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Abstract

In birds, yolk androgen concentrations in eggs can increase or decrease over the laying sequence and common hypotheses
hold that this serves to favour the competitive ability of either first- or last-hatched chicks depending on the prevailing
conditions, and thus promote brood reduction or maintenance of original brood size respectively. Intra-clutch variation of
testosterone can shift relative competitive ability of siblings and hence competitive dynamics. In a natural population of
great tits, we experimentally investigated the effects and function of maternal testosterone on offspring phenotype in
relation to the laying position of the egg in a context of hatching asynchrony. To this end, we created three types of
clutches where either the first three or the last three eggs of a clutch were injected with testosterone (T) dissolved in sesame
oil, and the remaining eggs with sesame oil only, or where all eggs of a clutch were injected with sesame oil. Increased
levels of yolk T in the last-laid eggs resulted in the last-hatched chicks being significantly lighter and smaller than their
siblings, while increased levels of T in the first-laid eggs had no direct effect on the first-hatched chicks, but an indirect
negative effect on their siblings. Our results suggest that females can potentially adjust offspring phenotype by modulating,
over the laying sequence, the amounts of T deposited in the eggs. These results are in contradiction, however, with current
hypotheses and previous findings, which suggest that under good conditions higher levels of maternally derived T in the
last-laid eggs should mitigate the negative effects of hatching asynchrony.
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Introduction

Maternal effects are defined as modifications of offspring

phenotype caused by the maternal phenotype or the environment

that mothers experience [1]. Maternal effects are a prime

mechanism in the control of phenotypic variation [1] and have

been demonstrated across a wide variety of living organisms in

both plants e.g. [2–4] and animals e.g. [5,6]. Of the many

potential mediators of maternal effects, maternally-derived hor-

mones [7–10] are especially interesting since hormones are well-

known to play a major role in organizing phenotypic differenti-

ation and regulating physiological functions [11].

Among maternally-derived hormones, testosterone (T) has

received particular attention [12–14] since it can have profound

effects on embryo development [7,15–18] with short- and long-

term consequences for both offspring and adult behaviour [19–

25]. High concentrations of maternally-derived T may increase

post-natal growth [17,26–29] and offspring competitiveness in

sibling interactions [16,28,30–33]. Its anabolic properties [34] may

lead, for instance, to accelerated growth of the neck muscles

involved in begging or sucking [35–37]. Besides these beneficial

effects, high levels of maternal T have also been shown to have

costs [7,38–40]. Yolk T may directly suppress immune functions

[41–44, but see 45], contribute to metabolic dysfunctions (e.g.

hyperinsulinemia, [46]), increase oxidative stress [47], or have

indirect costs via trade-offs in resource allocation caused by

accelerated growth (e.g. reproductive anomalies at adulthood [17],

impaired cognitive ability [48], reduced life span [49]). Whether

deposition of high levels of T in the yolk comes at a cost for the

females is still debated. Some studies found that transferring high

amounts of T to the embryo or into the eggs may inflict costs to the

mother (reviewed by [21,22]), while others provide evidence that

the deposition of high levels of T in the yolk does not require

elevated levels of circulating androgens, thus suggesting no cost to

the female [9,50]. Nevertheless, owing to the potentially opposing

costs and benefits of maternally-derived T for offspring, and to

some extent for females, mothers are expected to optimize the

allocation of testosterone to the embryo or egg (reviewed in

[9,21]). Strategic allocation of T would then underlie variation in

the levels of T found in the egg yolk or in the blood of neonates

across clutches or litters produced by different mothers [16,51].

Furthermore, it may also underlie variation in the levels of T

found in the egg yolk or in the blood of neonates within the clutch

or the litter of a given mother [7,52,53]. This latter pattern of

variation in the levels of maternally-derived T across eggs or

neonates is mostly seen in oviparous and ovoviviparous species

where mechanisms allowing the mother to adjust the amount of T

deposited into each of the eggs are more likely to have evolved

[7,14,21,28].

In birds, the concentrations of T deposited in eggs may increase

[14,54] or decrease [55,56] with laying order, depending on the

taxon. The within-clutch variation in maternally-derived T

described in birds [14,57] has been interpreted as an adaptive
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tool to adjust brood size to food availability [9,58]. Hatching

asynchrony occurs in a wide variety of bird species. It is supposed

to result from an onset of incubation before full clutch completion

[59]. Asynchronous hatching establishes an age hierarchy within a

brood, which may then result in a competitive advantage for older,

first-hatched chicks over their younger siblings [60]. The

combination of hatching asynchrony and varying levels of yolk

T can influence offspring growth and begging ability, and may

thus allow mothers to adaptively tune the survival prospects of the

offspring to the conditions prevailing during egg laying and

anticipated conditions during brood rearing [61]. It has been

hypothesized that by depositing higher levels of T with increasing

laying order, females could mitigate the negative consequences of

sibling asymmetry by increasing the competitive ability of the

chicks hatched from the last-laid eggs when food is plentiful, or

handicap those chicks when food is scarce [7,14,28,58,62]. Higher

T-levels induce metabolic costs (e.g. oxidative stress [58]) also for

chicks. These costs may be more than compensated by the benefits

of T-induced higher competitiveness under good food conditions,

but become a handicap under bad conditions [7,58].

