33 2.45 438
32 151.92 1047 3.94 2.14 422

4.2. Encoding Time

As expected, the encoding time depends on the strategy. Brute force and flexi, which
included a search for similar blocks, demanded longer encoding times. On average, brute
force had four-times longer durations, while the flexi strategy was only 2.5 more time con-
suming. Obviously, the highest encoding times correspond to encoding with small blocks.

Another interesting fact about the test results we have seen so far is that with some
test files, as the History buffer size grew, so did the encoding time. In some other cases,
the encoding time shrank. We can explain this anomaly with the file redundancy. More
precisely, the more common sub-strings are found between the old data and the new data,
the faster Keops’s LZ77 algorithm performs. It accepts sub-strings longer than a certain
threshold, e.g., 2048 bytes, and no other searches are performed. This way, the compression
pointer advances more rapidly and the data are consumed much faster in this case. Larger
buffers and highly redundant files tend to allow for much longer sub-strings than the ones
found with smaller buffers. Smaller buffers tend to fragment larger common sub-strings



Entropy 2022, 24, 574 16 of 20

while requiring an inertial time and bytes to pick up the common sub-string again as new
blocks are loaded.

4.3. Decoding Time

While the encoding times go from 3.75 s to 1253 s, the decoding is much faster.
Depending on block size, file type and strategy, it may have values between 0.18 s and
10.46 s. Moreover, we noticed that usually, it goes lower once the block size increases,
except with the 32 MiB blocks. This could be related to the fact that larger buffers tend to
allow for more distant matches, and once matches (or common sub-strings) are further
away, there is a higher probability cache misses and page faults will occur. More distance
data needs to be copied from the matched pointer to the current decompression pointer,
increasing the number of page faults. We documented this case. With Replay (31.4 to 31.5),
from a block size of 16 MiB to a block size of 32 MiB, the number of page faults jumped
from 34,189 to 46,493, a good explanation of the increased decompression time from 0.203
to 0.766 ms. This can be corrected with a slight loss of compression by abandoning smaller
but distant matches in the compression step. The zlib library [54] performs that for matches
that equal a certain threshold and distance surpassing 4 KiB.

By design, Keops is built on the idea of maximizing decompression speed. The
modified LZ engine is parameterized for maximum sub-string searches. Every sub-string
found using this engine has the potential to speed up the decoding process. To find most
of the available sub-strings between the old file data and the new file data, exhaustive
searches are performed. Hash tables are designed for a maximum occupancy, and hash
collisions are searched without a set limit. Keops also employs smart heuristics for matches.
Some heuristics are meant to minimize page faults, which, in turn, maximize speed.

4.4. Memory Requirements

Being an LZ-powered algorithm, Keops behaves as a memory hybrid, requiring less
memory to reconstruct the compressed data during the decoding step then it requires to
actually compress the data. This is due to the fact that no searches are performed during
the decompression step. None of the search structures need to be allocated, nor do they
consume any memory except during the encoding step.

Looking at Tables 1–3, it is clear the memory requirements are almost the same for all
three Keop variants, e.g., the mingw test file sets, for which the encoding process required
325 MiB of RAM while the decoding process required 273 MiB of RAM for all three Keops
variants. The difference in memory occupancy was exactly the search structure sizes that
were missing and were not required to be allocated and initialized in the RAM during the
decoding process.

Between the encoding and decoding processes, there is another memory-related
difference, which consists of the fact that during the encoding process, memory is initially
occupied with the exact sizes of both the files, old and new, right after they are processed
in blocks as described in this article. During the decoding process, the memory is initially
filled with only the old file blocks, followed by the new file, which is built block by block
depending on the chosen strategy. Of course, depending on the chosen strategy, some
partial writing (dumping) into the output file can be performed, further minimizing the
impact of RAM usage during the decoding step.

