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Abstract

Motivation: Historically, gene expression has been shown to be the most informative data for drug

response prediction. Recent evidence suggests that integrating additional omics can improve the

prediction accuracy which raises the question of how to integrate the additional omics. Regardless

of the integration strategy, clinical utility and translatability are crucial. Thus, we reasoned a multi-

omics approach combined with clinical datasets would improve drug response prediction and clin-

ical relevance.

Results: We propose MOLI, a multi-omics late integration method based on deep neural networks.

MOLI takes somatic mutation, copy number aberration and gene expression data as input, and

integrates them for drug response prediction. MOLI uses type-specific encoding sub-networks to

learn features for each omics type, concatenates them into one representation and optimizes this

representation via a combined cost function consisting of a triplet loss and a binary cross-entropy

loss. The former makes the representations of responder samples more similar to each other and

different from the non-responders, and the latter makes this representation predictive of the re-

sponse values. We validate MOLI on in vitro and in vivo datasets for five chemotherapy agents and

two targeted therapeutics. Compared to state-of-the-art single-omics and early integration multi-

omics methods, MOLI achieves higher prediction accuracy in external validations. Moreover, a sig-

nificant improvement in MOLI’s performance is observed for targeted drugs when training on a

pan-drug input, i.e. using all the drugs with the same target compared to training only on drug-

specific inputs. MOLI’s high predictive power suggests it may have utility in precision oncology.

Availability and implementation: https://github.com/hosseinshn/MOLI.

Contact: ccollins@prostatecentre.com or ester@cs.sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision oncology is the use of genomic data to tailor therapy for

an individual cancer patient. However, response to a cancer treat-

ment—chemotherapy or targeted drugs—is a complex phenotype

and often depends on multiple factors especially the genomic profile

of the patient (Lee et al., 2018). Presently, only 11% of patients

treated with precision oncology can be placed in clinical trials and

only 5% of patients benefit from precision oncology (Cheng et al.,

2018; Marquart et al., 2018; Zehir et al., 2017). Although there are

many reasons underlying this modest success rate, improved drug re-

sponse prediction will significantly increase the number of patients

who benefit from targeted therapy (Marquart et al., 2018) or

chemotherapy, and avoid adverse side effects who will not (Gavan

et al., 2018; Mishra and Verma, 2010). Various in vitro studies of

cancer cell lines and patient-derived xenograft (PDX) mice models

(Gao et al., 2015) have created datasets such as Genomics of Drug

Sensitivity in Cancer (GDSC) (Iorio et al., 2016) and Cancer Cell

Line Encyclopedia (CCLE) (Barretina et al., 2012). These datasets
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provide researchers with multi-omics profiles—consisting of genom-

ic [somatic mutation and copy number aberration (CNA)], tran-

scriptomic, proteomic and methylomic data—together with the

response to a large number of targeted and chemotherapy drugs.

This is different from patient datasets, which record the response

only to one or a few drugs that have been administered to a patient.

These in vitro datasets enable researchers to investigate the drug re-

sponse mechanism at a large scale, in particular for many drugs, and

all the way from various types of pre-clinical models to patients

(Barretina et al., 2012; Iorio et al., 2016). Complementing in vitro

studies, in silico studies have aimed at building computational meth-

ods that analyze the cumulative effects of single- or multi-omics data

to accurately predict drug response (Ding et al., 2018; Geeleher

et al., 2014). These studies usually measure the drug response as the

drug concentration that reduces viability by 50% (IC50).

A critical challenge in drug response research is the clinical util-

ity, i.e. whether the outcome of the study is translatable to actual

patients (Geeleher et al., 2014, 2017). Ideally to achieve translatabil-

ity, a computational method should be trained on in vivo data, how-

ever, available in vivo datasets such as The Cancer Genome Atlas

(TCGA) datasets (Weinstein et al., 2013) do not have enough pa-

tient records with drug response information and in particular, un-

like cell line datasets such as GDSC, they do not report responses to

multiple drugs. For in silico drug response prediction, translatability

in the simplest case means that a model with good performance (e.g.

high prediction accuracy) on in vitro data—trained on more samples

compared to in vivo data—should also have good performance on

in vivo data.

The majority of studies suggests that gene expression data are

the most effective data type for drug response prediction (Ding

et al., 2016; Geeleher et al., 2014; Graim et al., 2019; Iorio et al.,

2016). Geeleher et al. (2014) showed that a ridge regression model

trained on GDCS gene expression data is translatable to Docetaxel,

Cisplatin, Erlotinib and Bortezomib clinical trial data. They also

showed that, for Docetaxel, including non-breast cancer cell lines in

model training increases the predictive power of the final model

compared to the model only trained on breast cancer cell lines. This

ridge regression-based pipeline on gene expression also imputed the

drug response for The Cancer TCGA (Geeleher et al., 2017;

Weinstein et al., 2013). Despite the predictive power of gene expres-

sion, adding other omics data types can increase the predictive

power especially in pan-cancer models (Iorio et al., 2016).

