
biomolecules

Article

Whole Genome Sequencing of Familial
Non-Medullary Thyroid Cancer Identifies Germline
Alterations in MAPK/ERK and PI3K/AKT
Signaling Pathways

Aayushi Srivastava 1,2,3,4 , Abhishek Kumar 1,5,6 , Sara Giangiobbe 1, Elena Bonora 7,
Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,*

1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ),
D-69120 Heidelberg, Germany; a.srivastava@dkfz.de (A.S.); abhishek.abhishekkumar@gmail.com (A.K.);
sara.giangiobbe@gmail.com (S.G.); k.hemminki@dkfz.de (K.H.); a.foersti@kitz-heidelberg.de (A.F.)

2 Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ),

German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
4 Medical Faculty, Heidelberg University, D-69120 Heidelberg, Germany
5 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics, 40138 Bologna, Italy; elena.bonora6@unibo.it
* Correspondence: o.bandapalli@kitz-heidelberg.de; Tel.: +49-6221-42-1709

Received: 29 August 2019; Accepted: 10 October 2019; Published: 13 October 2019
����������
�������

Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated
over the last few decades. However, known variants account for a very small percentage of the
genetic burden. Here, we focused on the identification of common pathways and networks enriched
in NMTC families to better understand its pathogenesis with the final aim of identifying one novel
high/moderate-penetrance germline predisposition variant segregating with the disease in each
studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family
members from five NMTC-prone families and prioritized the identified variants using our Familial
Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in
upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes
affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity
Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated
by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT
and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and
functional validation of causal variants in each family as well as the screening and genetic counseling
of other individuals at risk of developing NMTC.

Keywords: papillary thyroid cancer; germline mutations; whole genome sequencing; predisposition
markers; pathway analysis

1. Introduction

Thyroid cancer is the most common endocrine malignancy with an age adjusted incidence of
0.5-20/100,000 persons per year [1]. Significant regional differences exist with Italy being among
the countries with the highest incidence rates in the world [1]. An increasing incidence has been
observed worldwide during the past decades, which can to a certain extent be related to changes
in the availability of medical services and in standard clinical practice. On the other hand, regional
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differences in incidence as well as changes over time may also be related to lifestyle, nutritional iodine,
ionizing radiation and genetic factors [2]. For instance, the high incidence of thyroid cancer in Italy
can be attributed to the disruptive and carcinogenic effect of volcanic environments on the endocrine
system [3]. The familial relative risk of developing thyroid cancer is estimated to be increased 6.7-fold
in a study based on the Swedish Family-Cancer Database, in which 3.4% of all thyroid cancer cases
had a concordant family history [4].

Approximately 90–95% of all thyroid cancers are non-medullary thyroid cancers (NMTC) [5]
and can be classified into four histological subtypes: papillary, follicular, Hürthle cell and anaplastic
thyroid cancer, with papillary thyroid cancer (PTC) being the most common one. Familial NMTC
(FNMTC) accounts for only a small percentage of all NMTCs and can be divided into non-syndromic
and syndromic forms. In the first, it occurs as the primary feature and in the second, as a minor
component of a familial cancer syndrome, such as familial adenomatous polyposis, Gardner’s syndrome,
Cowden’s disease, Carney’s complex type 1, Werner’s syndrome, papillary renal neoplasia, and DICER1
syndrome [6]. Known syndromes explain only a small proportion of all FNMTCs.

Unlike the case of familial medullary thyroid cancer, in which there is extensive evidence
linking germline point mutations in the RET proto-oncogene to the development of thyroid cancer,
the genetic causes for FNMTC remain largely unknown. Over the years, studies seeking genetic factors
predisposing to NMTC have been performed using linkage analysis, candidate gene sequencing and
recently also whole genome sequencing. These studies have suggested several genes as potential
NMTC-predisposing genes, including, FOXE1, SRGAP1, TITF-1/NKX2.1, SRRM2, and HABP2 [7–11].
In addition, an imbalance of the telomere-telomerase complex has been demonstrated in the peripheral
blood of familial PTC patients [12]. Nonetheless, NMTC is one of the most heritable cancers wherein
first degree relatives of an affected individual have an 8-10-fold increased risk of developing the
disease [13]. Therefore, there are many underlying germline mutations that are yet to be discovered.

The identification of such predisposition genes could be of great value in the screening of
individuals at risk of developing NMTCs as well as in the development of personalized adjuvant
therapies based on the affected pathways. It has been observed that hereditary NMTC is characterized
by early onset, a higher degree of aggressiveness and more frequent multifocal disease and recurrence
compared with its sporadic counterpart [13]. Thus, medical centers recommend more aggressive
treatment of affected family members, reinforcing the importance of identifying such cases.

Here we report the germline genomic landscape of five families with NMTC aggregation consistent
with an autosomal dominant pattern of inheritance. The aim of the current study was to use whole
genome sequencing (WGS) data to discern pathways affected in the FNMTC families to facilitate the
identification of possible disease-causing high/moderate-penetrance germline variants in each family.
With our results, we hope to facilitate genetic counseling and targeted therapy in these families and
improve screening of other individuals at risk of developing NMTC.

2. Materials and Methods

2.1. Ethical Approval

Blood samples were collected from the participants with informed consent following ethical
guidelines approved by “Comitato Etico Indipendente dell ‘Azienda Ospedaliero-Universitaria di
Bologna, Policlinico S. Orsola-Malpighi (Bologna, Italy)” and “comité utiltative de protection des
personnes dans la recherche biomédicale, Le centre de ute contre le cancer Léon-Bérard (Lyon, France)”.

2.2. NMTC Families

Five families with NMTC aggregation consistent with an autosomal dominant pattern of
inheritance were provided by the S. Orsola-Malpighi Hospital, Unit of Medical Genetics in Bologna,
Italy. Samples from a total of 23 affected and 3 unaffected family members from the five families were
submitted for WGS. Their respective pedigrees are shown in Figure 1. In family 1, the mother (I-1)
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was affected by insular carcinoma of the thyroid whereas three of her children and her grandchild
were diagnosed with PTC or micro-PTC (II-2, II-3, II-6, III-1) and one child with benign nodules
(II-1). Her unaffected son was deemed a reliable control (II-4). WGS (*) was performed on five family
members. In family 2, there were six cases (III-1, III-3, III-4, IV-3, IV-4, IV-5), one probable case (IV-1)
and one control (IV-2) out of which six underwent WGS. Family 3 consisted of two related cases (IV-4,
IV-5) and one unrelated case (III-1) of which all three underwent WGS. Family 4 is characterized
by bilateral PTCs concurrent with other subtypes of NMTCs (Hürthle cell cancer, follicular cancer).
Four family members were diagnosed with thyroid cancer of which all underwent WGS (II-2, III-1,
III-2, III-3). WGS was performed on eight family members of family 5. Five members were affected by
PTC, Hürthle cell cancer, micro-PTC or a combination of two of the subtypes (II-2, II-3, II-5, II-8, II-9).
Four members were possible carriers either affected by benign nodules or deceased (I-1, II-4, II-6) and
two were unaffected (II-1, II-7).
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Figure 1. Pedigrees of the five non-medullary thyroid cancer (NMTC)-prone families analyzed in
this study.