By relying less on memory caching and by exhaustively using the storage devices
where source and target files are stored, the memory requirement for each strategy can be
significantly reduced to as low as twice the minimum block size (e.g., 4 MiB of RAM for
the one-to-one strategy when using a 2 MB LZ window size) for both the encoding and
decoding processes.

In conclusion, the described Keops’ memory requirement is purely an implementation
decision. Changing it does not affect the end results in any way, shape or form when it
comes to the final compression rates or the final update package sizes. It may only affect
the processing time, since disk and memory trashing may occur due to the exhaustive



Entropy 2022, 24, 574 17 of 20

reads of file blocks and the continuous dumping of memory buffers after a single block has
been processed.

The authors of this algorithm were more interested in these final compression results
and update sizes rather then turning this idea into a commercially viable implementation,
which can be achieved with a bit more attention to this single factor—the used memory.

4.5. Comparison with Existing Solutions

We compare Keops with three publicly available binary-differencing file creators,
SecureDELTA [2], XtremeDELTA [3] and xDelta3 [6], the first two being commercial and
closed-source software and the last one being open source. The compression rate and the
encoding/decoding times are given in the Tables 4–6.

Table 4. Comparison of Keops with publicly available binary difference engine SecureDELTA.

SecureDELTA Keops

Encoding
Rime

[s]

Delta
Rate
[%]

Compressed
Delta

Rate [%]

Decoding
Time

[s]

Encoding
Time

[s]

Delta
Rate
[%]

Decoding
Time

[s]

mingw 17 68.09 48.1 10 312.08 42.88 5.265
Alog 2 0.0035 0.0035 10 13.05 0.15 0.453
swfk 45 36.81 15.85 43 488.27 14.98 10.344
Replay 5 0.62 0.39 1 3.75 1.33 0.703
Silezia 18 0.00242 0.0024 52 101.36 3.94 2.141

Table 5. Comparison of Keops with publicly available binary difference engine XtremeDELTA.

XtremeDELTA Keops (One-to-One Strategy, 32 MB Blocks)

Encoding
Time

[s]

Delta
Rate
[%]

Compressed
Delta

Rate [%]

Decoding
Time

[s]

Encoding
Time

[s]

Delta
Rate
[%]

Decoding
Time

[s]

mingw 23 37.07 25.48 9 312.08 42.88 5.265
Alog 3 0.001 0.001 12 13.05 0.15 0.453
swfk 69 35.32 15.88 46 488.27 14.98 10.344
Replay 2 0.59 0.39 1 3.75 1.33 0.703
silezia 10 0.001 0.001 46 101.36 3.94 2.141

Table 6. Comparison of Keops data with publicly available LZMA compression-based binary differ-
ence engine xDelta3.

xDelta3 Keops (One-to-One Strategy, 32 MB Blocks)

Encoding
Time

[s]

Delta
Rate
[%]

Decoding
Time

[s]

Encoding
Time

[s]

Delta
Rate
[%]

Decoding
Time

[s]

mingw 42 45.9700 11.31 312.08 42.88 5.265
Alog 14 0.0007 1 13.05 0.15 0.453
swfk 63 16.2000 23 488.27 14.98 10.344
Replay 1 0.2700 1 3.75 1.33 0.703
silezia 15 0.0028 14 101.36 3.94 2.141

A first remark concerns the encoding times, which are systematically longer than
those of the three differencing engines. The Keops encoding times range between 3.5 s and
488.27 s depending on the file, while for the considered engines, it is no longer than 69 s.
Keops gains at the level of the decoding time, which is considerably shorter, except for with
Replay, for which it is a bit longer but remains comparable. Keops is able to outperform
xDelta3 in compression rates in two cases by more than 3% while being two to five times



Entropy 2022, 24, 574 18 of 20

faster in decompression. It is a known fact that [55] is extremely slow in decompression, so
choosing this algorithm in this case is an unfortunate design issue.