The opposite pattern, i.e. allocation of higher levels of T in first-

laid eggs, could exacerbate disadvantages for later hatchlings,

facilitating brood reduction under bad food conditions [63]. In this

latter case, the higher levels of maternally-derived T in the first-

laid eggs would boost the competitive ability of the first-hatched

chicks and precipitate brood reduction via the death of the less

competitive chick(s) hatched from the last-laid egg(s) [9,56].

The fact that strong natural variation in T concentration occurs

within clutches is of importance since it potentially affects the

dynamics of family interaction and sibling competition by creating

variation in competitive ability. It may thus lead to a different

outcome than the more frequently studied variation in T

concentrations among clutches where all siblings are potentially

rendered more or less competitive. To our knowledge, only a few

studies manipulated the levels of yolk T within clutches directly,

and investigated the adaptive significance of varying concentra-

tions of yolk T in relation to the laying order in a context of

hatching asynchrony. Examples include Black-headed gulls

[31,62], Canaries [64], American kestrels [65], and Zebra finches

[66]. Although it is generally assumed that within-clutch variation

in maternal T serves to mitigate the negative effects of hatching

asynchrony on last-hatched offspring, contradictory findings

mainly due to differences in methods used, call for additional

work to better understand the functional significance of within-

clutch variation in T concentration. Most of the previous studies

tested the effects of T by experimental creation of clutches were T

in first-laid eggs was increased to the levels of the last-laid eggs.

However the manipulated clutches contained eggs originating

from different mothers, with the potential problems of an inflation

of within-brood variance in offspring traits through genetic effects

and gene-by-environment effects, a modification of the clutch sex-

ratio and a disruption of within-clutch T-allocation patterns. To

our knowledge, only one study compared the effects of high yolk T

in a context of hatching asynchrony by manipulating levels of T in

both first and last-laid eggs at the same time [64].

We conducted a field experiment where we manipulated within-

clutch T concentration in great tit (Parus major) eggs in order to

assess whether higher levels of yolk T enhance the growth and

survival of the first- or last-hatched chicks and thus would be

compatible with a brood reduction or a compensatory strategy

respectively. We created three types of clutches: (1) clutches where

the first three eggs were injected with T and the remaining eggs

with sesame oil, (2) clutches where the last three eggs were injected

with T and the remaining eggs with sesame oil, and (3) control

clutches where all eggs were injected with sesame oil. We thus

manipulated yolk hormone concentrations of eggs to mimic the

natural variation in yolk T with laying order within clutches. The

experimental design and predictions are based on the findings (e.g.

[63,67]) that, although the general pattern in great tits shows

higher levels of T in the last-laid eggs, some females still lay

clutches where the reversed pattern is observed, i.e. first-laid eggs

contain more testosterone (shown for great tits by [63,67]). We

thus created three experimental groups aiming to: 1) test the effects

of T on chicks in relation to the laying position of the eggs from

which those chicks hatched (within-brood comparison), 2) test the

effects of T on chicks by comparing the chicks from first- or last-

laid eggs with experimentally elevated T levels with chicks from

first- or last-laid oil-injected eggs in control broods (between-brood

comparison), and 3) test whether testosterone has positive or

negative effects on chicks whatever their rank (positive internal

control = broods where testosterone was injected into the first-laid

eggs).

In this study hatching success was reduced following injection

(see below), and thus inadvertently created an experimental

situation where food conditions were improved and sibling

competition weakened. Reduced brood size is well known to have

strong positive effects on chick quality, fledging success and

parental condition in great tits [68]. Consequently, we decided to

narrow our predictions down to the situation of good food

conditions. Therefore, we predicted that in broods where T is

injected into the first-laid eggs, first-hatched chicks should achieve

higher fitness (grow larger and heavier and have higher fledging

success) than last-hatched chicks within the same brood. Com-

pared to first-hatched chicks in control broods, T-injected first-

hatched chicks may perform equally well or better depending on

how strongly additional yolk T will alter their ability to

monopolize food and parental care. Last-hatched chicks in broods

where T is injected in first-laid eggs are predicted to perform

equally or less well than last-hatched chicks in control broods,

again depending on how strongly the T-injected first-hatched

chicks will be affected by the additional yolk T. In contrast, we

predicted that in broods where T is injected into the last-laid eggs,

the last-hatched T-injected chicks should do equally well (full

compensation) or slightly worse (partial compensation) than first-

hatched chicks within the same brood, but should in any case do

better than last-hatched chicks in control broods. In control

broods, we expect hatching asynchrony to induce last-hatched

chicks to grow smaller and lighter than their first-hatched siblings.