2.3. Whole Genome Sequencing and Variant Evaluation

WGS for 23 cases and 3 controls was performed using Illumina-based small read sequencing after
DNA was isolated from peripheral blood using the QIAamp ® DNA Mini Kit (Qiagen, Cat No. 51104)
according to the manufacturer’s instructions.

2.4. Variant Calling Annotation and Filtering

Sequencing data was mapped to a reference human genome (assembly version Hs37d5) using BWA
mem (version 0.7.8) and duplicates were removed using biobambam (version 0.0.148). Single nucleotide
variants (SNVs) and indels were called from all the samples in a family together using Platypus
(version 0.8.1). ANNOVAR, 1000 Genomes, dbSNP and ExAC (Exome Aggregation Consortium)
were used in the annotation of variants as explained in detail in our previous paper [14]. Variants to
be evaluated further were selected using the following criteria: (i) A quality score greater than 20,
and a coverage greater than 5x; (ii) All Platypus filters were met. Variants with a minor allele frequency
(MAF) less than 0.1 % in 1000 genome and ExAC-nonTCGA data were selected for further analysis.
A pairwise comparison of shared rare variants among the cohort was performed to check for sample
swaps and family relatedness.
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2.5. Variant Filtering following the FCVPPv2

Variant evaluation was performed using the criteria of our in-house developed Familial Cancer
Variant Prioritization Pipeline v2 (FCVPPv2) [14]. This process is summarized in Figure 2 and explained
in the following text.
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2.5.1. Segregation in Pedigrees

The variants were filtered based on pedigree data considering family members diagnosed with
NMTC or micro-PTC as cases, benign nodules or goiter as potential variant carriers and unaffected
members as controls. The probability of an individual being a Mendelian case or true control was
considered. The general rule was that variants had to be present in all cases and absent from all controls.

2.5.2. Variant Ranking Using In Silico Tools

After filtering variants based on pedigree segregation, the CADD tool v1.3 [15] was applied.
Variants with a scaled PHRED-like CADD score greater than 10, which accounts for the top 10% of
probable deleterious variants in the human genome, were prioritized. Variants were then selected
according to their conservation scores. High evolutionary conservation suggests functional importance
of a position. Genomic Evolutionary Rate Profiling (GERP), PhastCons and PhyloP were used to assess
conservation of the variant position, whereby GERP scores >2.0, PhastCons scores >0.3 and PhyloP
scores >3.0 indicate a high level of conservation and are therefore used as thresholds in the selection of
potentially causative variants. After that, all missense variants were assessed for deleteriousness using
the following tools: SIFT, PolyPhen V2-HDIV, PolyPhen V2-HVAR, LRT, MutationTaster, Mutation
Assessor, FATHMM, MetaSVM, MetLR, PROVEAN, VEST3 and RI using dbNSFP [16]. Variants
predicted to be deleterious by at least 60% of these tools were shortlisted for further analysis. Lastly,
intolerance scores were considered. These were merely used to rank the variants and not as cutoffs
for selection. The ranking of variants according to the intolerance scores of the corresponding genes
relies on the assumption that a variant in a gene intolerant to functional genetic variation is more
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likely to be deleterious than one that is tolerant to functional variation. We used three intolerance
scores based on NHLBI-ESP6500, ExAC datasets and a local dataset, all of which were developed with
allele frequency data. The ExAC consortium has developed two additional scoring systems using
large-scale exome sequencing data including intolerance scores (pLI) for loss-of-function variants and
Z-scores for missense and synonymous variants. These were used for nonsense and missense variants
respectively. In our final list, we also included missense variants in known tumor suppressor genes
and oncogenes independent of their deleteriousness and intolerance scores. However, all variants
had to meet previous cut-offs, i.e., MAF >0.1, pedigree segregation, CADD-PHRED >10 and positive
conservation scores.

2.5.3. Analysis of Non-Coding Variants

Non-coding regions make up over 98% of the genome and possess millions of potentially
regulatory elements and noncoding RNA genes. Hence it is crucial to analyze the potential pathogenic
impact of such variants in a Mendelian disease. Putative miRNA targets at variant positions within 3′

untranslated regions (UTRs) and 1 kb downstream of transcription end sites were detected by scanning
the entire dataset of the human miRNA target atlas from TargetScan 7.0 [17] with the help of the
intersect function of bedtools. We scanned the 5UTRs and 1 kb regions upstream of transcription start
sites for transcription factor binding sites using SNPnexus (version 3; Dec 2017) [18]. For regulatory
variants, we merged enhancer [19] and promoter [20,21] data from the FANTOM5 consortium and
super-enhancer data from the super-enhancer archive (SEA) [22] and dbSUPER [23] using the intersect
function of bedtools to identify putative enhancers, promoters and super-enhancers in our dataset.
We accessed epigenomic data and marks from 127 cell lines from the NIH Roadmap Epigenomics
Mapping Consortium via CADD v.1.3 [15], which gave us information on chromatin states from
ChromHmm [24] and Segway [25]. The CADD analysis of 3′ UTRs also gave us mirSVR scores
for putative miRNA targets; a score lower than -0.1 is indicative of a “good” miRNA target [26].
Furthermore, we used SNPnexus to obtain non-coding scores for each variant and to identify regulatory
variants located in CpG islands. Top 3 ’UTR and downstream variants that had CADD scores >10 and
miRNA target site matches with mirSVR scores <−0.1 were short-listed. Similarly, upstream and 5′

UTR variants in enhancers, promoters, super-enhancers or transcription factor binding sites with
CADD scores >10 were selected.

2.6. Variant Validation

In order to increase the confidence in variant calls and reduce the risk of false positives, we visually
inspected the sequencing data of all short-listed variants for correctness using the Integrative Genomics
Viewer (IGV; version 2.4.10) [27].

2.7. Ingenuity Pathway Analysis (IPA)

IPA (Qiagen; http://www.qiagen.com/ingenuity; analysis date 08/04/2019) was used to perform a
core analysis to identify relationships, mechanisms, functions, networks, and pathways relevant to
the genes affected by variants that passed the mean allele frequency cut-off, fulfilled family-based
segregation criteria, had CADD scores >10 and were not intergenic or intronic variants. Data were
analyzed for all five families together. Top canonical pathways were identified from the IPA pathway
library and ranked according to their significance to our input data. This significance was determined
by p-values calculated using the right tailed Fisher’s exact test. These values indicated the probability
of association of genes from the input dataset with the canonical pathway by random chance alone.
Ratios were also calculated for each pathway by dividing the number of genes from the input dataset
that map to the pathway by the total number of genes in that pathway. The ratios did not influence the
ranking of the canonical pathways.

IPA was also used to generate gene networks in which upstream regulators were connected
to the input dataset genes while taking advantage of paths that involved more than one link

http://www.qiagen.com/ingenuity
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(i.e., through intermediate regulators). These connections represent experimentally observed cause-effect
relationships that relate to expression, transcription, activation, molecular modification and transport
as well as binding events.

2.8. STRING Analysis

A protein-protein interaction network was generated for each of the prioritized candidates using
STRING (https://string-db.org; v11, 19/01/2019).