Multi-omics data provide a machine learning model with differ-

ent views of the same sample and promise better characterization of

biological processes (Argelaguet et al., 2018; Wang et al., 2014).

Multi-omics data have been exploited for different problems such as

driver gene identification (Dimitrakopoulos et al., 2018; Mo et al.,

2013; Shrestha et al., 2017; Singh et al., 2019), patient stratification

(Khakabimamaghani and Ester, 2016), survival prediction

(Chaudhary et al., 2018), subgroup discovery (Liang et al., 2015)

and drug response prediction (Ding et al., 2018). For the drug re-

sponse prediction, Ding et al. (2018) proposed a method that con-

catenates mutation, CNA and gene expression data and applies

autoencoders to learn features for the concatenated multi-omics cell

line data. The learned features were used as the input of an elastic

net classifier which predicts the binarized IC50 values. We note that

the classifier was validated only on CCLE cell lines without studying

its translatability to patients or PDX models.

A critical challenge in multi-omics data analysis is how to inte-

grate different data types. There are two major approaches to multi-

omics integration: early integration and late integration (Rappoport

and Shamir, 2018; Zitnik et al., 2019). In early integration, all omics

data types available for a sample are first concatenated, and then an

integrated representation of the sample is created by applying some

feature learning method, such as autoencoders (Goodfellow et al.,

2016), to that representation. Early integration has three disadvan-

tages: first, it disregards the unique distribution of each omics data

type. Second, it requires proper normalization to avoid giving more

weight to the omics data type with more dimensions. Third, it fur-

ther increases the dimensionality of the input data which often is al-

ready a challenge for single-omics input data (Rappoport and

Shamir, 2018). In late integration, features are learned separately

for each omics data type, and these features are then integrated into

one unified representation to be used as the input for a classifier or a

regressor. The advantage of this approach is that it works with the

unique distribution of each omics data type, it can employ single-

omics normalization for each data type, and it does not increase the

dimensionality of the input space.

In this paper, we explore the problem of drug response predic-

tion and propose MOLI, a multi-omics late integration method

based on deep neural networks. MOLI takes somatic mutation,

CNA and gene expression data as input, and predicts the response

to a given drug as the output. MOLI learns features for each omics

data type by type-specific encoding sub-networks and concatenates

the learned features into one representation of the multi-omics pro-

files. To the best of our knowledge, MOLI is the first end-to-end late

integration method with deep neural networks that optimizes this

representation via a combined cost function consisting of a triplet

loss function (Schroff et al., 2015) and a binary cross-entropy loss

function. The former makes the representations of responder cell

lines more similar to each and different from the representations of

non-responder cell lines and the latter makes this representation pre-

dictive of the IC50 values. As another contribution, MOLI employs

transfer learning to increase the size of the training dataset. It trains

a drug response model on pan-drug inputs (using all the drugs with

the same target) instead of drug-specific inputs. Figure 1 illustrates

the workflow of MOLI.

We validated MOLI on in vitro (PDX) and in vivo (TCGA

patients) datasets for five chemotherapy agents and two targeted

therapeutics. Our comparison with the state-of-the-art single-omics

and early integration multi-omics methods showed that MOLI can

achieve significantly better performance in terms of Area Under the

receiver operating characteristic Curve (AUC) on PDX and patient

data. Moreover, we observed substantial improvement in MOLI’s

performance for targeted drugs when training on a pan-drug dataset

compared to training on drug-specific datasets. We conclude that

MOLI models trained on in vitro data translate well to in vivo data

and may have utility for precision oncology. Finally, we showed that

the responses predicted by MOLI—while trained on the pan-drug

input for the epidermal growth factor receptor (EGFR) inhibitors—

for breast, lung, kidney and prostate cancers from TCGA patients

(without recorded drug response) had statistically significant associ-

ations with some of the genes in the EGFR pathway. This shows

that MOLI captures biological aspects of the response.

2 Materials and methods

2.1 MOLI
MOLI is a deep neural network that predicts the drug response for a

given sample, represented by its multi-omics profile, and for a given

drug. MOLI assumes that values for the same genes are provided for

each omics data type. MOLI’s network consists of the following

sub-networks. It has multiple feed forward encoding sub-networks,

i502 H.Sharifi-Noghabi et al.

Deleted Text: (
Deleted Text: C
Deleted Text: N
Deleted Text: A
Deleted Text: or 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: <bold>M</bold>
Deleted Text: <bold>O</bold>
Deleted Text: <bold>L</bold>
Deleted Text: <bold>I</bold>
Deleted Text: ,
Deleted Text: E
Deleted Text: G
Deleted Text: F
Deleted Text: R
Deleted Text: ,
Deleted Text: M
Deleted Text: : <?A3B2 thyc=10?>Multi-Omics<?thyc?> L
Deleted Text: l
Deleted Text: ate I
Deleted Text: i
Deleted Text: ntegration


one for each input omics data type. Each encoding sub-network

receives its corresponding omics data and encodes it into a learned

feature space. The learned features from the encoding sub-networks

are integrated into one representation by concatenation. The con-

catenated representation serves as input for a classification sub-net-

work, which predicts the drug response. The entire network is

trained in an end-to-end fashion using a cost function combining a

classification loss and a triplet loss. Figure 1 shows MOLI’s compo-

nents during training and model development, while Figure 2A

shows the application of MOLI for external validation.