Materials and Methods

Study Site and Model Species
The experiment was performed in spring 2009 in a wild

population of great tits, breeding in nest-boxes in the Köniz forest

near Bern, Switzerland (46u569 N, 7u249 E). The study was

approved by the Ethical Committee of the Agricultural Office of

the Canton Bern, Switzerland (experimentation permit 25/09) and

the Federal Agency for Environment of the Canton Bern,

Switzerland (ringing permit 2819). Hatching asynchrony with

hatching spread up to 3 days is common in this species e.g. [69]

and last-hatched chicks frequently die before fledging. From early

March, we visited nest-boxes regularly to determine the start of

nest building and egg-laying. After the laying of the first egg we

visited nests every day and numbered eggs consecutively.

Experimental Procedure
After clutch completion, three types of experimental clutches

were created where either (1) the first three laid eggs were injected
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with T (thereafter called ‘‘T-first’’ clutches) and the others with

5 ml of sesame oil, or (2) the last three eggs were injected with T

(‘‘T-last’’ clutches) and the others with 5 ml of sesame oil, or (3) all

eggs were injected with 5 ml of sesame oil (‘‘control clutches’’).

For T injections we used 15 ng of T (17b-hydroxy-4-androsten-

3-on, Fluka, Switzerland) dissolved in 5 ml of sesame oil. Eggs were

injected after clutch completion to limit the disturbance to females

during egg laying and to keep our workload within feasible daily

limits. To ensure correct statistical analyses and mimic higher

levels of T in either the first- or last-laid eggs, we have chosen to

inject more than one egg. The amount of T injected in this study

fits into the range of concentrations of yolk T previously found in

the same species (e.g. females in captivity: concentrations are

given, which calculate as approx. mean: 5.5 ng/yolk assuming an

average yolk weight of 0.34 g as found in several studies [63];

females in natural population: mean: 8.87 ng/yolk, range: 1.7–

30 ng/yolk [67]; females in natural population: concentrations are

given, which calculate as approx. mean: 19 ng/yolk [70]). Also, a

precursor of testosterone, androstenedione A4, is found in

considerably higher quantities than T in all three studies

mentioned (e.g. concentrations are given, which calculate as

approx. mean: 12.5 ng/yolk assuming average yolk weight of

0.34 g as found in several studies [63]; mean: 18.5 ng/yolk, range:

2.7–60.8 ng/yolk [67]; concentrations are given, which calculate

as approx. mean: 16.3 ng/yolk [70]). Since A4 can be converted

to T by the embryo even at early stages [9,71], the injected dose of

T may thus be in a physiological range that is relevant for

addressing its functions in brood reduction. The maximal amount

of T found in great tit eggs of a neighbouring population was

30 ng/yolk [45,67]. A previous study injected this exact amount

into egg yolks and found positive effects on chick growth [45].

All injections were performed in the field. During manipulation,

the eggs were replaced with dummy eggs in the nest for

approximately a half hour. Before injection we cleaned a small

spot on the egg surface with 70% ethanol. We used a 25 ml syringe

(Hamilton 702LT) with a 25-G needle for injections and a cold

light source to monitor whether the needle entered the yolk

membrane. After the injection the hole in the eggshell was sealed

with a small drop of a tissue adhesive (Nexaband S/C Topical

Tissue Adhesive, England; for method see [45]).

In order to assign each chick to its egg of origin, and thus the

treatment it experienced, we injected all the eggs with 2 ml of

alimentary, non-toxic colorant one day before the predicted

hatching date. Within a clutch, the eggs of the different treatments

(T or sesame oil) received different colours. The colorant sticks to

the hatchling and is visible after hatching and thus allows

individual identification. The colour used with respect to

treatment and position in the laying sequence was assigned

randomly (red or green).

A total of 406 eggs were injected, out of which 224 chicks

hatched. The overall hatching success, as measured by the number

of hatched chicks over clutch size, was 55.2% and it did not

significantly differ among the experimental treatments (x2
2 = 1.27,

P = 0.53, n = 51).