3. Results

3.1. Whole Genome Sequencing

In this study, five families with reported recurrence of NMTC were analyzed. WGS identified
a total of 112254, 207873, 120323, 91427 and 101081 variants which were reduced by pedigree-based
filtering to 6368, 9373, 3123, 7060 and 2708 in families 1-5, respectively. Non-synonymous SNVs were
the most common exonic variants (Figure S1).

3.2. Final Prioritization of Candidates according to the FCVPPv2

After applying the FCVPPv2, the number of potential pathogenic protein coding variants was
reduced to 31. These variants are listed in Table 1. A number of genes are of high significance to our
study as they are either related to cancer or play a role in thyroid metabolism. CHEK2 is a known tumor
suppressor gene involved in DNA damage response [28]. EWSR1 generates a powerful oncogenic
protein causing Ewing sarcoma [29], RET is a proto-oncogene well-known in hereditary medullary
thyroid carcinoma NRP1 is known to be positively associated with the progression of breast cancer [30],
POT1 is a known predisposing gene in malignant melanoma [31] and TG encodes the precursor of
iodinated thyroid hormones and is associated with susceptibility to autoimmune thyroid diseases
(AITD) [32].

FCVPPv2 also identified 14 upstream and 5′ UTR variants, which are shown in Table 2.
Among them, three variants are of particular interest in thyroid cancer. The PCM1 variant is a 5′ UTR
variant that our data showed to affect three transcription factor binding sites (Egr-3, AP-2alphaA and
AP-2 gamma). Chromosomal aberrations involving this gene have been associated with PTC and a
variety of hematological malignancies [33]. The other 5′ UTR variant is located in the P4HB gene which
is known to be involved in the structural modification of the thyroglobulin precursor in hormone
biogenesis [34]. Both variants are present in CpG islands and have been predicted to be localized at an
active transcription start site by ChromHmm and Segway. The third variant is an upstream variant in
the DAPL1 gene, shown to affect the binding sites of MAZR and Sp1, a potential tumor suppressor in
thyroid cancer, by SNPnexus and Segway.

Furthermore, 25 variants located downstream and in 3′ UTRs were shortlisted (Table 3).
Among them, two genes of importance can be highlighted, namely ACVR1B and NLK. Mutations in
the ACVR1B gene are associated with pancreatic cancer [35]. The variant in the 3′UTR of ACVR1B
is localized at a target site for miR-6871-5p with a context ++ percentile score of 53, indicating a
relatively good context for repression of the mRNA due to this miRNA. Altered expression of NLK is
associated with cancer development and has been shown to be an independent prognostic factor in
colorectal cancer [36]. The corresponding variant to this gene has two predicted miRNA target sites for
miR-6818-5p and miR-6867-5p with high context ++ percentile scores (88 and 79, respectively).

Variants prioritized by the FCVPPv2 were also present in pathways, networks, and disease
categories shown to be significantly enriched in FNMTC by IPA.

https://string-db.org
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Table 1. Top exonic variants prioritized following the FCVPPv2. Chromosomal positions, classifications, PHRED-like CADD scores and the percentage of positive
intolerance (Int) and deleteriousness (Del) scores are included for each variant. Additional information regarding protein-protein interactions (STRING), localization
in protein domains (InterPro [37]) and the biological function of the respective protein (GeneCards [38]) is included.

Family Gene Chrom_Pos_Ref_Alt Exonic
Classification

CADD_PHRED
Score

Int
(%)

Del
(%) Interactions (STRING) Domain Function

1 CHEK2 22_29107974_C_T nonsynonymous
SNV 24.8 75 42

ATM, ATR, CDC25C,
CDC25A, TP53BP1, TP53,
MRE11A, BRCA1, RAD50,

H2AFX

Serine/
threonine-protein

kinase-like domain

DNA repair, cell cycle arrest or
apoptosis in response to DNA

damage; tumor suppressor gene

1 SLC35A4 5_139947647_T_C nonsynonymous
SNV 26.5 50 75 SCAMP3, PRKAA1,

SLC35B2, SLC35D2, ABCB10
Nucleotide-sugar

transporter

Pyrimidine nucleotide-sugar
transmembrane transporter activity,

sialic acid transmembrane
transporter activity

1 ANXA3 4_79531211_C_T nonsynonymous
SNV 27.9 50 75

STX4, SNAP23, STXBP2,
ANXA11, ANXA4, FPR1,

CACNA1B, NLRP3, SUMF1,
FPR2

Annexin repeat,
conserved site

Phospoholipase A2 inhibition,
anti-coagulant properties, formation
of inositol 1-phosphate from inositol

1,2-cyclic phosphate

1 EWSR1 22_29687556_C_A nonsynonymous
SNV 22.7 100 75

BARD1, ETV1, TAF5, TAF5L,
FUS, TAF12, DHX9, TP53,

PIOK2, POLR2G
NA Gene expression, cell signaling, RNA

processing and transport; oncogene

1 RTTN 18_67776873_G_A nonsynonymous
SNV 26.7 25 83

INVS, LEFTY2, DNAH11,
CCDC102B, EN1, CCDC178,

L3MBTL4, CHML, CHM,
DLL1

NA

Involved in the genetic cascade that
governs left-right specification and

in the maintenance of a normal
ciliary structure.

1 TIAM1 21_32526579_G_A nonsynonymous
SNV 35 100 92

CDC42, SRC, RAC1, EFNB1,
RAC2, NME1, EPHA2,

RHOA, PARD6A, ARF6

Dbl homology (DH)
domain

Modulates the activity of Rho
GTP-binding proteins, connects

extracellular signals to cytoskeletal
activities, activates Rac1, CDC42,

and to a lesser extent RhoA.

1 MAN2B2 4_6612617_C_T nonsynonymous
SNV 34 25 100

MAN2C1, NAAA, SIAE,
GLB1L3, GLB1, PYGB, PYGL,

PYGM, NAGA

Glycosyl hydrolase
family 38, C-terminal

carbohydrate binding,
alpha-mannosidase activity,

involved in metabolism and other
glycan degradation

2 CLEC18B 16_74446758_G_A nonsynonymous
SNV 23.3 50 67 FRAS1, LEO1, FREM2 Epidermal growth

factor-like domain
Ca2+ independent binding of

polysaccharides

2 PTGIR 19_47124811_C_T nonsynonymous
SNV 35 100 67

HTR7, NPS, AVP, VIP, ADM,
AVPR2, ADRB2, PTH,

ADCY6, GNB1
NA

Member of GPCR family 1, receptor
for prostacyclin, elicits potent
vasodilation and inhibition of

platelet aggregation
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Table 1. Cont.