In comparison with [2] and XtremeDELTA [3], Keops outperforms them in delta sizes
because at these current versions, they do not compress the output data in any form. These
advanced delta creators, i.e., SecureDELTA [2] and, in particular, XtremeDELTA [3], are
designed specifically for embedded software. By design, they use the lowest possible
memory when recreating the original files on the target machines, ranging from 2 MiB
to 6 MiB of RAM regardless of the input file sizes. This explains why Keops is able to
surpass them in decompression speed. For a fair comparison, since SecureDELTA and
XtremeDELTA output uncompressed delta files, we calculate, for these two differencing en-
gines, a compressed delta rate as a ratio of ZIP-compressed delta file to Keops-compressed
file. Even after compression, Keops remains better than SecureDELTA (except for with the
Replay data). XtremeDELTA [3] outperforms Keops for two out five test data packages.
xDelta3, as it relies on LZMA [55] as a main algorithm, also produces compressed output
files. However, Keops is able to beat xDelta3’s LZMA algorithm and achieves a better
compression rate for only the sw f k data.

5. Conclusions

We designed Keops for environments in which the encoding time for creating a
software update is not considered to be an issue. Applying a software update and decoding
a binary-level delta package has always been a problem due to different environments with
the different resources and configurations the update is supposed to work on. When it
comes to decoding, Keops offers a low decoding time, making it more suitable for situations
in which decoding time is a priority.

Keops is the best fit for low- to mid-memory environments that need to operate
software updates at high speeds, since we provide, depending on the chosen strategy, the
best possible solution for compression ratios and, ultimately, binary delta sizes. A more
sophisticated software implementation of our Keops algorithm could further optimize the
used-RAM footprint with different techniques, such as lowering cache levels and frequently
writing blocks into output files depending on the chosen strategy, thus minimizing the time
needed for the encoding process.

Author Contributions: Conceptualization, S.B.; Methodology, D.C.; Software, S.B.; Supervision, D.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. APPNOTE.TXT-ZIP File Format Specification. Available online: https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.

TXT (accessed on 13 January 2022).
2. SecureDELTA SDK. Available online: https://agersoftware.com/securedelta_sdk.html (accessed on 13 January 2022).
3. SecureDELTA Application with XtremeDELTA Engine. Available online: https://agersoftware.com/securedelta_app.html

(accessed on 13 January 2022).
4. Constructing a Binary Difference File. Available online: https://agersoftware.com/docs/securedelta_app_v2.56/43

Creatingabinarydiffdeltafile.html (accessed on 13 January 2022).
5. Korn, D.G.; Vo, K.P. Engineering a Differencing and Compression Data Format. In Proceedings of the USENIX Annual Technical

Conference, General Track, Berkeley, CA, USA, 10–15 June 2002.
6. xdelta.org. Available online: http://xdelta.org/ (accessed on 13 January 2022).
7. RFC 3284—The VCDIFF Generic Differencing and Compression Data Format. Available online: https://tools.ietf.org/html/rfc3

284 (accessed on 6 April 2022).
8. Westerberg, E. Efficient Delta Based Updates for Read-Only Filesystem Images: An Applied Study in How to Efficiently Update the

Software of an ECU; Degree Project in Computer Science and Engineering; KTH Royal Institute of Technology School of Electrical
Engineering and Computer Science: Stockholm, Sweden, 2021.

9. Belu, S.; Daniela, C. An innovative algorithm for data differencing. In Proceedings of the 2020 International Symposium on
Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://agersoftware.com/securedelta_sdk.html
https://agersoftware.com/securedelta_app.html
https://agersoftware.com/docs/securedelta_app_v2.56/43Creatingabinarydiffdeltafile.html
https://agersoftware.com/docs/securedelta_app_v2.56/43Creatingabinarydiffdeltafile.html
http://xdelta.org/
https://tools.ietf.org/html/rfc3284
https://tools.ietf.org/html/rfc3284


Entropy 2022, 24, 574 19 of 20

10. Motta, G.; James, G.; Samson, C. Differential compression of executable code. In Proceedings of the Data Compression Conference
(DCC’07), Snowbird, UT, USA, 27–29 March 2007.