Nest Monitoring
Around the predicted date of hatching, we visited the nests

every day to determine the hatching date of the first chicks in the

brood (day 0). In our study population hatching spread was 0.72+/

20.70 day (71% chicks hatched on day 0, 26.8% hatched on day 1

and only 2.2% hatched on day 2). On day 3, when all chicks had

hatched, we individually marked chicks by removing specific

combinations of tuft feathers, and could assign them unequivocally

to the previous treatment since the colorants were still clearly

visible. Chicks were ringed 8 days after hatching with an

aluminium ring (Vogelwarte, Sempach, Switzerland). Thirteen

days after hatching chicks were weighed to the nearest 0.1 g and

their tarsus and wing lengths were measured to the nearest

0.1 mm. Nests were checked daily from day 16 onwards to record

the number of young fledged and the fledging date.

Assessment of Yolk T concentrations
In 2010, on the day of laying, each egg of 17 clutches was

numbered according to its laying order, removed from the nest

and replaced by a dummy egg until clutch completion. In total, we

collected 134 eggs (from 4 to 11 eggs per clutch) and stored them

at 280uC until analyses of yolk T concentrations.

Yolk T concentrations were assessed by enzyme immunoassay

(EIA) following the protocol described in Palme and Möstl [72]

and Möstl et al. [73]. To extract the yolks we scraped the egg-shell

and albumen from the frozen eggs using a scalpel. Yolks were

weighed and a fraction of each (0.15 g) was homogenised in 600 ml

of distilled water, vortexed for 30 s and frozen. On the next day,

samples were thawed and 3 ml of 100% methanol added. They

were then shaken for 30 min and again frozen overnight. The next

day, samples were thawed, centrifuged for 15 min at 2500 G, and

1 ml of the supernatant transferred into a new vial. Methanol was

evaporated under a stream of nitrogen, and the solid residues were

re-suspended in 500 ml of assay buffer (for details see [72] and

[73]). In duplicates, 10 ml were directly measured in a testosterone

enzyme immunoassay. Intra- and inter-assay coefficients of

variation were 9% und 16%, respectively. Sensitivity of the assay

was 0.99 pg/well. Minimum detectable hormone level was

1.24 ng immunoreactive T per g of yolk.

Statistical Analyses
Analyses were done using the R software (R Development Core

Team 2007, [74]). To test whether the amount of yolk T varied

according to the laying order we used linear mixed models with

normal distribution of errors. To overcome the potential bias that

would be generated by a positive covariation between clutch size

and overall T levels in the eggs (i.e. eggs from large clutches

containing more T), we centred yolk T concentrations by

subtracting the clutch mean from each value of yolk T [75].

Laying order of eggs (ranging from 4 to 11) was included in the

model as a covariate and brood identity as a random factor.

Additionally, we tested whether the average amount of T was

related to clutch size using a general linear model with normal

distribution of the error.

To test the randomisation of our treatments for clutch size, we

used a generalized linear model with Poisson errors where

treatment was included as a fixed factor. A general linear model

with normal distribution of errors was used to investigate whether

brood size on day 3 differed according to the treatments.

To test whether laying order of eggs predicts hatching order of

the chicks we used generalized mixed models with binomial errors.

Hatching spread was limited in our study with only 2.2% of the

eggs hatching 2 days after the first ones had hatched. We therefore

pooled the later hatched chicks to create a binary response

variable: hatched first vs. hatched later ( = hatched 1 and 2 days

later). Fixed factors and covariates were as follows: position of the

egg in the laying sequence (two levels factor: first or last), clutch

size and laying date of the first egg in the clutch. The brood

identity was entered as a random factor.

To investigate the effects of elevated levels of yolk T in first- and

last-laid eggs on chick morphology we conducted two types of

comparisons. First, we did within-brood comparisons where we

tested the effects of T on chicks in relation to the laying position of

Intra-clutch Variation in Testosterone
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the eggs from which those chicks hatched. Second, we conducted

all pair-wise comparisons between broods to test our predictions

(see Introduction) and to investigate the performance of each type

of chick relative to all other chicks from control and T-injected

broods. In particular, comparing chicks hatched from first- or last-

laid T-injected eggs to chicks of control broods (oil-injected)

hatched from eggs with the same position in the laying sequence

tests the prediction that T-injected chicks should perform better or

equally well as control chicks. Also, a competitive disadvantage for

last-hatched chicks over their T-injected, first-hatched siblings

would be evidenced through last-hatched, oil-injected chicks being

smaller than last-hatched chicks from control broods. A neutral

effect on last-hatched chicks of having T-injected siblings would be

evidenced through oil-injected chicks performing as well as last-

hatched chicks from control broods.