Family Gene Chrom_Pos_Ref_Alt Exonic
Classification

CADD_PHRED
Score

Int
(%)

Del
(%) Interactions (STRING) Domain Function

2 UBN1 16_4911084_G_A nonsynonymous
SNV 34 75 67

ASF1A, HIRA, CABIN1, RB1,
TP53, EP400, HMGA1,

HMGA2, H1F0, HIST1H1C

Ubinuclein middle
domain

Novel regulator of senescence,
involved in DNA damage/telomere

stress induced senescence and
cellular senescence, required for

replication independent chromatin
assembly

2 GALNT10 5_153789322_G_C nonsynonymous
SNV 24.6 100 67

MUC7, MUC1, C1GALT1,
MUC5AC, GCNT1,

ST6GALNAC1, B3GNT6,
MUC2, MUC16, C1GALT1C1

Ricin B-related lectin
Catalyzes the initial reaction in

O-linked oligosaccharide
biosynthesis

2 OSGIN2 8_90921899_A_T nonsynonymous
SNV 23.7 100 67

CALB1, CA7, DECR1,
DECR2, CALB2, NBN,

SLC39A3
NA

Possibly involved in meiosis or the
maturation of germ cells, associated

with retinitis pigmentosa

2 TG 8_133900661_A_C nonsynonymous
SNV 25 0 75

TPO, LRP2, TSHR, ASGR1,
NKX2-1, INS, SLC5A5, PAX8,

ASGR2, ALB

Thyroglobulin type-1
domain

Precursors of iodinated thyroid
hormones (T4) and triiodothyronine
(T3), associated with susceptibility to

autoimmune thyroid diseases
(AITD)

2 GSR 8_30585111_C_T nonsynonymous
SNV 34 100 75

GPX1, GPX3, GPX2, CAT,
GPX4, GSS, GPX7, HPGDS,

TXN, ACLY

Pyridine
nucleotide-disulphide

oxidoreductase,
FAD/NAD(P)-binding

domain

Oxidoreductase activity and flavin
adenine dinucleotide binding

2 KCNT1 9_138676399_A_G nonsynonymous
SNV 11.1 100 75 GPR55, C11orf40, ASRGL1,

SLC11A1 NA

Sodium/Chloride/Calcium-activated
potassium channel subunit,

activated upon stimulation of
GPCRs

2 KLHL18 3_47385160_A_G nonsynonymous
SNV 27.4 100 75

COPS5, GPKOW, CNIH4,
COPS6, PDE7A, CNIH3,
PDE/B, PDE6D, EEF1G,

CNIH2

Galactose oxidase,
beta-propeller

Involved in the ubiquination process,
specific role has yet to be elucidated

2 CDRT1,
RP11-385D13.1 17_15501921_G_A nonsynonymous

SNV 25.3 - 83 -
WD40/YVTN

repeat-like-containing
domain

CDRT1: a protein-ubiquitin ligase;
RP11: a component of the

spliceosome complex, one of several
retinitis pigmentosa-causing genes
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Table 1. Cont.

Family Gene Chrom_Pos_Ref_Alt Exonic
Classification

CADD_PHRED
Score

Int
(%)

Del
(%) Interactions (STRING) Domain Function

2 RET 10_43600559_T_C nonsynonymous
SNV 26.3 75 83

GDNF, GFRA1, NRTN,
SHC1, PSPN, PIK3CA,

GFRA2, PIK3CD, PIK3CB,
GRB2

Cadherin-like domain

Proto-oncogene, receptor tyrosine
kinase; involved in cell

differentiation, growth, migration
and survival

2 SCN10A 3_38755465_C_A nonsynonymous
SNV 35 50 92

SCN5A, CALM2, SCN8A,
SCN2A, SCN11A, SCH3A,
SCN1A, SCN9A, SCN4A,

SCN1B

Ion transport

Tetrodotoxin-resistant channel that
mediates the voltage-dependent

sodium ion permeability of excitable
membranes, plays a role in

neuropathic pain mechanisms

3 C1orf27 1_186355211_G_A nonsynonymous
SNV 25.1 0 67 DRAM1, PID1, TXLNG ODR-4-like domain Possible involvement in the

trafficking of a subset of GPCRs

3 CPXM1 20_2776248_C_T nonsynonymous
SNV 32 100 75 FAM196A, PPP2R2B, SEC13 Peptidase M14,

carboxypeptidase A

Binds collagen, involved in
adipogenesis through extracellular

matrix remodeling, may act as a TSG
in breast cancer

3 ZBTB41 1_197128680_C_T nonsynonymous
SNV 23.1 100 75

POTEE, POTEI, POTEJ,
POTEF, SKIV2L, CFHR4,

RIPK4, PHLPP2, PHLPP1,
C7orf73

NA May be involved in transcriptional
regulation

3 AR X_66765158_T_TGCAGCAGCA nonframeshift
insertion 12.8 67 -

NCOA2, NCOA4, KLK3,
KDM1A, FOXA1, SRC,

HSP90AA1, FKBP5, NCOA1,
CCND1

Androgen receptor
domain

Steroid-hormone activated
transcription factor. Stimulates

transcription of androgen responsive
genes.

4 PKHD1L1 8_110477162_G_A nonsynonymous
SNV 27.5 0 100

TMEM2, CUEDC1, PKHD1,
PKD1P1, C2orf74,

RAD21-AS1, FAM135B,
CSMD3, MUM1L1, HSPA12B

NA Signaling receptor activity, immune
response

4 ECE2 3_184008594_G_C nonsynonymous
SNV 32 75 100

RPS6KA2, EDN3, EDNRA,
DHX40, MYSM1. EDNRB,

EDN1, EZR, LARP6, PRKCE

Peptidase M13,
neprilysin,

C-terminal/Metallopeptidase,
catalytic domain

Metalloprotease involved in the
generation of functionally

pleiotropic members of the
endothelin vasoactive family,

possibly involved in amyloid-beta
processing
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Table 1. Cont.

Family Gene Chrom_Pos_Ref_Alt Exonic
Classification

CADD_PHRED
Score

Int
(%)