11. Frick, V.; Grassauer, T.; Beck, F.; Pinzger, M. Generating accurate and compact edit scripts using tree differencing. In Proceedings
of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23–29 September 2018;
IEEE: Piscataway, NJ, USA, 2018.

12. Maletic, J.I.; Michael, L.C. Supporting source code difference analysis. In Proceedings of the 20th IEEE International Conference
on Software Maintenance, Chicago, IL, USA, 11–14 September 2004; IEEE: Piscataway, NJ, USA, 2004.

13. Tsantalis, N.; Natalia, N; Eleni, S. Webdiff: A generic differencing service for software artifacts. In Proceedings of the 27th IEEE
International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011; IEEE: Piscataway,
NJ, USA, 2011.

14. Dotzler, G.; Michael, P. Move-optimized source code tree differencing. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), Singapore, 3–7 September 2016; IEEE: Piscataway, NJ, USA, 2016.

15. Fluri, B.; Wursch, M.; PInzger, M.; Gall, H. Change distilling: Tree differencing for fine-grained source code change extraction.
IEEE Trans. Softw. Eng. 2007, 33, 725–743. [CrossRef]

16. Raghavan, S.; Rohana, R.; Leon, D.; Podgurski, A.; Augustine, V. Dex: A semantic-graph differencing tool for studying changes
in large code bases. In Proceedings of the 20th IEEE International Conference on Software Maintenance, Chicago, IL, USA, 11
September 2004; pp. 188–197.

17. Falleri, J.R.; Morandat, F.; Blanc, X.; Martinez, M.; Monperrus, M. Fine-grained and accurate source code differencing. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, Vsters, Sweden, 15–19
September 2014.

18. Gerardo, C.; Luigi, C.; Massimiliano, P. Identifying Changed Source Code Lines from Version Repositories; RCOST—Research Centre
on Software Technology Department of Engineering—University of Sannio Viale: Benevento, Italy, 2007.

19. Zimmermann, T.; Weisgerber, P.; Diehl, S.; Zeller, A. Mining version histories to guide software changes. In Proceedings of the
26th International Conference on Software Engineering, Washington, DC, USA, 23–28 May 2004; pp. 563–572.

20. Ying, A.T.T.; Murphy, G.C.; Ng, R.; Chu-Carroll, M.C. Predicting source code changes by mining revision history. IEEE Trans.
Softw. Eng. 2004, 30, 574–586. [CrossRef]

21. Onuma, Y.; Nozawa, M.; Terashima, Y.; Kiyohara, R. Improved software updating for automotive ECUs: Code compression. In
Proceedings of the IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, Georgia, 10–14
June 2016.

22. Li, B.; Tong, C.; Gao, Y.; Dong, W. S2: A Small Delta and Small Memory Differencing Algorithm for Reprogramming Resource-
constrained IoT Devices. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Vancouver, BC, Canada, 10 May 2021.

23. Ni, G.; Yan, Y.; Jiang, J.; Mei, J.; Chen, Z.; Long, J. Research on incremental updating. In Proceedings of the 2016 International
Conference on Communications, Information Management and Network Security, Shanghai, China, 25–26 September 2016.

24. Deorowicz, S.; Grabowski, S. Robust relative compression of genomes with random access. Bioinformatics 2011, 21, 2979–2986.
[CrossRef] [PubMed]

25. Kuruppu, S.; Simon, J.P.; Justin, Z. Relative Lempel-Ziv compression of genomes for large-scale storage and retrieval. In
Proceedings of the International Symposium on String Processing and Information Retrieval, Berlin/Heidelberg, Germany, 13–15
October 2010.

26. Deorowicz, S.; Grabowski, S. Data compression for sequencing data. Algorithms Mol. Biol. 2013, 8, 25. [CrossRef]
27. Chen, X.; Li, M.; Ma, B.; Tromp, J. DNACompress: fast and effective DNA sequence compression. Bioinformatics 2002, 10, 51–61.