Morphological traits were analysed separately using general

linear mixed models (nlme package, [76]), thus allowing to

estimate treatment effects on each trait and possible trade-offs

between traits. Individual fledging probability was modeled using

generalized linear mixed models with binomial errors (binary

response variable: fledged vs. non-fledged; MCMCglmm package,

[77]). For within-brood comparisons, models included laying

position, treatment and their two-way interaction as fixed factors,

and brood identity as a random factor. For between-brood

comparisons, models were run separately using only chicks

involved in specific comparison (e.g. first-hatched T-injected from

T-first broods and first-hatched from control broods). The latter

models included the position of the egg in the laying sequence as a

fixed factor, and brood identity as a random factor. All models

additionally included brood size on day 3 and laying date as

covariates.

For a comparison of the length of the brood rearing period

among treatment groups, we used a general linear model where

the treatment was included as a fixed factor, and the clutch size

and the laying date as covariates. Whole-brood fledging success,

computed as the number of fledged young over the brood size at

hatching, was analysed using a generalized linear model with

binomial distribution of the error, where the treatment was

included as a fixed factor, and the clutch size and the laying date as

covariates.

Model residuals were inspected to identify deviations from

assumptions of normality, linearity and homoscedasticity. Non-

significant interactions (P.0.10) were stepwise backward elimi-

nated starting with those of highest P-values. Fixed effects were

tested for significance using two-tailed, type II F-or x2-tests, except

for generalized mixed models using a binomial distribution of the

error, for which we used Monte Carlo Markov Chains (MCMC)

simulations using the R package MCMCglmm [77]. These models

provided the parameter estimates of the fixed effects along with

their 95% confidence intervals and associated p-values. Signifi-

cance of the interaction in generalized mixed models with

binomial structure of errors were analysed using anova command

which compares the two models (with and without interaction)

using an analysis of deviance [78]. In one brood the information

on body mass was missing.

Results

Hormone Levels
Data from 2010 show that the yolk T content significantly

increased with laying order (within clutch regression using clutch-

centered yolk concentrations: F1,117 = 10.29, P = 0.002, mean:

8.2562.83 ng/yolk, range: 2.31–20.49 ng/yolk; concentration:

28.7969.25 ng/g of yolk, Figure 1) supporting results from

previous studies on the same species [67]. Average T levels per

clutch was not significantly related to the clutch size (F1,15 = 3.40,

P = 0.085).

Validation of Experimental Design
A total of 51 great tit clutches were manipulated (15 control

clutches, 18 T-First clutches and 18 T-Last clutches). Clutch size

was randomized over treatments (x2
2,50 = 1.16, P = 0.56, mean

clutch size 61 SE: 8.6060.37 egg for control clutches, 7.5060.32

egg for T-First clutches, 7.8360.33 egg for T-Last clutches). Brood

size on day 3 did not differ among treatments (x2
2,50 = 3.18,

P = 0.20, mean brood size on day 361 SE: 5.4060.50 chick for

control clutches, 4.8060.39 chick for T-First clutches, 4.0060.34

chick for T-Last clutches).

First, verifying that the position of the eggs in the laying

sequence predicted their hatching order, we found that last-laid

eggs were significantly more likely to hatch at least 1 day later than

the first-laid eggs (position of the egg in laying sequence: estimate

[95% CI] = 0.14 [0.02; 0.25], P = 0.02, brood size on day 3:

estimate [95% CI] = 20.03 [20.08; 0.01], P = 0.20, laying date:

estimate [95% CI] = 0.008 [0.001; 0.02], P = 0.06).

Within-brood Comparisons
Size and body mass of 13 days old chicks were differently

affected depending on the laying position in the three experimen-

tal groups (significant interaction between laying position and

treatment; Table 1; Figures 2, 3 and 4). In control broods, chicks

hatched from first-laid eggs had similar body mass and size as their

siblings hatched from last-laid eggs (mean difference 61SE: body

mass: 0.3960.22 g, post-hoc t-test: t1,159 = 1.78, P = 0.076; tarsus

length: 0.1360.19 mm, post-hoc t-test: t1,160 = 0.71, P = 0.48;

wing length: 1.0160.75 mm, post-hoc t-test: t1,160 = 1.35,

P = 0.18). In T-Last broods, chicks hatched from first-hatched

oil-injected eggs were heavier and bigger than their siblings

hatched from last-laid T-injected eggs (mean difference 61SE:

body mass: 0.7860.24 g, post-hoc t-test: t1,159 = 3.26, P = 0.002;

tarsus length: 0.9260.21 mm, post-hoc t-test: t1,160 = 4.44,

Figure 1. Within-clutch variation in yolk T (ng/yolk). Black thin
lines indicate levels of yolk T according to the laying order for each
female. The black bold line indicates mean yolk T levels according to
the laying order.
doi:10.1371/journal.pone.0056672.g001
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P,0.001; wing length: 1.9760.81 mm, post-hoc t-test:

t1,160 = 2.43, P = 0.016). In T-First broods, chicks hatched from

first-laid T-injected eggs had similar weight and tarsus length but

longer wings than their siblings from the last-laid oil-injected eggs

(mean difference 61SE: body mass: 0.2660.22 g, post-hoc t-test:

t1,159 = 1.20, P = 0.23; tarsus length: 0.1760.19 mm, post-hoc t-

test: t1,160 = 0.89, P = 0.37; wing length: 1.9860.73 mm, post-hoc

t-test: t1,160 = 2.70, P = 0.008).