Del
(%) Interactions (STRING) Domain Function

5 EPYC 12_91365726_C_G nonsynonymous
SNV 27 25 67

RIPK4, PPIE, POTEI, POTEE,
POTEJ, POTEF, PRKAR1B,

PRKAR1A, CNBD2,
PRKAR2B

Leucine-rich repeat
Regulates fibrillogenesis by

interacting with collagen fibrils and
other extracellular matrix proteins

5 SPOCK1 5_136448179_G_A nonsynonymous
SNV 25.7 100 67

SPARC, MMP16, FST,
MMP14, SPARCL1, MMP2,

CITED2, CHD1L, CFTR,
HMCN1

Proteinase inhibitor I1,
Kazal

Calcium ion binding, cysteine-type
endopeptidase inhibitor activity,

cell-cell interactions, may contribute
to various neuronal mechanisms

5 MYBPC1 12_102046527_A_G nonsynonymous
SNV 25.9 100 67

MYH3, TTN, TNNT3, NEB,
TNNI2, DMD, MYL1,

TMOD4, TNNI1, MYL3

Immunoglobulin
subtype

Member of the myosin-binding
protein C family, binds actin and

titin, modulates muscle contraction

5 ACSS3 12_81593172_T_G nonsynonymous
SNV 32 100 83

ALDH2, ALDH3A2,
EHHADH, ACLY, ECHDC1,

ACADM, ALDH6A1,
ALDH9A1, ALDH1B1

AMP-dependent
synthetase/ligase

Activates acetate for use in lipid
synthesis or energy generation

5 NRP1 10_33469205_G_C nonsynonymous
SNV 24.2 75 83

SEMA3A, KDR, FLT1,
PLXNA1, PLXNA2,

SEMA3C, PLXNA4, SEMA3F,
PLXNA3, SEMA3E

Neuropilin-1,
C-terminal

Membrane-bound coreceptor to a
tyrosine kinase receptor for both

VEGF and semaphorin family
members; plays roles in

angiogenesis, axon guidance, cell
survival, migration and invasion

5 POT1 7_124532359_C_A nonsynonymous
SNV 32 50 92

TERF1, TINF2, ACD, TERF2,
TERF2IP, RAD50, MRE11A,
H2AFx, DCLRE1B, BRCA1

Nucleic acid-binding,
OB-fold

Member of the shelterin complex;
involved in regulating telomere

length and protecting chromosome
ends from illegitimate

recombination, catastrophic
instability and abnormal segregation
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Table 2. Top upstream and 5′ UTR variants prioritized according to the FCVPPv2. Variant annotation, chromosomal position, and regulatory consequences according
to FANTOM5, SEA, CADD and SNPnexus are listed. The FANTOM5 database gives information on known promoters. CADD gives an overall deleteriousness score
together with chromatin state information based on ChromHmm and Segway scores and information on transcription factor binding sites (TFBSs). Location of the
variants within a specific TFBS and CpG island were obtained from SNPnexus. A cumulative non-coding score is shown as a percentage of positive scores from all
scores listed in the footnote. Cut-offs for these scores are also indicated in the footnote.

Variant Details FANTOM5, SEA Annotations From CADD SNPnexus

FI Gene Variation_ Annotation Chrom_Pos_Ref_Alt Promoter/Enhancer_ Start..End,
Strand

CADD_PHRED
Score

Chromatin StateII TFBS
TFs In a CpG

Island?
Non-coding
scores (%)IIIChrom-Hmm

State Score Segway TFBS TFBS
PeaksI

1 PCM1 SNV_UTR5 8_17780410_G_A − 17.2 TssA 0.95 TSS 50 92
Egr-3,

AP-2alphaA,
AP-2gamma

Yes 67

1 STAP1 SNV_UTR5 4_68424468_A_G Promoter_68424462..68424469,+ 15.4 Quies 0.71 GM0 18 24 − No 71
1 DAPL1 SNV_ Upstream 2_159651789_C_T − 13.1 − − TF0 1 2 MAZR, Sp1 No 50
2 LRRC48 SNV_UTR5 17_17876279_G_T − 10.8 TssA 0.803 GS 28 56 − No 50
2 P4HB SNV_UTR5 17_79818442_T_G − 11.4 TssA 0.945 TSS 51 78 − Yes 60
2 FAM118B SNV_UTR5 11_126081608_C_T − 10.5 TssA 0.969 TSS 60 129 − Yes 33
2 AZIN1 SNV_UTR5 8_103876327_G_A − 12.4 TssA 0.929 TSS 47 76 − No 50
2 RPS3A SNV_UTR5 4_152020778_C_G Promoter_152020736..152020788,+ 16.0 TssA 0.961 TSS 81 184 − Yes 86
3 C20orf194 SNV_ Upstream 20_3388577_C_A − 13.4 TssA 0.921 TSS 17 26 Egr-2, Egr-3 Yes 50
4 DNAI1 SNV_UTR5 9_34458888_T_C Promoter_34458851..34458908,+ 14.4 TssAFlnk 0.575 GM1 10 13 − Yes 71
4 PNPLA2 SNV_UTR5 11_819602_G_C Promoter_819601..819612,+ 10.6 TssA 0.945 TSS 38 65 − Yes 50
4 GNB2 Indel_UTR5 7_100271438_G_GCGCCGCCGCCGC − 17.5 TssA 0.992 TSS 65 115 CUTL-1 Yes 25

4 PHTF1 SNV_UTR5 1_114301745_G_T − 16.2 TssA 0.961 TSS 20 28 CREB, delta
CREB Yes 50

4 ZKSCAN1 SNV_UTR5 7_99613211_C_G − 21.4 TssA 0.937 TSS 65 140 Elk-1, LCR-F1 Yes 67

[I] = Family ID, [II] = ChromHmm and Segway; ChromHmm shows the proportion of 127 cell types in a particular chromatin state (x). Scores closer to 1 indicate a higher proportion of cell
types in the specified chromatin state. X can be the following: active transcription start sites (TssA), enhancers (Enh), bivalent TSS (TssBiv), bivalent enhancers (EnhBiv), genic enhancers
(EnhG), flanking transcription states (TxFlnk), flanking bivalent TSS (TssBiv), active transcription flanking sites (TssAFlnk), transcription states (Tx) and weak transcription states (TxWk),
repressed polycomb (ReprPC) and weak repressed polycomb regions (PeprPCWk), heterochromatin (Het) and quiescent regions (Quies). Segway is a software that transforms multiple
datasets on chromatin properties into a single annotation of the genome. The annotations can be as follows: D: dead, F: FAIRE, R: repression, H3K9me1: histone 3 lysine 9 monomethylation,
L: low, GE: gene end, TF: transcription factors, C: CTCF, TSS: transcription start site, GS: gene start, E: enhancer, GM: gene middle and ZnfRpts: zinc finger repeats. [III] = Non-coding
scores with their cut-offs in brackets: FitCons Score (≥0.2), FitCons P-Value (≤0.05), EIGEN (>0, at least 1 of 2 must be positive), FatHMM (>0.5), GWAVA (>0.4, at least 2 of 3 must be
positive), DeepSEA (>0.5, at least 2 of 3 must be positive), FunSeq2 (>3), ReMM (>0.5). [IV] = TFBS peaks: regions with enrichment of transcription factor binding sites (TFBS).
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Table 3. Top downstream and 3′ UTR variants prioritized according to the FCVPPv2. Variant annotation, chromosomal position, and regulatory consequences
according to TargetScan, CADD and SNPnexus are listed. Information on miRNA target sites from TargetScan and chromatin states from CADD are also included. A
cumulative non-coding score is shown as a percentage of positive scores from all scores listed in the footnote. Cut-offs for these scores are also indicated in the footnote.

