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Abstract: Hemp (Cannabis sativa L., 2n = 20) is a valuable crop that is successfully used as a food,
technical and medicinal crop. It is a dioecious plant with an XX\XY sex determination system. Some
chromosomes of C. sativa have almost the same lengths and centromeric indexes. Cytogenetic markers
help to distinguish similar plant chromosomes, including sex chromosomes, which is important for
the breeding process. Two repeats (CS-1 and CS-237) were used to develop labeled oligo-probes for
rapid and low-cost oligo-FISH. These oligos can be recommended for use as cytological markers to
distinguish sex chromosomes (X and Y) and somatic chromosome pairs 3, 6, and 8 by rapid oligo-FISH
in a short time.
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1. Introduction

Hemp (Cannabis sativa L.) is an important agricultural plant, that has been cultivated
for more than 5000 years [1]. Furthermore, it is one of the oldest plant sources to serve as a
food and technical crop [2–6]. C. sativa has long been used for medical purposes dating back
to ancient times. The plant has medicinal usage in the treatment of burns, pain, glaucoma,
nausea, cardiovascular and bronchopulmonary diseases, depression, neuralgia, anemia,
and bone fragility, among others [7–15].

Plant sex chromosomes are very rare; they have been reported in about 40 species [16–18].
C. sativa is a dioecious plant with an XX\XY sex determination system [19–22]; the chromo-
some number is 2n = 20 [23]. The haploid nuclear genome size for males and females is
calculated to be 843 mega-base pairs (Mbp) and 818 Mbp, respectively [24,25]. Sex determi-
nation is important for cannabis production and depends on the specific application. For
instance, the unfertilized female flowers contain higher levels of cannabinoids and seeded
flowers are undesirable for medicinal applications [24]. C. sativa can be used for better un-
derstanding of the evolution of sex chromosomes [23,26,27]. A high level of polymorphism
has been noted in C. sativa [28,29]. Furthermore, the chromosomal polymorphism has been
detected by FISH on the inter- and intra-cultivar levels of C. sativa [23]. The high level
of polymorphism determines the importance of C. sativa cytological studies for cultivar
identification and characterization.

Cytogenetic markers help to distinguish similar plant chromosomes, including sex
chromosomes, which is important for the breeding process [19,30]. Cytogenetic markers
also help us to associate genomic assemblies with physical chromosomes [31,32]. DNA
repeats for FISH analysis usually need to be amplified in a bacterial plasmid, extracted, and
then labeled by nick translation [33,34]. In addition, FISH probes can be generated by PCR,
but DNA isolation is previously required [35–37]. Thus, the procedure for preparing the
probes is time consuming. Synthetic oligonucleotides with a fluorescent label can also be
used as a probe for FISH [38,39] or ND-FISH analysis [40–48]. Such a probe is convenient to
use since fluorochrome labeled oligonucleotides can be purchased directly from commercial
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sources. ND-FISH have a short hybridization time and no denaturation process, saving
the structure of chromosomes, reagents and other resources [40,46,47,49]. Based on these
advantages, the method is widely used to identify plant chromosomes [39,40,42,47,48].
Moreover, ND-FISH technology can be used to identify crop varieties [50]. ND-FISH is
simple and convenient, but less reproducible in a series of experiments [46].

Oligos are being developed for easy application, which allows researchers to obtain
results by fast oligo-FISH or ND-FISH in a short time. Oligos have been developed and
successfully used for cereals [40–43,51,52] and other crops [53–55]. In this article, we report
the development of oligo-labeled probes, based on CS-1 [56] and CS-237 [31] repeats for
rapid oligo-FISH. The possibility of their use as cytological markers for C. sativa sex and
some somatic chromosomes is discussed.

2. Results and Discussion

To compare the efficiency between conventional FISH and oligo-FISH we used them
in turn. The first experiment was carried out on C. sativa chromosomes with PCR labelled
probes. As a result, hybridization signals of CS-1 (Figure 1a) and CS-237 (Figure 1b) were
detected as described by Divashuk et al. [56] and Alexandrov et al. [31], respectively.
Satellites are often separated from the chromosome 8, as shown in Figure 1b.
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Figure 1. The results of FISH experiments with the PCR labelled probes CS-1 and CS-237 on C.
sativa chromosomes: (a) pink—CS-1 probe; (b) pink—CS-237 probe. DAPI layer of chromosome 8
with satellite is enlarged and shown in gray. Distinguished chromosomes are indicated according to
Alexandrov et al. [31]. Bar equals 5 µm.

Labeled oligos were designed and synthesized for the repeats CS-1 and CS-237 by
Primer3 software [57] for more simple use of them as cytogenetic markers. For each
repeat we designed two different sequences of oligos to increase the chances of successful
hybridization. Labeling was carried out by using various fluorophores (FAM, TAMRA,
Cy5) (Table 1) for more convenient use in combination with other labeled probes.

Table 1. Labeled oligo-probes designed for the repeats CS-1 and CS-237.