Fledging probability of individual chicks did not differ among

experimental groups and was not affected by laying position

(laying position: estimate: 0.005, CI = [20.03; 0.04], P = 0.76; T-

First broods: estimate: 0.04, CI = [20.09; 0.19], P = 0.65; T-Last

broods: estimate: 0.09, CI = [20.07; 0.24], P = 0.22; laying

position x treatment: x2
2,160 = 3.21, P = 0.21; brood size: estimate:

0.005, CI = [20.03; 0.04], P = 0.82; laying date: estimate: 0.003,

CI = [20.009; 0.003], P = 0.36).

Between-brood Comparisons
Between-brood comparisons of body mass and wing length all

yielded non-significant results (analyses for body mass: all F ,3.56,

all P.0.07; analyses for wing length: all F ,3.61, all P.0.086).

All chicks from control broods (oil-injected eggs) grew shorter

tarsi than chicks hatched from both types of eggs in T-First broods

(mean difference 61SE with first-laid T-injected: vs. last-laid

control oil: 1.5660.73 mm, F1,30 = 4.56, P = 0.041; vs. first-laid

control oil: 1.5360.70 mm, F1,30 = 4.85, P = 0.035; mean differ-

ence with oil-injected 61SE: vs. last-laid control oil: 1.36 mm

60.62, F1,30 = 4.79, P = 0.037; for first-laid control oil:

1.3360.59 mm, F1,29 = 5.08, P = 0.032) and than chicks from

first, oil-injected eggs in T-Last broods (mean difference 61SE: vs.

last-laid control oil : 1.5060.58 mm, F1,28 = 6.64, P = 0.015, vs.

first-laid control oil: 1.51 mm 60.53, F1,28 = 8.19, P = 0.008).

However, they grew tarsi of similar size to chicks hatched from

last-laid, T-injected eggs (F ,0.83, P.0.37). No difference in

tarsus length however was observed between chicks form T-First

and T-Last broods (all F ,2.11, all P.0.15).

All types of chicks achieved similar individual fledging

probability (all estimates ,0.12, P.0.14).

Brood Rearing Period and Whole-brood Fledging Success
We found no significant effect of the treatment on the length of

the brood rearing period (mean value 61SE for control broods:

18.7860.40 days; mean value 61SE for T-First broods:

19.4160.40 days; mean value 61SE for T-Last broods:

19.0560.39 days; Treatment: F1,45 = 0.85, P = 0.43, clutch size:

F1,44 = 0.001, P = 0.99, laying date: F1,47 = 3.46, P = 0.07). Finally,

there was no difference in whole-brood fledging success among

Figure 2. Body mass (mean ± SE) of chicks in relation to the
laying position and treatments. Grey points indicate body mass of
chicks hatched from T-injected eggs. Black points indicate body mass of
chicks hatched from oil-injected eggs.
doi:10.1371/journal.pone.0056672.g002

Figure 3. Tarsus length (mean ± SE) of chicks in relation to the
laying position and treatments. Grey points indicate chicks hatched
from T-injected eggs. Black points indicate chicks hatched from oil-
injected eggs.
doi:10.1371/journal.pone.0056672.g003

Figure 4. Wing length (mean ± SE) of chicks in relation to the
laying position and treatments. Grey points indicate chicks hatched
from T-injected eggs. Black points indicate chicks hatched from oil-
injected eggs.
doi:10.1371/journal.pone.0056672.g004
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experimental broods (mean fledging success for control broods:

90%; mean fledging success for T-First broods: 85%; mean

fledging success for T-Last broods: 92%; x2
2 = 0.14, P = 0.93).

Discussion

The aim of this study was to investigate the effects of maternal

testosterone on offspring phenotype in relation to the laying

position of the egg, and its function in a context of brood size

adjustment. Overall, we found that experimentally elevated levels

of T affected chick growth differentially depending on the laying

position. Increased levels of T in later laid eggs had a negative

effect on chick growth, while increased levels of T in the first-laid

eggs had no effect on the first-hatched chicks, but an indirect

negative effect on their last-hatched siblings. Our results do not

support the ‘‘compensation’’ strategy hypothesis, i.e. the hypoth-

esis that maternal deposition of higher levels of T into the last-laid

eggs may mitigate the negative effects of hatching asynchrony on

chicks hatched from those eggs under good conditions.