Variant Details TargetScan Annotations from CADD SNP-nexus

FI Gene Variation_ Annotation Chrom_Pos_Ref_Alt miRNA Target Sites
Context
Score ++

PercentileII
Site Type mirSVR-Score CADD_ PHRED

Score
Chromatin StateIII

Non-Coding
Scores IV (%)Chrom-Hmm Score Segway

1 DESI2 SNV_UTR3 1_244872281_A_G DESI2:miR-3651 94 7mer-m8 -0.84 15.6 TxWk 0.73 R2 60

1 DPYSL3 SNV_UTR3 5_146770537_A_T DPYSL3:miR-4693-5p, DPYSL3:miR-4768-3p, DPYSL3:miR-6888-5p 20, 52, 59
7mer-1a,
7mer-m8,
7mer-m8

-0.24 11.1 − − L1 40

1 MECP2 SNV_UTR3 X_153295452_G_A MECP2:miR-6812-3p 72 7mer-1a NA 10.4 Tx 0.46 TF2 25

1 RYK SNV_UTR3 3_133876591_C_T RYK:miR-548aq-3p/548am-3p/548aj-3p/548ah-3p/548ae-3p/548j-3p/548x-3p;
RYK:miR-5582-3p 93, 95 7mer-m8,

7mer-m8 −1.25 12.7 TxWk 0.50 F1 80

1 SGTB SNV_UTR3 5_64965337_A_C SGTB:miR-3187-3p, SGTB:miR-4529-5p 84, 46 7mer-m8,
7mer-1a −0.75 16.8 TxWk 0.68 GE0 67

1 SLC25A12 SNV_UTR3 2_172641178_G_A SLC25A12:miR-3622b-5p 62 7mer-1a −0.31 15.1 − − GE1 60
2 ACVR1B SNV_UTR3 12_52388057_A_G ACVR1B:miR-6871-5p 53 7mer-m8 14.8 − − − 60
2 NCAM2 Indel_UTR3 21_22913891_AT_A NCAM2:miR-6885-3p 46 7mer-m8 NA 11.3 Quies 0.99 F0 50
2 NOP2 SNV_UTR3 12_6666047_A_T NOP2:miR-3662 98 7mer-1a −1.29 14.2 Tx 0.48 GE0 50
2 NUPL1 SNV_UTR3 13_25909315_T_C NUPL1:miR-3145-3p 69 8mer − 11.3 − − − 80

2 PNPLA8 SNV_UTR3 7_108112453_A_G PNPLA8:miR-3163, PNPLA8:miR-4668-3p, PNPLA8:miR-551b-5p 65, 56, 62 7mer-m8,
7mer-1, 7mer-m8 −1.25 13.3 TxWk 0.53 F0 80

2 STK32A SNV_UTR3 5_146763869_G_A STK32A:miR-4484, STK32A:miR-548an, STK32A:miR-6768-3p 99, 80, 74 8mer, 7mer-1a,
7mer-1a NA 11.8 Quies 0.48 F1 40

2 SVEP1 SNV_UTR3 9_113128472_T_C SVEP1:miR-1468-3p 96 7mer-m8 −1.32 17.0 Quies 0.77 F1 60
2 TFCP2 Indel_UTR3 12_51487616_A_AACAC TFCP2:miR-8485 95 7mer-m8 NA 10.2 Tx, TxWk 0.47, 0.52 GE0 67
2 MRPL51 SNV_ downstream 12_6600160_C_T MRPL51: miR-6802-3p 90 7mer-m8 NA 13.4 TxWk 0.63 H3K9 me1 50
2 ZNF45 SNV_ncRNA_UTR3 19_44417402_A_G ZNF45: miR-6777-3p 96 8mer −0.39 11.3 ZnfRpts 0.78 GE1 60
3 NLK Indel_UTR3 17_26522009_T_TCACA NLK:miR-6818-5p, NLK:miR-6867-5p 88, 79 7mer-m8, 8mer −0.62 11.7 TxWk 0.63 TF1 100
4 ADAMTS1 SNV_UTR3 21_28208629_T_C ADAMTS1:miR-325, ADAMTS1:miR-628-3p 88, 97 7mer-1a, 8mer −1.31 16.0 TxWk 0.58 F1 60

4 GRIA2 SNV_UTR3 4_158284635_G_A GRIA2:miR-486-5p, GRIA2:miR-7152-5p 88, 84 7mer-1a,
7mer-m8 −0.87 22.3 Quies 0.84 L1 60

4 IGSF9 Indel_UTR3 1_159896866_TCACA_T IGSF9:miR-377-3p, IGSF9:miR-5582-3p, IGSF9:miR-8485 98, 82, -1 8mer,7mer-m8,
3’compensatory −0.92 17.0 − - TF1 50

4 MPP6 SNV_UTR3 7_24727611_A_G MPP6:miR-138-2-3p, MPP6:miR-205-3p, MPP6:miR-498 93, 50, 48
7mer-m8,
7mer-1a,
7mer-1a

NA 15.5 TxWk, Quies 0.50, 0.45 GE0 60

4 ZNF532 SNV_UTR3 18_56651809_T_C ZNF532: miR-1277-5p 53 7mer-m8 −0.86 15.2 TxWk 0.73 R0 80

5 KLF7 Indel_UTR3 2_207945783_ATATGTG_A KLF7:miR-511-3p, KLF7:miR-223-5p 82, 59 7mer-1a,
7mer-1a −1.10 11.9 Tx 0.73 F1 50

5 SATB2 SNV_UTR3 2_200134548_A_G SATB2:miR-3156-5p, SATB2:miR-3126-3p,
SATB2:miR-4720-5p/4799-3p/5588-5p, SATB2:miR-3128, SATB2:miR-6868-5p

37, 86, 74,
76, 83

7mer-m8,
7mer-m8,

7mer-1a, 8mer,
7mer-1a

-1.22 15.2 Quies 0.74 F1 60

5 ZNF608 SNV_ downstream 5_123972606_C_A ZNF608: miR-4786-3p 87 7mer-m8 NA 16.8 TxWk 0.69 D 60

[I] = Family ID, [II] = Context score ++ percentile: a higher percentile score indicates a better context for repression of an mRNA due to a miRNA, [III] = ChromHmm and Segway;
ChromHmm shows the proportion of 127 cell types in a particular chromatin state (x). Scores closer to 1 indicate a higher proportion of cell types in the specified chromatin state. X can be
the following: active transcription start sites (TssA), enhancers (Enh), bivalent TSS (TssBiv), bivalent enhancers (EnhBiv), genic enhancers (EnhG), flanking transcription states (TxFlnk),
flanking bivalent TSS (TssBiv), active transcription flanking sites (TssAFlnk), transcription states (Tx) and weak transcription states (TxWk), repressed polycomb (ReprPC) and weak
repressed polycomb regions (PeprPCWk), heterochromatin (Het) and quiescent regions (Quies). Segway is a software that transforms multiple datasets on chromatin properties into a
single annotation of the genome. The annotations can be as follows: D: dead, F: FAIRE, R: repression, H3K9me1: histone 3 lysine 9 monomethylation, L: low, GE: gene end, TF: transcription
factors, C: CTCF, TSS: transcription start site, GS: gene start, E: enhancer, GM: gene middle and ZnfRpts: zinc finger repeats. [IV] = Non-coding scores with their cut-offs in brackets:
FitCons Score (≥ 0.2), FitCons P-Value (≤0.05), EIGEN (> 0, at least 1 of 2 must be positive), FatHMM (>0.5), GWAVA (>0.4, at least 2 of 3 must be positive), DeepSEA (>0.5, at least 2 of
3 must be positive), FunSeq2 (>3), ReMM (>0.5).
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3.3. Ingenuity Pathway Analysis (IPA) Shows Enrichment of GPCR and RTK Mediated Pathways

In order to identify key biological functions and signaling pathways affected in FNMTC, we filtered
the variants according to pedigree segregation, CADD scores and location, excluding intronic and
intergenic variants. The variants were in 339 genes, with 92, 122, 14, 72 and 39 genes coming from
families 1-5 respectively. Of these genes, 210 gene IDs could be mapped by IPA and were part of the
subsequent analysis (Table S1). The remaining 129 genes were uncharacterized genes with RP11 IDs,
and thus could not be mapped.