2.1.1 Learning features by encoding sub-networks

To learn features for each omics data type in the input, we design sep-

arate encoding feed forward sub-networks to map the input space to

the feature space. In this paper, we focus on mutation, CNA and gene

expression data. XM, XE and XC denote mutation, CNA and gene ex-

pression data, respectively, each of which are of dimensionality

N � D, where N is the number of samples and D is the number of

genes. We note that the proposed approach can be extended for any

number of omics data types. Each encoding sub-network has a fully

connected layer with Rectified linear unit (ReLU) activation func-

tions. In addition, each sub-network employs dropout to regularize

the model and batch normalization to enhance the training process.

The input of each encoding sub-network is one omics data type and

the output is the learned features for that omics (Fig. 1B). We denote

these sub-networks as fMðXMÞ; fCðXCÞ and fEðXEÞ, respectively.

2.1.2 Integrating learned features by late integration

In the integration step, we utilize a late integration approach and

concatenate the learned features of the different single-omics data

types to obtain one multi-omics representation. For example, if the

outputs of three encoding sub-networks are three M � N feature

matrices, after concatenation, the output will be one M� 3N repre-

sentation matrix. The integrated representation is further smoothed

through an l2 normalization layer. We denote MOLI’s integration,

receiving multi-omics data as input and returning the integrated rep-

resentation, as follows:

FðXM;XC;XEÞ ¼ fMðXMÞ� fCðXCÞ� fEðXEÞ; (1)

where, � denotes the concatenation operator.

2.1.3 Optimizing the learned features by the combined cost

function

The learned features will be used by a classifier that predicts the

drug response. Therefore, the last sub-network of MOLI is a classifi-

cation layer with the Sigmoid activation function, using dropout and

weight decay for regularization (Fig. 1C). We denote this classifier

as g(.). Since the MOLI network will be used for classification, i.e.

drug response prediction, the cost function used for training must in-

clude a term that measures the difference between the predicted

drug response and the ground truth drug response. We choose the

binary cross-entropy classification loss, one of the most common

classification losses, defined as follows:

LClassifier ¼ �½Y log gðFðXE;XM;XCÞÞ
þð1� YÞlogð1� gðFðXE;XM;XCÞÞ�;

where, YN�1 denotes the binarized IC50 which is used as measure

for the drug response.We add a triplet loss to the cost function to

impose a further constraint that is necessary for accurate classifica-

tion. This constraint forces responders to be more similar to each

other than to non-responders. The triplet loss function was intro-

duced in FaceNet (Schroff et al., 2015) for optimizing the mapping

from a space of face images to a Euclidean space where the differ-

ence between learned features is correlated with the similarity

Fig. 1. Schematic overview of MOLI (A) pre-processing mutation, CNA and gene expression data. (B) Each encoding sub-network learns features for its omics

data type and the learned features are concatenated into one representation. (C) MOLI cost function consists of a triplet loss and a classification loss, obtained

from the classifier sub-network that uses the multi-omics representation to predict drug response

MOLI: multi-omics late integration i503

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: l
Deleted Text: u


among faces. The idea is that for the image of a given person’s face,

the distance between that image’s learned features and the features

of another image of the same person should be smaller than the dis-

tance between that image’s learned features and the learned features

of the image of some other person. In our context, we employ the

triplet loss function as follows. For T given triplets in the form of

(Anchor, Positive, Negative), where the first two are (the multi-

omics data of) responder cell lines to a given anti-cancer drug

and the last one is (the multi-omics data of) a non-responder to

that drug, we require the following condition: dðFðAnchoriÞ;
FðPositiveiÞÞ � dðFðAnchoriÞ;FðNegativeiÞÞ, where d(.) is an arbi-

trary distance function—we used the Euclidean distance.If we move

the right hand-side to the left, we obtain:

dðFðAnchoriÞ;FðPositiveiÞÞ
�dðFðAnchoriÞ;FðNegativeiÞÞ � 0

:

In order to avoid the trivial zero solution, a margin n > 0 is

required:

dðFðAnchoriÞ;FðPositiveiÞÞ
�dðFðAnchoriÞ; FðNegativeiÞÞ þ n � 0

:

We want the distance of the Anchor and the Negative to be larger

than the distance of the Anchor and the Positive. Thus, the value of

the triplet loss function for the i-th triplet is:

Li
Triplet ¼ max½dðFðAnchoriÞ; FðPositiveiÞÞ
�dðFðAnchoriÞ; FðNegativeiÞÞ þ n;0�

and the total triplet loss for T triplets is:

LTriplet ¼
XT

i¼1

Li
Triplet: (2)