In this study, we injected a fixed amount of T and did not

account for pre-treatment concentrations of T in the egg yolks. It

could then be argued that the dosage we used may have been

beyond the physiological range in our study population. However,

Tschirren and colleagues [45], in a neighboring population used a

fixed amount of T that was twice as high as ours (30 ng vs. 15 ng)

and still found positive effects on chicks hatched from last-laid

eggs. Moreover, we found a maximum amount of T per yolk of

21 ng in our population (see results and Figure 1). Therefore,

adding 15 ng would increase the amount of T up to 36 ng in those

eggs and this is close to the maximum concentration found for this

species in Switzerland (30 ng/yolk). Although one can argue that

this is still above the maximum reported value, it can hardly be

considered as supraphysiological with regard to the ca. 60 ng

‘‘produced’’ by Tschirren at al. [45], which yielded positive effects

of T. Moreover, 92.5% of the eggs analyzed in our study

contained less than 15 ng of T per yolk, meaning that 92.5% of

the injected eggs would fall below the highest natural yolk T

concentration. We thus believe that, although the fixed dose of T

used in our study may have been slightly above the physiological

norm for 7.5% of the eggs (at a 30 ng threshold), it was not so for

the remaining 92.5%, and thus the detrimental effects found call

for another explanation than supraphysiological dosage.

The reduced hatching success in our study led to smaller brood

sizes and therefore lowered chick competition. Reduced brood size

is well known to improve rearing conditions, and lead to higher

fledgling body mass, size, survival, and recruitment rate

[68,79,80]. Therefore, the results of our experiment will be

discussed in a context of good rearing conditions. Reduced

hatchability of eggs seems to be a common problem with such

injection experiments [81–83] and one can argue that only the

strongest embryos survived. However, even though the injection

may lead to differential survival of embryos, it would affect

embryos equally over the treatments since all eggs were injected,

and thus have little effects on our results.

In spite of the good conditions generated by the reduced

hatching success, we found that first-hatched chicks from first-laid

eggs injected with T had similar body mass and wing length as all

control chicks from either control broods or T-Last broods

(Figures 2 and 4; all post-hoc comparisons P.0.05, see results).

First-hatched chicks from first-laid eggs injected with T had tarsi of

similar length as their siblings and control chicks from T-Last

broods (Figure 3). Their tarsus was longer than for chicks in

control broods, but this is due to control-brood chicks being

smaller than all chicks from T-injected broods (T-First and T-

Last), a result we discuss later. Thus, we overall found no effect on

first-hatched chicks of increased T-levels in the first-laid eggs.

Last-hatched chicks from oil-injected eggs in T-First broods

achieved similar mass and tarsus length as their T-injected, first-

hatched siblings. However, they grew significantly smaller wings

than their siblings (see results and Figure 4). This suggests that last-

hatched chicks indirectly suffered from elevated yolk T levels in

their siblings’ eggs. Females usually deposit more T in the yolk of

the last-laid eggs (Figure 1). However, variation exists and this

pattern is reversed in some clutches. This last result combined with

an absence of positive effect on first-hatched chicks from T-

injected eggs renders the adaptive significance of such a reversed

pattern elusive. Testing the effects of elevated yolk T in first- vs.

last-laid eggs under both good and bad rearing conditions may

provide some answers to this question.

The benefit of increasing the concentration of yolk T over the

laying sequence is supposedly at least partially counteracting the

disadvantage in sibling competition of the last-hatched chicks by

enhancing their overall competitiveness under good conditions

[31]. In canaries for example, junior chicks that were placed at a

competitive disadvantage, similar to later-hatching chicks in

natural broods, benefited from elevated yolk T levels via enhanced

growth [64]. The same pattern was observed in black-headed gull,

where the last-hatched chicks from eggs with elevated levels of T

grew heavier and had longer tarsi than the last-hatched chicks

from control eggs [62]. In contrast to these previous studies, we

found that last-hatched chicks from last-laid eggs injected with T

grew smaller and lighter than their oil-injected siblings, and thus

seemed to suffer from increased yolk T levels. In these broods,

elevated T in last-laid eggs may have induced higher behavioural

activity and aggression [84,85] resulting in higher energy

expenditure due to unnecessary increase in metabolism [86], with

maladaptive consequences in the current good rearing conditions

Table 1. Within-brood analysis of the effects of an injection of T and the laying position on chick size and mass.