Of the top 150 diseases and bio functions, 123 were cancer-related with thyroid cancer at position
99 (p = 3.17 × 10−5), NMTC at position 120 (p = 6.39 × 10−5), differentiated thyroid cancer (DTC) at
position 125 (p = 7.88 × 10−5) and PTC at position 148 (p = 2.16 × 10−5) (Table S1B). There was a high
overlap of molecules among the four thyroid cancer related categories. This overlap of eight genes
included two genes prioritized using our pipeline (RET and TG), that are of particular interest in
thyroid cancer.

With the aim of evaluating the canonical pathway results to determine the most significant
pathways in our dataset, we created a network of the top 18 overlapping canonical pathways
(Table S1C, Figure 3). The threshold of common genes between the pathways was set at 2. G-protein
coupled receptor (GPCR) and receptor tyrosine kinase (RTK) mediated pathways, as major mediators
of thyroid cancer development, were represented by 12 pathways (Figure 3). The genes involved in the
top 18 pathways along with their corresponding variants are listed in Table S2.

 

 

Biomolecules 2019, 9, x 16 of 23 

3.3. Ingenuity Pathway Analysis (IPA) Shows Enrichment of GPCR and RTK Mediated Pathways 

In order to identify key biological functions and signaling pathways affected in FNMTC, we 
filtered the variants according to pedigree segregation, CADD scores and location, excluding intronic 
and intergenic variants. The variants were in 339 genes, with 92, 122, 14, 72 and 39 genes coming from 
families 1-5 respectively. Of these genes, 210 gene IDs could be mapped by IPA and were part of the 
subsequent analysis (Table S1). The remaining 129 genes were uncharacterized genes with RP11 IDs, 
and thus could not be mapped. 

Of the top 150 diseases and bio functions, 123 were cancer-related with thyroid cancer at position 
99 (p= 3.17 × 10−5), NMTC at position 120 (p=6.39 × 10−5), differentiated thyroid cancer (DTC) at position 
125 (p=7.88 × 10−5) and PTC at position 148 (p= 2.16 × 10−5) (Table S1B). There was a high overlap of 
molecules among the four thyroid cancer related categories. This overlap of eight genes included two 
genes prioritized using our pipeline (RET and TG), that are of particular interest in thyroid cancer.  

With the aim of evaluating the canonical pathway results to determine the most significant 
pathways in our dataset, we created a network of the top 18 overlapping canonical pathways (Table 
S1C, Figure 3). The threshold of common genes between the pathways was set at 2. G-protein coupled 
receptor (GPCR) and receptor tyrosine kinase (RTK) mediated pathways, as major mediators of thyroid 
cancer development, were represented by 12 pathways (Figure 3). The genes involved in the top 18 
pathways along with their corresponding variants are listed in Table S2. 

 
Figure 3. Top 18 overlapping canonical pathways visualized as a network, which shows each 
pathway as a single “node” colored proportionally to the Fisher’s Exact Test p-value, where 
brighter red indicates higher significance. Nodes marked with asterisk (*) belong to the group 
of GPCR and RTK mediated pathways. 

3.4. Network Analysis Reinforces the Central Role of PI3K/AKT and MAPK/ERK Signaling in FNMTC 

We conducted a network analysis using the IPA software to predict interacting molecular 
networks significant to our input-data and to evaluate genes with a central role in FNMTC (Figure 4, 
Table S1D). Since the IPA network analysis includes paths with intermediate regulators that involve 
more than one link, a comprehensive picture of the possible gene interactions was generated. The 
networks were ranked according to scores that were generated by considering the number of focus 
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as a single “node” colored proportionally to the Fisher’s Exact Test p-value, where brighter red
indicates higher significance. Nodes marked with asterisk (*) belong to the group of GPCR and RTK
mediated pathways.

3.4. Network Analysis Reinforces the Central Role of PI3K/AKT and MAPK/ERK Signaling in FNMTC

We conducted a network analysis using the IPA software to predict interacting molecular networks
significant to our input-data and to evaluate genes with a central role in FNMTC (Figure 4, Table S1D).
Since the IPA network analysis includes paths with intermediate regulators that involve more than one
link, a comprehensive picture of the possible gene interactions was generated. The networks were
ranked according to scores that were generated by considering the number of focus genes (input data)
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and the size of the network to approximate the relevance of the network to the original list of focus
genes. We focused on the three highest scoring networks, which had scores ranging from 33 to 51
(Table S1D).

In coherence with the pathway analysis, the network analysis reinforces the importance of
central perpetrators of GPCR and RTK mediated signaling (AKT, ERK1/2: Networks 1 & 3) and their
downstream effectors (NFκB, CREB: Network 2). Furthermore, Network 3 encompasses a number of
genes related to thyroid metabolism including TG from our prioritized shortlist.
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Figure 4. The top three molecular networks identified by Ingenuity Pathway Analysis (IPA): (a) Network
1. Protein Synthesis, Cardiovascular System Development and Function, Cellular Assembly and
Organization; (b) Network 2. Cell Morphology, Cellular Assembly and Organization, Cellular
Development and (c) Network 3. Endocrine System Disorders, Metabolic Disease, Organismal Injury
and Abnormalities. Genes from our input-data that were prioritized based on pedigree segregation
and PHRED-like CADD scores are shown in peach. Our top coding and non-coding candidates are
highlighted in dark orange. Interactions of central genes of the network are highlighted in blue.

3.5. Overlapping Pathways in Familial Non-Medullary Thyroid Cancer

Since GPCR and RTK mediated signaling were highlighted in both pathway and network analyses,
we propose a pathway to facilitate a general understanding of FNMTC at a molecular level (Figure 5).
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Figure 5. Proposed model for the most important molecular mechanisms in FNMTC. Genes from
our input-data are highlighted in orange and genes corresponding to variants prioritized using the
FCVPPv2 are highlighted in red.

Activation of GPCR receptors can activate MAPK/ERK signaling as well as PI3K/AKT signaling
via one of the four subclasses of G-proteins (Gαs, Gαi/o, Gαq/11, and Gα12/13). Dimerization of
receptor-tyrosine kinase (RTK) receptors can be induced by growth factors such as EGFR and GDNF,
which results in the phosphorylation and subsequent activation of the receptor monomers. Receptor
activation is linked to downstream signal transduction pathways like the MAPK signaling cascade
and the PI3K/AKT system via adaptor proteins. Genes from our dataset that were present in these
pathways as activators or regulators are highlighted in Figure 5.

4. Discussion

The high heritability of thyroid cancer can be attributed to both rare, high-penetrance mutations
and common, low-penetrance variants [4,13]. The former is best identified by studying families with
a Mendelian pattern of inheritance of the disease in question. We used this principle in our study
and identified 31 exonic and 39 non-coding rare potentially pathogenic variants segregating with the
disease in five PTC-prone families.