Generally, there are two approaches to select triplets for the triplet

loss function: offline selection and online selection. The offline

selection builds the triplets based on the value of the labels (in this

case the drug response) before training the model. The online selec-

tion selects the triplets from samples in each mini-batch during the

training. We adopted the online approach. Triplets can be built

based on all possible combinations of the input samples/mini-

batches (soft selection) or based only on those triplets with high trip-

let loss value (hard selection). Soft selection provides the model with

more training triplet examples but the network might rely too much

on easy cases, and as a result may be unable to perform well on hard

examples (Schroff et al., 2015). Hard selection solves this problem

by only relying on the hard cases in the train data to build the trip-

lets, but this approach may suffer from having fewer training triplets

especially in the case of small unbalanced datasets. We adopted the

soft selection approach.

Therefore, the combined cost J is defined as follows:

J ¼LClassifier þ cLTriplet; (3)

where c is a regularization term for the triplet loss.

2.2 Transfer learning for targeted drugs
For targeted drugs, we use transfer learning and train MOLI with a

new pan-drug input. This pan-drug input consists of multi-omics

profiles and drug responses for a family of targeted drugs that target

the same pathway or molecule. Such drugs are expected to produce

highly correlated responses in cell lines. One MOLI model is trained

for a family of drugs instead of one separate model for each individ-

ual drug. This approach increases the training dataset size, since the

set of the screened cell lines and the obtained responses are similar

but not identical for the drugs of one family. In our experiments, we

evaluate transfer learning for EGFR pathway inhibitors due to the

availability of external validation data, but the approach is applic-

able to any family of targeted drugs. Figure 2B illustrates the idea of

transfer learning for targeted drugs.

Fig. 2. (A) Using MOLI to make predictions for PDX/patient inputs during external validation. (B) Combining targeted drugs that target the same pathway or mol-

ecule to make a pan-drug training dataset for MOLI
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2.3 Predicting drug response for TCGA patients
To study MOLI’s performance, similar to Geeleher et al. (2017), we

employ the model trained on the pan-drug input for the EGFR inhib-

itors to predict the drug response for patients in several TCGA data-

sets for which there was no drug response recorded. Since these

drugs target EGFR pathway, we expect the expression status of the

genes of this pathway to be strongly correlated with the predicted

drug response. We obtain the list of genes in EGFR pathway from

REACTOME. To study the correlation, we employ multiple linear

regression between the predicted responses and the level of expres-

sion. We obtain P-values for each gene and correct them for multiple

comparisons, using Bonferroni correction (a ¼ 0:05).

2.4 Datasets
We use four main resources in this paper:

• GDSC cell lines dataset (Iorio et al., 2016).
• PDX Encyclopedia dataset (Gao et al., 2015).
• TCGA patients with the drug response available in their records

(Ding et al., 2016).
• TCGA patients without the drug response (Weinstein et al.,

2013).

The GDSC dataset (Iorio et al., 2016; Yang et al., 2012) has cre-

ated a multi-omics dataset of more than a thousand cell lines from

different cancer types, screened with 265 targeted and chemother-

apy drugs. We use GDSC as the training dataset due to a high num-

ber of screened drugs. Multi-omics profiles and drug responses for

GDSC are retrieved from ftp://ftp.sanger.ac.uk/pub/project/cancer

rxgene/releases/release-7.0/.

We use the other publicly available multi-omics datasets for ex-

ternal validation as follows:

1. We apply PDX Encyclopedia mice models published by Gao

et al. (2015). This dataset has more than 300 PDX models for

different cancer types, screened with 34 targeted and chemother-

apy drugs.

2. TCGA (Weinstein et al., 2013) data including profiles of tumor

samples collected from more than 10 000 patients with different

cancer types, downloaded from Firehose Broad GDAC (https://

doi.org/10.7908/C11G0KM9, http://gdac.broadinstitute.org/

runs/stddata__2016_01_28/). For TCGA datasets, we use clinic-

al annotations of the drug response for some patients which

were obtained from Supplementary Material of Ding et al.

(2016).

3. We also use TCGA patients for breast (BRCA), bladder (BLCA),

pancreatic (PAAD), lung (LUAD), kidney (KIRP) and prostate

(PRAD) cancers. These patients are without the drug response in

their records.

We note that we used only those genes which are in common for

all of the omics data types in both training and external validation

datasets for each drug.

The data pre-processing steps and the used resource files are

summarized below and are presented in more detail in the

Supplementary Material (Section S1) and Supplementary Table S1.

Table 1 provides the characteristics of each dataset such as type of

drug, the number of samples and the number of genes. After the pre-

processing, we have the same number of genes for the training and

the external validation datasets and for each of the three omics data

types. We only consider samples for which all three omics data types

are available.