Body mass Tarsus length Wing length

F df P F df P F df P

Laying position 1.43 1,159 0.23 0.50 1,160 0.48 1.82 1,1600 0.18

Treatment 0.16 2,46 0.85 4.54 2,45 0.016 0.93 2,45 0.40

Brood size 0.12 1,44 0.73 0.02 1,44 0.89 6.61 1,45 0.013

Laying date 1.64 1,45 0.21 3.32 1,45 0.075 1.03 1,44 0.32

Laying position x treatment 6.56 2,159 0.002 7.31 2,160 ,0.001 5.20 2,160 0.006

Significant effects are highlighted in bold.
doi:10.1371/journal.pone.0056672.t001
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where sibling competition was lowered. Our results raise the

question of the adaptive function of depositing higher amounts of

T in the last-laid eggs, as illustrated by the general pattern found

here (Figure 1) and by Tschirren et al. [67]. We suggest that high

levels of T may be detrimental for the last-laid, last-hatched chicks

in general, and particularly under worse rearing conditions.

Females would therefore deposit more T in the last-laid eggs to

induce brood reduction. This hypothesis could be experimentally

tested using the same injection procedure as ours but manipulating

post-hatching conditions both to the worse and to the better. A

complementary experiment would manipulate both pre-laying and

post-hatching conditions to investigate whether females anticipate

rearing conditions by varying the amounts of T in the last-laid

eggs, and whether patterns of hormone allocation within the laying

sequence match a brood reduction strategy.

Our results contradict a study by Tschirren et al. [45] in that we

found no positive effect of high yolk T levels on the last-hatched

chicks. It is to be noted however that the study by Tschirren and

colleagues used a different experimental design. First, by injecting

whole clutches either with T or with sesame oil and later using a

partial cross-fostering procedure, the authors created mixed

broods in which half of the chicks hatched from T-injected eggs

and half of the nestlings hatched from oil-injected eggs. Although

this design allows testing for an interaction between treatments

and laying position, it does not allow for within-clutch compar-

isons, and is in contrast with our design that aimed to test whether

increasing or decreasing amounts of T within the laying sequence

is relevant for brood reduction. Also the cross-fostering by itself

can induce an additional stress [87]. The discrepancy between our

and Tschirren et al.’s method [45] is a strong basis to explain the

discrepancy in our respective results. One explanation is that the

interposition of control chicks among T chicks in Tschirren et al.’s

protocol [45] may have strongly influenced the whole brood

dynamics both in terms of sibling rivalry and sibling competition

and in terms of parental response to altered begging levels, to such

an extent that it interacted with the effect of T on the last-hatched

chicks. In our protocol, first- and last-hatched chicks were

contrasted in terms of levels of T in the yolk in a manner that

should be closer to the natural pattern.

As an alternative explanation of our negative effects on last-

hatched chicks it could be postulated that several other substances

(e.g. lipids, protein or water) that are found in egg yolk may

interact with testosterone, and T concentrations within-clutches

may be adjusted to some other components [58]. For instance,

differences in lysozyme [88], carotenoid [58] or immunoglobulin

content [89] can result in differences in chick growth and fitness.

Thus, modifying the concentration of one substance independently

of all others may disrupt a subtle balance and thereby lead to

detrimental effects on chick growth. Moreover, avian eggs contain

also high concentrations of other maternally originated hormones

such as dihydrotestosterone (DHT), androstenedione (A4), 17b-

oestradiol (E2) and corticosterone (B). Therefore, the injection of

only T in our study may modify possible hormonal interactions

contributing to unexpected phenotypic changes [9,90]. On the

other hand, it is possible that the eggs may have been prepared for

a poor situation in our study and so did not match the good

condition created afterwards.

Looking at the average body mass and size of chicks, we found

that chicks from control broods had shorter tarsi than chicks from

T-First broods (Table 1; mean difference 61SE: 1.6760.64 mm,

post hoc t-test: t1,45 = 2.62, P = 0.012), as well as had shorter tarsi,

although non significantly, than chicks from T-Last broods

(Table 1; mean difference 61SE: 1.1960.63 mm, post hoc t-test:

t1,45 = 1.88, P = 0.067). One explanation would be that increased

levels of T in some eggs of a clutch may change the overall

dynamics of the brood, and bring some benefits to the brood as a

whole. This idea however is speculative and requires additional

examination.

Overall, our results show that females could potentially adjust

offspring phenotype by modulating, over the laying sequence, the

amounts of T deposited in the eggs. However, they seem to

contradict previous findings, and do not support the idea that

under good conditions higher levels of maternally derived T in the

last-laid eggs may at least partially compensate the negative effects

of hatching asynchrony by increasing the last-hatched chicks’

competitive ability.
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Advances in Steroid Analysis 1993: Proceedings of the 5th Symposium on the
Analysis of Steroids Held at Szombathely, Hungary, May 3–5, 1993: Akadémiai
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