Scientific and technological advancements in genomics have allowed WGS to become the
state-of-the-art tool not only for the identification of driver mutations in tumors but also for the
identification of novel cancer predisposing genes in Mendelian diseases. The former has led to
improvements in personalized medicine, wherein therapeutic approaches are based on targeting
dysregulated pathways specific to the affected individual. There are also some reports of WGS
being successfully used to implicate rare, high-penetrance germline variants in cancer, for example
POT1 mutations in familial melanoma [39] and POLE and POLD1 mutations in colorectal adenomas
and carcinomas [40]. Identification of cancer-predisposing mutations is a critical step in cancer risk
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assessment and can help in cancer screening and prevention strategies. Furthermore, the implication
of predisposition genes and their respective pathways may facilitate development of targeted therapy.
However, one has to be critical in reporting novel variants before appropriate functional validation and
evaluation of their penetrance in a large cohort of families. The importance of this step is exemplified
by controversial findings regarding the implication of HABP2 G534E in familial NMTC [41].

Some of the genes shortlisted based on FCVPPv2 have already been identified in other cancers.
These include CHEK2 mutations in breast cancers and also in a variety of other cancers including
thyroid cancer [28], EWSR1 in Ewing sarcoma [29], RET in hereditary medullary thyroid carcinoma,
NRP1 in breast cancer [30] and germline POT1 variants in malignant melanoma [31]. Moreover, it is
interesting to note that the expression of NRP2, an important paralog of the NRP1 gene, has been
correlated to lymph node metastasis of human PTC and is required in the VEGF-C/NRP2 mediated
invasion and migration of thyroid cancer cells [42]. The upstream variant in the DAPL1 gene is shown
to affect the binding sites of MAZR and Sp1 by SNPnexus and Segway. MAZR1, also known as PATZ1,
has been shown to be downregulated and delocalized in thyroid cancer cell lines derived from papillary,
follicular and anaplastic thyroid carcinomas [43]. Another study has demonstrated the role of PATZ1
as a tumor suppressor in thyroid follicular epithelial cells and its involvement in the dedifferentiation
of thyroid cancer [44].

Other genes of interest shortlisted based on the pipeline (PNPLA8, PTGIR, RET, GNB2 and POT1)
were involved in the enrichment of MAPK/ERK and PI3K/AKT pathways. The MAPK pathway is the
most frequently mutated signaling pathway in human cancer and is thus considered one of the most
promising targets for cancer therapy. This pathway plays a central role in the induction of biological
responses such as cell proliferation, differentiation, growth, migration and apoptosis [45]. Initiated by an
extracellular mitogenic stimulus that leads to the activation of RTK or GPCR, the MAPK/ERK pathway
leads to the phosphorylation and subsequent translocation of ERK into the nucleus. ERK activation
plays a central role in the induction of cell cycle entry and the suppression of negative regulators of the
cell cycle [46]. Although MEK1 and MEK2 can be activated by multiple MAP kinase kinase kinases
(MAP3Ks) as well as by RAF, they serve as sole activators of ERK1/2 and thus as gatekeepers
of the MAPK cascade [47]. Overexpression or aberrant activation of RTKs or their immediate
downstream targets (PI3K, RAS and SRC) can result in the upregulation of the MAPK/ERK signaling
pathway [48]. A common somatic mutation in this pathway is BRAFV600E, which has been implicated
in melanoma [49], thyroid and colorectal cancer [50] and hairy cell leukemia [51].

The importance of the PI3K/AKT pathway in thyroid cancer was first recognized when patients
suffering from Cowden’s syndrome caused by a germline mutation in the PTEN gene were found
to have FTC [52]. PI3K activation phosphorylates and activates AKT which can have numerous
downstream effects via activation or inhibition of multiple proteins that are involved in cell growth,
proliferation, motility, adhesion, angiogenesis, metabolism and apoptosis.

Furthermore, our findings are in line with recent studies on PTC tissues and PTC cell lines
have implicated activation of MAPK/ERK and PI3K/AKT pathways in thyroid carcinogenesis [53–55].
Interestingly, somatic alterations that lead to the activation of the MAPK pathway as well as of the
PI3K/AKT pathway are common in aggressive thyroid cancers, such as metastatic or recurrent PTC/FTC
and ATC [56]. The targeting of downstream RAS effectors has already been shown to be a promising
approach, however patients treated with RAF or MEK inhibitors frequently develop drug resistance [47].
Targeting the downstream ERK kinase, which is also known as the gatekeeper of the MAPK cascade,
can overcome the acquired drug resistance induced by upstream kinase inhibitors [57]. In this context,
it is also important to note the similarity between our proposed model for the molecular mechanisms in
FNMTC and the reported molecular mechanisms in non-familial NMTC. It is known that patients with
familial NMTC may have a more aggressive form of the disease, with larger tumors in younger patients
and increased rates of extra-thyroid extension and lymph node metastasis. This suggests that FNMTC
should be explored further to gain a better understanding of the cause of increased aggressiveness.
However, none of the variants were identified in more than one family. As the phenotypes of our
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families differed (as described in Figure 1), it is likely that also the mutations causing the disease in
the families also are different. We analyzed only 5 families and no other WGS data on FNMTC are
available, thus restricting the possibility to confirm the variants in larger data sets. Functional analysis
of promising candidates highlighted in this study may shed some light to the mechanisms underlying
this phenomenon.

Interpreting WGS data and selecting one out of millions of genetic variants as the cause of
hereditary cancer is a daunting task and highlights the importance of the use of a standardized protocol
like the FCVPPv2. We were able to prioritize 31 exonic and 39 non-coding potential cancer-predisposing
variants using our family-based pipeline from which we hope to pinpoint one candidate gene for each
family. The final selection and implication of one candidate gene predisposing to cancer in each family
is beyond the scope of this paper as it will involve further steps including population screening and
functional studies. In the present study, we decided to focus on the analysis of pathways that are
enriched in familial NMTC to see how the variants prioritized using our pipeline fit into the general
pathway analysis results. The IPA analysis of all genes already presented us with valuable data and
there was a high involvement of genes prioritized using our pipeline in the top diseases and bio
functions, canonical pathways and networks generated by IPA. Although IPA could give us a general
idea of molecular pathways affected in the studied families, it is important to keep in mind that the
analysis was conducted at a gene level and not at a variant level. The evaluation at a variant level
is largely dependent on the pipeline and its subsequent steps as mentioned above. We have already
successfully implemented this pipeline to identify DICER1 as a candidate predisposing gene in familial
Hodgkin lymphoma [58] and are confident that our pipeline can be applied to the NMTC families in a
similar manner.

5. Conclusions

In conclusion, WGS data analysis of five NMTC-prone families allowed us to prioritize 31 exonic
and 39 non-coding variants from which we subsequently hope to identify one candidate gene per
family. Furthermore, we were able to identify pathways and networks significant to our dataset,
including important tumorigenic pathways such as MAPK/ERK and PI3K/AKT signaling pathways.
The implication of previously reported tumorigenic signaling pathways and the presence of known
tumor suppressor or oncogenes in these affected pathways show that the pathogenesis of FNMTC
is in concordance with characteristic molecular mechanisms of cancer. The next steps will include
selecting one candidate gene per family and validating it with the help of population screening and
functional studies. We hope that our results can facilitate personalized therapy in the studied families
and contribute to the screening of other individuals at risk of developing NMTC.
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