2.4.1 Gene expression profiles

Raw intensities are obtained from ArrayExpress (E-MTAB-3610)

for GDSC dataset were RMA-normalized (Irizarry et al., 2003), log-

transformed and aggregated to the level of genes. Gene expression

values of PDX and all TCGA datasets are converted to TPM (Li and

Dewey, 2011) and log-transformed. FPKM values for PDX samples

are converted into TPM and log-transformed. To make expression

profiled by different platforms comparable, we standardize gene ex-

pression and perform pairwise homogenization procedure, as

described in Geeleher et al. (2014) and Johnson et al. (2007). Also,

in each dataset we exclude the 5% of genes with lowest variance

assuming them to be not informative.

2.4.2 Somatic copy number profiles

We remove unreliable segments from genome segmentation files for

TCGA datasets and assign every gene a value corresponding to the

intensity log-ratio of the segment it overlaps. If the gene overlaps

more than one segment, we keep the most extreme log-ratio value.

Different from TCGA, the GDSC and PDX datasets provided gene-

level estimates of total copy number. In order to make these data

comparable with TCGA, we compute for every gene the logarithm

of its copy number divided by the ploidy of copy-neutral state in the

sample. Finally, for all four datasets we binarize gene-level copy

number estimates assigning zeros to copy-neutral genes and ones to

all genes overlapping deletions or amplifications.

2.4.3 Somatic point mutations

Similarly with previous works (Ding et al., 2018; Iorio et al., 2016),

we assign ones to genes carrying somatic point mutations and zeros

to all others.

3 Results

3.1 Experimental design
In our experiments, we investigated the following questions:

• Does MOLI outperform single-omics and early integration base-

lines in terms of prediction AUC on PDX and patient data?
• Does transfer learning work for targeted drugs, i.e. does MOLI

trained on pan-drug data outperform MOLI trained on drug-

specific (single drug) data?
• Finally, for the targeted drugs, does the predicted response by

MOLI have associations with the target of that drug?

We trained MOLI on GDSC cell lines screened with Docetaxel,

Cisplatin, Gemcitabine, Paclitaxel, Erlotinib and Cetuximab. We

chose these drugs based on availability of PDX/patient multi-omics

data for these drugs which is necessary for external validations. We

trained all of the baselines for the same drugs and compared them to

MOLI in terms of prediction AUC.

We compared MOLI against early integration via deep neural

networks inspired by Ding et al. (2018) and early integration via

non-negative matrix factorization (NMF) (Cichocki and Phan,

2009; Févotte and Idier, 2011), against the single-omics (gene ex-

pression) ridge regression method proposed by Geeleher et al.

(2014), against an ordinary feed forward network with classification

loss trained on the expression data, and against a version of MOLI

trained only on the gene expression data. To test whether the triplet

loss contributes to improve the performance, we compared MOLI to

a late integration feed forward network with an architecture similar

to MOLI but using only a classification loss.
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Finally, to study transfer learning for the targeted drugs, we

focused on drugs that target the EGFR pathway because we have

Cetuximab and Erlotinib that target this pathway in the PDX data-

set utilized for external validations. In addition, GDSC was screened

with numerous drugs that target EGFR including: Afatinib,

Cetuximab, Erlotinib, Gefitinib and Lapatinib. We used multi-omics

data of all of these drugs in GDSC and created a large training set

(>3000 samples). We trained MOLI on this pan-drug data and com-

pared the results to MOLI which was trained on the drug-specific

inputs.

We used 5-fold cross validation in most of the experiments to

tune the hyper-parameters of the deep neural networks based on the

AUC. The hyper-parameters tuned were number of nodes in the hid-

den layers, learning rates, mini-batch size, weight decay, the dropout

rate, number of epochs and margin and regularization term (only

for the triplet loss). Details on the ranges considered for each hyper-

parameter and the selected settings for each drug are provided in

Supplementary Tables S2 and S3. Finally, the network was re-

trained on the obtained hyper-parameters on the entire dataset for

that drug (train and validation). We used Adagrad for optimizing

parameters in all of the deep neural networks (Duchi et al., 2011).

We used the PyTorch framework to implement all deep neural net-

works codes. For the ridge regression pipeline, we downloaded the

implemented pipeline with leave-one-out cross validation provided

by the original authors (Geeleher et al., 2014) and applied it to our

datasets. To make sure that both the downloaded pipeline and the

way we pre-processed the gene expression data are correct, we eval-

uated it on the datasets from the original paper and got AUCs for

Docetaxel and Bortezomib comparable to those of He et al. (2018).

For early integration via NMF, we first concatenate the omics data

types, and then train an NMF on the resulting matrix to learn the la-

tent factors. Finally we train the Geeleher et al. (2014) method

(using the learned factors as features) to predict the drug response.

The details of this new baseline and the tuning of its hyper-

parameter are presented in the Supplementary Material (Section S2).

3.2 Multi-omics integration by MOLI improves the drug

response performance
Table 2 reports the performance of MOLI and the baselines in terms

of AUC.