[CrossRef]
28. Deorowicz, S.; Danek, A.; Grabowski, S. Genome compression: A novel approach for large collections. Bioinformatics 2013, 29,

2572–2578. [CrossRef]
29. Deorowicz, S.; Agnieszka, D.; Marcin, N. GDC2: Compression of large collections of genomes. Sci. Rep. 2015, 5, 1–12. [CrossRef]
30. Grumbach, S.; Tahi, F. A new challenge for compression Algorithms: Genetic sequences. Inf. Process. Manag. Int. J. 1994, 6,

875–886. [CrossRef]
31. Saha, S.; Sanguthevar, R. ERGC: An efficient referential genome compression algorithm. Bioinformatics 2015, 31, 3468–3475.

[CrossRef]
32. Saha, S.; Sanguthevar, R. NRGC: A novel referential genome compression algorithm. Bioinformatics 2016, 32, 3405–3412. [CrossRef]
33. Liu, Y.; Peng, H.; Wong, L.; Li, J. High-speed and high-ratio referential genome compression. Bioinformatics 2017, 33, 3364–3372.

[CrossRef] [PubMed]
34. Christley, S.; Lu, Y.; Li, C.; Xie, X. Human genomes as email attachments. Bioinformatics 2009, 2, 274–275. [CrossRef] [PubMed]
35. Pavlichin, D.S.; Tsachy, W. The Human Genome Contracts again. Bioinformatics 2013, 29, 2199–2202. [PubMed]
36. Cao, M.D.; Dix, T.I.; Allison, L.; Mears, C. A simple statistical algorithm for biological sequence compression. In Proceedings of

the IEEE Data Compression Conference (DCC’07), Snowbird, UT, USA, 27–29 March 2007.
37. Ochoa, I.; Mikel, H.; Tsachy, W. iDoComp: A compression scheme for assembled genomes. Bioinformatics 2015, 31, 626–633.

[CrossRef]

http://doi.org/10.1109/TSE.2007.70731
http://dx.doi.org/10.1109/TSE.2004.52
http://dx.doi.org/10.1093/bioinformatics/btr505
http://www.ncbi.nlm.nih.gov/pubmed/21896510
http://dx.doi.org/10.1186/1748-7188-8-25
http://dx.doi.org/10.1093/bioinformatics/18.12.1696
http://dx.doi.org/10.1093/bioinformatics/btt460
http://dx.doi.org/10.1038/srep11565
http://dx.doi.org/10.1016/0306-4573(94)90014-0
http://dx.doi.org/10.1093/bioinformatics/btv399
http://dx.doi.org/10.1093/bioinformatics/btw505
http://dx.doi.org/10.1093/bioinformatics/btx412
http://www.ncbi.nlm.nih.gov/pubmed/28651329
http://dx.doi.org/10.1093/bioinformatics/btn582
http://www.ncbi.nlm.nih.gov/pubmed/18996942
http://www.ncbi.nlm.nih.gov/pubmed/23793748
http://dx.doi.org/10.1093/bioinformatics/btu698


Entropy 2022, 24, 574 20 of 20

38. Kuruppu, S.; Beresford-Smith, B.; Conway, T.; Zobel, J. Iterative dictionary construction for compression of large DNA data sets.
IEEE/AMC Trans. Comput. Biol. Bioinform. 2010, 1, 137–149. [CrossRef]

39. Kuruppu, S.; Puglisi, S.J.; Zobel, J. Optimized relative lempel-ziv compression of genomes. In Proceedings of the Thirty-Fourth
Australasian Computer Science Conference, Perth, Australia, 17–20 January 2011.