Labeled Oligo-Probe Repeat Oligonucleotide Dye

oligoCS-1-FAM CS-1 5′-TAGTTATCTGTTAAAATCTCAACCTACACA-3′ 5‘-6-FAM

oligoCS-1-Cy5 CS-1 5′-TAGTTATCTGTTAAAATCTCAACCTACACA-3′ 5‘-Cy5

oligoCS-1-TAMRA CS-1 5′-ATCGTTTTAATCGAAATAGTGAAAATCTCA-3′ 5‘-TAMRA

oligoCS-237-FAM CS-237 5′-ATGTATTGCTGACACTCATTTGAAATCATC-3′ 5‘-6-FAM

oligoCS-237-Cy5 CS-237 5′-ATGTATTGCTGACACTCATTTGAAATCATC-3′ 5‘-Cy5

oligoCS-237-TAMRA CS-237 5′-TACGTTGGTTGATTGAGGATGTTTGAAA-3′ 5‘-TAMRA
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All the oligos were hybridized on C. sativa chromosomes by rapid oligo-FISH (Figure 2).
Hybridization signals were observed for all the developed oligos. The results of the oligo-
FISH probe detection with all the oligos on C. sativa chromosomes were similar as for FISH
with the PCR labelled probes. There were no non-specific signals interfering with the work
with the metaphase plates.
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We found that the oligo-probes oligoCS-1-FAM, oligoCS-1-Cy5, and oligoCS-1-TAMRA
are located in the subtelomeric region on both arms of all C. sativa chromosomes, except for
the long arm of chromosome 3, the short arm of chromosome 8, and the long arm of the Y
chromosome at the same positions. The oligo-probes oligoCS-237-FAM, oligoCS-237-Cy5,
and oligoCS-237-TAMRA are located in the proximal part of the short arm of chromosome 6
and in the distal part of the short arm of chromosome 8 at the same positions. Thus, we can
use any oligo with any dye from Table 1 suitable for a particular experiment. The positions
of the oligos completely coincide with the positions of the corresponding repeats on C. sativa
chromosomes [31,56]. We noted a different intensity of signals in different plants of C. sativa,
which is quite consistent with Razumova et al. [23], where subtelomere hybridization sites
disappear or new hybridization sites appear. This interesting phenomenon for the cross-
pollinated plant is relatively expected and requires further study.

Some chromosomes of C. sativa are difficult to distinguish from each other without
the use of cytological markers (chromosomes 5 and 6, X and Y) since they have almost
the same lengths and centromeric indexes. Differences in the position of the oligo-probes
for CS-1 and CS-237 repeats on C. sativa chromosomes make it possible to distinguish
chromosomes 5 and 6, X and Y and easily identify chromosomes 3 and 8. Razumova
et al. [23] showed different variations of FISH signals for the CS-1 repeat on chromosome 8
and on chromosome X. Nevertheless, the combined use of the oligo-probes for CS-1 and
CS-237 repeats can identify these chromosomes. Thus, the probes can be recommended as
cytogenetic markers for better identification of C. sativa chromosomes 3, 6, 8, X and Y by
rapid oligo-FISH.

3. Conclusions

In conclusion, the oligonucleotide probes oligoCS-1-FAM, oligoCS-1-Cy5, oligoCS-
1-TAMRA, oligoCS-237-FAM, oligoCS-237-Cy5, and oligoCS-237-TAMRA have been de-
veloped in the present study. They can be used to conveniently identify sex and somatic
chromosomes and their polymorphism in hemp using rapid oligo-FISH.
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4. Materials and Methods
4.1. Plant Material

For the study of mitosis metaphase chromosomes, cv “Zenitsa” (dioecious) seeds of
C. sativa were used (originated by P.P. Lukyanenko Krasnodar Research and the Develop-
ment Institute of Agriculture, Krasnodar, Russia). The seeds were harvested in 2020 and
then stored at +4 ◦C.

4.2. Chromosome Preparation

C. sativa seeds were germinated on moist filter paper in Petri dishes at 24 ◦C in the dark
for 72 h. The seedlings (2–3 cm long) were used to prepare the slides of mitotic metaphase
chromosomes as described by Romanov et al. [58].

4.3. DNA Probes and Labeling

Young seedlings of C. sativa were used for DNA isolation by the CTAB method [59].
Repeat sequences CS-1 and CS-237, previously described by Divashuk et al. [56] and
Alexandrov et al. [31], respectively, were used to design primers and oligos by using
the Primer3 software v.4.1.0 [57]. DNA labeling was performed by PCR with biotin-16-
dUTP according to the manufacturer’s instruction (Boehringer, Germany). The oligos were
synthesized and labeled by FAM, TAMRA or Cy5 (Evrogen JSC, Moscow, Russia).

4.4. Fluorescence In Situ Hybridization (FISH) and Oligo-FISH

The FISH experiments were performed as described by Karlov et al. [60]. Post-
hybridization washing was performed in 50% (v/v) formamide in 2× SSC for 15 min
at 42 ◦C, while the theoretical washing stringency was about 80%. The chromosomes were
counterstained with 1 mg/mL DAPI and mounted in Vectashield (Vector laboratories,
Burlingame, CA, USA). Oligo-FISH experiments were performed as FISH, but without the
detection step, as described by Kuznetsova et al. [46]. The hybridization procedure for
FISH and oligo-FISH lasted for 1 h and 16 h, respectively, at 37 ◦C.

4.5. Microscopy and Image Analysis

Chromosome preparations were viewed by using a THUNDER 3D Tissue microscope
with a filter set DFT51111, a fluorescence light source LED3, and a digital camera DFC9000
GTC (Leica Microsystems, Wetzlar, Germany). Multichannel fluorescence recording, image
processing for brightness/contrast and color settings were performed using LasX software
(Leica Microsystems, Wetzlar, Germany). The karyotype for C. sativa metaphase chromo-
somes was developed by Divashuk et al. [56] and improved by Alexandrov et al. [31]. In
this article, chromosome numbering is in accordance with Alexandrov et al. [31]. Chromo-
somes 3, 5, 6, 8, X, and Y according to Alexandrov et al. [31] correspond to chromosomes 4,
6, 3, 9, X, and Y, respectively, according to Divashuk et al. [56].
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