First, we compared the complete MOLI (MOLI trained on

multi-omics data and using its combined cost function) to the early

integration baselines. MOLI achieved better performance in six out

of seven external validation datasets compared to early integration

via deep neural networks. Moreover, MOLI also achieved better

performance in all of the external validation datasets compared to

early integration via NMF. These results indicate that MOLI outper-

forms multi-omics early integration. Second, we compared MOLI

trained on multi-omics data with two deep neural network scenarios

trained only on the gene expression data (one of them was MOLI it-

self). MOLI trained on multi-omics data showed better performance

in four out of seven external validation datasets and tied in another

dataset. These results indicate that deep neural networks trained on

multi-omics data achieve better performance than those trained on

single-omics data.

Third, we compared MOLI with MOLI without the triplet loss,

both trained on multi-omics input. MOLI with its combined cost

function obtained better performance in five out of seven external

validation datasets and tied in another one. These results demon-

strate the contribution of the triplet loss to improving the prediction

performance.

Finally, we compared MOLI against a single-omics non-deep

neural networks baseline which is the only published method for

drug response prediction (Geeleher et al., 2014) that had been tested

on patient data. MOLI achieved better performance in four out of

seven external validation datasets and tied with this baseline in an-

other one. These experiments show the substantial gain in predictive

performance resulting from the combination of using multi-omics

data, deep neural networks and the proposed cost function.

MOLI when trained on the pan-drug input (only applicable for

targeted drugs) had significantly better performance compared to

Table 1. List of the studied drugs from the used resources with multi-omics profiles available

Drug Type Resource Number of samplesa Number of genesb Usage

Afatinib Targeted GDSC 828 (NR: 678, RS: 150) 13 081 Training

Cetuximab Targeted GDSC 856 (NR: 735, RS: 121) 12 346c/13 081d Training

Cetuximab Targeted PDX 60 (NR: 55, RS: 5) 12 346c/13 081d External validation

Cisplatin Chemotherapy GDSC 829 (NR: 752, RS: 77) 15 493 Training

Cisplatin Chemotherapy TCGA 66 (NR: 6, RS: 60) 15 493 External validation

Docetaxel Chemotherapy GDSC 829 (NR: 764, RS: 65) 15 016 Training

Docetaxel Chemotherapy TCGA 16 (NR: 8, RS: 8) 15 016 External validation

Erlotinib Targeted GDSC 362 (NR: 298, RS: 64) 12 325c/13 081d Training

Erlotinib Targeted PDX 21 (NR: 18, RS: 3) 12 325c/13 081d External validation

Gefitinib Targeted GDSC 825 (NR: 710, RS: 115) 13 081 Training

Gemcitabine Chemotherapy GDSC 844 (NR: 790, RS: 54) 12 067/15 381 Training

Gemcitabine Chemotherapy PDX 25 (NR: 18, RS: 7) 12 067 External validation

Gemcitabine Chemotherapy TCGA 57 (NR: 36, RS: 21) 15 381 External validation

Lapatinib Targeted GDSC 387 (NR: 326, RS: 61) 13 081 Training

Paclitaxel Chemotherapy GDSC 389 (NR: 363, RS: 26) 12 482 Training

Paclitaxel Chemotherapy PDX 43 (NR: 38, RS: 5) 12 482 External validation

Pan-drug Targeted GDSC 3258 (NR: 2747, RS: 511) 13 081 Training

Note: NR, non-responder; RS, responder.
aNumber of screened samples with all three omics data types available.
bNumber of genes in common between the train data and the external validation data for each drug.
cNumber of genes for the drug-specific experiments.
dNumber of genes for the pan-drug experiments.
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itself when it was trained on the drug-specific inputs for Erlotinib

and Cetuximab. The majority of the baselines had either poor per-

formance or no stable classifier status (NSC) for Paclitaxel and

Erlotinib. NSC means that during either cross validation or final re-

training with the obtained hyper-parameters the cost and/or AUC

curves were fluctuating. This may be due to the small number of

samples, because both of these drugs had the fewest number of cell

lines (�400). Also, we observed NSC in the early integration base-

line for four drugs which may be due to the concatenation at the be-

ginning because it increased the dimensionality substantially, which

makes feature learning harder for the autoencoder and later the clas-

sifier in this method.

MOLI achieved an AUC of >0.7 for four drugs (Paclitaxel,

Cetuximab, Erlotinib and Cisplatin) which may be beneficial for

precision oncology particularly for the targeted drugs (Cetuximab

and Erlotinib).

We also studied the area under precision–recall curve for MOLI

and the main baselines including the early integration methods and

the Geeleher et al. (2014) method. Compared to the early integra-

tion methods, MOLI achieved better performance in four out of

seven external validation datasets and tied in two other datasets.

Compared to the (Geeleher et al., 2014) single-omics baseline,

MOLI had better performance in six out of seven external validation

datasets. We also investigated the area under precision–recall curve

for the pan-drug training data. MOLI trained on pan-drug data had

better performance in one external validation dataset and had com-

petitive performance in another one compared to MOLI trained on

the drug-specific input (Supplementary Table S4). All these results

again suggest that MOLI may be beneficial for precision oncology.