40. Pinho, A.J.; Diogo, P.; Sara, P.G. GReEn: A tool for efficient compression of genome resequencing data. Nucleic Acids Res. 2012,
40, e27. [CrossRef]

41. Wang, C.; Dabing Z. A novel compression tool for efficient storage of genome resequencing data. Nucleic Acids Res. 2011, 39, e45.
[CrossRef]

42. Wandelt, S.; Ulf, L. FRESCO: Referential compression of highly similar sequences. IEEE/ACM Trans. Comput. Biol. Bioinform
(TCBB) 2013, 10, 1275–1288. [CrossRef]

43. Brandon, M.C.; Wallace, D.C.; Baldi, P. Data structures and compression algorithms for genomic sequence data. Bioinformatics
2009, 14, 1731–1738. [CrossRef]

44. Chern, B.G.; Ochoa, I.; Manolakos, A.; No, A.; Venkat, K.; Weissman, T. Reference based genome compression. In Proceedings of
the IEEE Information Theory Workshop (ITW), Visby, Sweden, 25–28 August 2012; pp. 427–431.

45. Canfora, G.; Luigi, C.; Massimiliano, P. Ldiff: An enhanced line differencing tool. In Proceedings of the IEEE 31st International
Conference on Software Engineering, Vancouver, BC, Canada, 16–24 May 2009; IEEE: Piscataway, NJ, USA, 2009.

46. Nguyen, H.A.; Nguyen, T.T.; Nguyen, H.V.; Nguyen, T.N. Idiff: Interaction-based program differencing tool. In Proceedings of
the 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, 6–10
November 2011; IEEE: Piscataway, NJ, USA, 2011.

47. Ziv, J.; Lempel, A. A Universal Algorithm for Sequential Data Compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
48. Yufei, T. Patricia Tries Lecture. KAIST. Available online: http://www.cse.cuhk.edu.hk/~taoyf/course/wst540/notes/lec10.pdf

(accessed on 1 May 2013).
49. Daelemans, W.; Van Den Bosch, A.; Weijters, T. IGTree: Using Trees for Compression and Classification. Lazy Learn. 1997, 11,

407–423.
50. Horspool, R.N. The Effect of Non-Greedy Parsing in Ziv-Lempel Compression Method. In Proceedings of the Data Compression

Conference, Snowbird, UT, USA, 28–30 March 1995.
51. Storer, J.A.; Szymanski, T.G. Data Compression via Textual Substitution. J. ACM 1982, 29, 928–951. [CrossRef]
52. Korn, D.G.; MacDonald, J.; Mogul, J.C.; Vo, K.-P. The VCDIFF Generic Differencing and Compression Data Format. RFC 2002,

3284, 1–29.
53. The Silesia Corpus. Available online: http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia (accessed on 10 January 2022).
54. Zlib Compression Library. Available online: http://www.zlib.org/rfc1950.pdf (accessed on 13 January 2022).
55. Lempel Ziv Markov Algorithm. Available online: https://www.7-zip.org/sdk.html (accessed on 13 January 2022).

http://dx.doi.org/10.1109/TCBB.2011.82
http://dx.doi.org/10.1093/nar/gkr1124
http://dx.doi.org/10.1093/nar/gkr009
http://dx.doi.org/10.1109/TCBB.2013.122
http://dx.doi.org/10.1093/bioinformatics/btp319
http://dx.doi.org/10.1109/TIT.1977.1055714
http://www.cse.cuhk.edu.hk/~taoyf/course/wst540/notes/lec10.pdf
http://dx.doi.org/10.1145/322344.322346
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://www.zlib.org/rfc1950.pdf
https://www.7-zip.org/sdk.html

	Introduction
	Related Work
	Keops Algorithm
	Delta File
	Strategies for Buffer Pairing
	One-to-One Strategy (Time Optimized)
	Brute-Force Strategy (Rate Optimized)
	Flexi Strategy


	Experimental Results
	Compression Rate
	Encoding Time
	Decoding Time
	Memory Requirements
	Comparison with Existing Solutions

	Conclusions
	References