3.3 Transfer learning for targeted drugs improves

performance significantly
We observed that for the targeted drugs (in our experiment, EGFR

inhibitors), MOLI trained on the pan-drug multi-omics inputs

achieved significantly better performance than MOLI trained on

drug-specific inputs. Pan-drug MOLI achieved an AUC of 0.8 for

Cetuximab and 0.72 for Erlotinib which were significantly higher

than the drug-specific performance. This suggests that transfer learn-

ing can improve the prediction performance for the targeted drugs.

3.4 Predictions for TCGA patients by MOLI have

associations with EGFR genes
We applied MOLI (trained on the pan-drug input for EGFR inhibi-

tors) to multi-omics data without drug response downloaded from

TCGA (breast, bladder, pancreatic, lung, kidney and prostate can-

cers) and predicted the response for these patients. According to the

P-values obtained from multiple linear regression, there are a num-

ber of strong associations between EGFR genes and the responses

predicted by MOLI. For breast cancer, we observed statistically sig-

nificant associations between the level of expression in AP2A1

(P¼0.007), CALM2 (P¼0.01), CLTA (P¼0.0002), EGFR

(P ¼ 1� 10�510�5), PIK3CA (P¼0.007) and UBA52

(P ¼ 3� 10�610�6) genes and the predicted responses. For prostate

cancer, we found that the predicted responses have statistically sig-

nificant associations with the expression of AKT1 (P¼0.02), CDK1

(P¼0.01), RICTOR (P¼0.0002), CREB1 (P¼0.02) and CSK

(P¼0.01). In kidney cancer, expression of EGFR (P¼0.04) gene

had association with the predicted response. In lung cancer, we

observed significant associations for CDC42 (P¼0.04), EGFR

(P ¼ 3� 10�5) and PRKAR2A (P¼0.01) genes. However, for blad-

der and pancreatic cancers, we did not observe any significant

associations.

4 Discussion

In this paper, we proposed MOLI method based on deep neural net-

works to predict drug response. MOLI integrates somatic mutation,

CNA and gene expression data and predicts the drug responses. To

the best of our knowledge, MOLI is the first end-to-end method for

MOLI with deep neural networks that utilize a combined cost func-

tion. Our experiments showed that MOLI with its combined cost

function can achieve better performance than single-omics and early

integration multi-omics methods based on deep neural networks.

We also observed that transfer learning for targeted drugs improves

the prediction performance compared to drug-specific inputs. To the

best of our knowledge, this is the first method to use transfer learn-

ing with a pan-drug approach for targeted drugs. Finally, we ana-

lyzed MOLI’s predictions for drugs targeting the EGFR pathway on

breast, kidney, lung and prostate cancer patients in TCGA. We

showed that MOLI’s predictions have statistically significant associ-

ations with the level of expression for some of the genes in the

EGFR pathway, including the EGFR gene itself, for breast, kidney

and lung cancers.

We would like to point out the following directions for future

research.

Although we used only somatic mutation, CNA and gene expres-

sion data in our experiments, MOLI can be extended for integrating

other omics data types. For example, proteomics data can be a good

Table 2. Performance of different versions of MOLI compared to the baselines in terms of prediction AUC across two targeted therapeutics

and five chemotherapy agents

Method PDX PDX PDX PDX TCGA TCGA TCGA Input omics

Drug Paclitaxel Gemcitabine Cetuximab Erlotinib Docetaxel Cisplatin Gemcitabine

Geeleher et al. (2014) 0.52 0.59 0.58 0.67 0.59 0.62 0.53 Expression

Early integration via NMF 0.24 0.56 0.53 0.28 0.39 0.40 0.58 Multi

Early integration via DNNs NSC 0.66 NSC NSC 0.52 NSC 0.59 Multi

Feed forward net 0.68 0.48 0.43 0.37 0.69 0.44 0.65 Expression

MOLI complete 0.69 0.52 0.51 0.39 0.63 0.75 0.64 Expression

MOLI with classifier NSC 0.55 0.46 NSC 0.58 0.6 0.69 Multi

MOLI complete 0.74 0.64 0.53 0.63 0.58 0.66 0.65 Multi

MOLI complete Pan-drug NA NA 0.80 0.72 NA NA NA Multi

Note: NSC: no stable classifier during cross validation or final training. Boldface indicates the best method for the corresponding drug and italics indicates the

second best method. NA: the corresponding drug is not for targeted therapy. Complete: when MOLI has both classification and the triplet losses; NMF, non-nega-

tive matrix factorization; DNNs, deep neural networks.
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candidate because it has been shown to be a contributing factor in

pan-cancer drug response prediction (Ali et al., 2018) and is known

to be in concordance with the other omics data types (Gonçalves

et al., 2017; Ryan et al., 2017). We performed experiments on trans-

fer learning only for the drugs that target EGFR, but this approach

is also applicable for other families of targeted drugs if multi-omics

data are available for external validation. Another advantage of the

pan-drug approach is that there is no need to train separate pan-

drug models for each EGFR inhibitor, and one model can be vali-

dated on different external datasets. In the drug-specific approach,

we trained one model on Cetuximab data and another one on

Erlotinib data, and could not validate them on each other’s external

validation data. However, in the pan-drug approach, we trained one

model for all of the EGFR inhibitors and validated it on both

Cetuximab and Erlotinib data.

While we studied only the triplet loss for optimizing the con-

catenated representation, we note that this loss function can be

replaced by other similar losses such as the contrastive loss function

which was used in the Siamese network (Hadsell et al., 2006). We

trained separate MOLI models for different drugs, but it is an inter-

esting direction for future research to utilize multi-task learning

(Yuan et al., 2016) and predict the outcome for multiple drugs at

the same time. Unlike areas such as medical imaging, transfer learn-

ing is yet to be explored in genomics, especially cancer genomics

(Ching et al., 2018). While in this paper we explored transferring

related samples (also known as instance-transfer), other aspects of

transfer learning such as relational-knowledge-transfer (Pan and

Yang, 2010) should be explored in the future.

In all of the experiments and utilized datasets, we used pan-

cancer inputs. The advantage of using pan-cancer multi-omics input

is that it can address, to some degree, the challenge of inter-tumor

heterogeneity (Almendro et al., 2013). However, these datasets are

not suitable for addressing intra-tumor heterogeneity, which would

require other resources such as single cell data. Geeleher et al.

(2014) showed that training on non-breast cancer cell lines in add-

ition to breast cancer cell lines leads to improved prediction accur-

acy. However, predictions were tested only on breast cancer clinical

trial cohort data and only for Docetaxel, a primary treatment for

breast cancer. Because some drug-cancer event associations are spe-

cific to the tissue of origin and are less detectable in pan-cancer set-

tings (Iorio et al., 2016), we believe that further research in this area

is required to study the performance of pan-cancer versus cancer-

specific training data for a more diverse range of cancer types and

for more drugs.

We would like to point out the following limitations of this

study:

1. The datasets used were from different resources were not in the

same format and required substantial pre-processing and stand-

ardization (see the Supplementary Material). For example, dif-

ferent studies used different pipelines to detect CNA and

reported different estimates of copy number which could not be

compared directly. A similar issue was also observed for the

drug response. While the GDSC cell lines used IC50 as the re-

sponse measure, the majority of datasets used other metrics to

measure the response. For example, the PDX dataset used tumor

volume based on RECIST criteria to define responders and non-

responders. Therefore, lack of standardization on both the input

and the output side adds extra challenges to the drug response

prediction task.

2. In this study we focused on monotherapy and did not explore

the effect of the combination of drugs.

3. We did not discriminate between driver and passenger events in

the somatic mutation and CNA data and treated all of them

similarly. However, in reality, the majority of these genomic

alterations seems to have no impact on cancer development

(Vogelstein et al., 2013) and might appear just by chance.

Therefore, in future work, we plan to use another format for

these data types to distinguish between potential driver and pas-

senger events.

4. All of the datasets used suffered from severely unbalanced class

distributions, since the number of responders was much smaller

than the number of non-responders. We addressed this problem

by oversampling the minority class. However, this approach

often causes overfitting particularly for deep neural networks

with many parameters. We reduced overfitting with strong regu-

larization such as high dropout rate and weight decay.

Moreover, using triplets as input of the network increased the

number of samples and led to a more stable network, due to the

large number of different combinations for triplets.

5. As a first investigation of late integration, we did not consider

interactions between genes in different omics data types in

MOLI or the compared baselines. In reality, genes do not func-

tion in isolation and work in biological networks and interact

with each other. Recently, Ma et al. (2018) have shown that

incorporating biological domain knowledge from the Gene

Ontology leads to more interpretable neural networks with per-

formance comparable to those of purely data-driven neural net-

works. Therefore, incorporating domain expert knowledge to

MOLI via deep neural networks is a promising future direction.

5 Conclusion

In this paper, we proposed MOLI, a method for drug response pre-

diction based on deep neural networks and MOLI. We trained

MOLI on a pan-cancer cell line dataset and successfully validated it

on PDX and patient data for five chemotherapy agents and two tar-

geted therapeutics.

Our results suggest four major findings:

1. MOLI outperforms single-omics (gene expression) prediction

performance in terms of AUC and area under precision–recall

curve.

2. MOLI outperforms deep neural networks using early integration

in terms of AUC and area under precision–recall curve.

3. MOLI with its combined cost function outperforms single- and

multi-omics baselines with only the classification loss.

4. MOLI trained on the pan-drug inputs, employing transfer learn-

ing, outperforms MOLI trained on drug-specific inputs for tar-

geted therapeutics that target EGFR.

Finally, we analyzed the biological significance of MOLI and

found substantial evidence that the responses predicted by MOLI

have statistically significant associations with the expression level of

numerous genes in the EGFR pathway for TCGA patients with

breast, kidney, lung and prostate cancers.

In conclusion, our experimental results suggest MOLI may have

a role in precision oncology where currently only �5% of all

patients benefit from precision oncology.
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