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Neural stem cells (NSCs) are important constituents of the nervous system, and they
become constrained in two specific regions during adulthood: the subventricular zone
(SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. The SVZ
niche is a limited-space zone where NSCs are situated and comprised of growth factors
and extracellular matrix (ECM) components that shape the microenvironment of the niche.
The interaction between ECM components and NSCs regulates the equilibrium between
self-renewal and differentiation. To comprehend the niche physiology and how it controls
NSC behavior, it is fundamental to develop in vitro models that resemble adequately the
physiologic conditions present in the neural stem cell niche. These models can be
developed from a variety of biomaterials, along with different biofabrication approaches
that permit the organization of neural cells into tissue-like structures. This review intends to
update the most recent information regarding the SVZ niche physiology and the diverse
biofabrication approaches that have been used to develop suitable microenvironments ex
vivo that mimic the NSC niche physiology.

Keywords: 3D organotypic models, organ on a chip (OCC), subventricular zone (SVZ), stem cell niche, neural stem
cells (NSC)

INTRODUCTION

Adult Stem Cell Niche Development and Maturation
Rodent’s mammalian cortex neurogenesis begins with the generation of neuroepithelial stem cells
(NESCs). This process is conversed between mammals and humans in the in the subventricular zone
(SVZ) (Ernst and Frisén, 2015). NESCs undergo symmetric divisions in order to generate a pool of
radial glial cells (RGCs) that will later generate nascent projection neurons (Cadwell et al., 2019).
These neurons will then migrate from the ventricular zone to the cortical plate, where the earliest
neurons form the preplate, which is then split into the marginal zone and subplate regions (Molnár
et al., 2019). During the cerebral cortex development, a six-layered neocortex is generated, and its
organization follows an inside-out pattern, with the earlier-migrating progenitors giving rise to the
deeper layers of the cerebral cortex, and the later-migrating progenitors giving rise to the more
superficial ones (Agirman et al., 2017). After embryonic neurogenesis is complete, the radial scaffold
of the RGCs detaches from the apical surface (Molnár et al., 2019) and through asymmetric divisions
gives rise to both astrocytes and ependymal cells. Neurogenesis, however, is not a process that stops
in adulthood. Following the completion of cerebral cortex development, neural stem cells reside
within a specialized microenvironment in the adult brain, called the neural stem cell (NSC) niche
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(Andreotti et al., 2019). So far, two main adult NSC niches have
been described, namely, the ventricular–subventricular zone
(V-SVZ) and the subgranular zone (SGZ) stem cell niche. The
V-SVZ, which is the main point of interest in this mini-review, is
the main region where new inter-neurons for the olfactory bulb
are generated (Altmann et al., 2019). The SGZ, on the other hand,
is the region where new hippocampal neurons are generated, a
process which is thought to play a critical role in memory
consolidation (Butti et al., 2014).

SVZ Cell Populations and Functions
The main cell populations that comprise the SVZ stem cell niche
are briefly reviewed below [for a detailed review refer to (Del
Bigio, 1995)]. The mammalian SVZ is comprised of four layers
(ependymal, hypocellular, astrocytic ribbon, and transitional
layers) (Altmann et al., 2019) and, as described above, is the
main region where the generation of new neural cells takes place.
The NSCs found in this area, called B1 cells, exhibit astroglial
characteristics and give rise to B2 cells, which also exhibit
astroglial characteristics but lack an apical contact with the
CSF (Obernier and Alvarez-Buylla, 2019). B1 cells also give
rise to transient amplifying cells (IPCs or C cells), which
subsequently differentiate toward young neurons (neuroblasts
or A cells) (Obernier and Alvarez-Buylla, 2019). Ependymal cells,
which are also derived from glial lineage but have epithelial
characteristics, are cuboidal-to-columnar ciliated cells forming
a thin sheet across the ventricles (Del Bigio, 1995) and are known
to play a vital role in a variety of processes, including neural
development as well as trophic and metabolic regulation of neural
cells (Del Bigio, 2010) and cerebrospinal fluid (CSF) circulation
(Spector et al., 2015). In addition, ependymal cells surround B1
cells by forming the so-called pinwheel structures (Paez-Gonzalez
et al., 2011), which are crucial for proper regulation of adult
neurogenesis. Specifically, a strong adhesion between ependymal
and B1 cells is secured, allowing NSCs to contact both the CSF
and the interstitially located blood vessels (Mirzadeh et al., 2008).
Moreover, this strong adhesion between cells allows the process
of neurogenesis to be influenced by adhesion-mediated and
paracrine signaling, which has been analytically reviewed by
Harkins et al. (2021). The crucial role that ependymal cells
play, as mentioned above, is the control of proper CSF flow
and the structural integrity maintenance of the SVZ stem cell
niche (Paez-Gonzalez et al., 2011). In some cases, the disruption
of the physiology of the ependymal cell function can lead to
disorders of CSF dynamics, with the clinical entity of
hydrocephalus constituting a typical paradigm (McAllister,
2012). Recent findings suggest that ependymal cells and adult
neural stem cells share a common progenitor, and Geminin
superfamily members control the process (Kyrousi et al., 2017).

ECM Architecture and Physiological Cell
Secreted Factors
As it becomes obvious, a thorough understanding of the SVZ
architecture, apart from the different cell populations that
comprise this stem cell niche, is needed. The brain ECM,
whose composition changes depending on the developmental

stage (Bandtlow and Zimmermann, 2000), is composed of three
main layers: 1) the basal lamina comprised of laminin,
fibronectin, and heparan sulfate which encircles the blood
vessels, 2) perineuronal nets composed of hyaluronate,
proteoglycans, tenascin R, and link proteins that surround
neuronal bodies, and 3) smaller neurons and a neural
interstitial matrix (Murphy et al., 2017). Another feature of
the V-SVZ is the presence of “fractones” which are thin,
highly-branched ECM structures that emanate from the
vascular basal lamina and are either scattered along the
ependymal wall or arise in the center of the pinwheel
structures. In addition to laminin, heparan sulfate, collagen IV,
nidogen, and perlecan have also been defined as fractone
constituents, as shown in Figure 1 (Morante-redolat et al.,
2019). Apart from its supportive role, the brain ECM plays a
crucial role in proper neural development, and alterations in its
organization are involved in a variety of cortical malformations
and other neurodevelopmental disorders [reviewed by Milošević
et al. (2014)]. Last, the ECM glycosaminoglycans and
proteoglycans have been shown to modulate neural stem cell
behavior, as it was analytically reviewed by Shabani et al. (2021).

For proper SVZ niche reconstitution, apart from growth
factors, several other factors are important such as cellular,
chemical, mechanical, and environmental ones. A proper
cellular arrangement for organotypic co-culture with spatial
patterning inside a tissue-specific decellularized ECM (dECM)
bioink could mimic the environmental conditions and cellular
architecture. Moreover, regarding the chemical and mechanical
properties, the dECM bioink could resemble both the chemical
ques and the native tissue mechanical stiffness. Besides, from the
3D gel–provided stiffness and structural integrity, another
important factor for ultimately mimicking the mechanical
forces exerted on the SVZ ependymal surface is CSF flow. The
CSF is not only acting as a buffer, but also its flow-generated shear
stress provides some basic mechanical entrainment of ependymal
cells which is vital for the SVZ niche autoregulation (Pellicciotta
et al., 2020). To reproduce this, a 3D dynamic approach should be
developed using the available microfluidic technologies. The goal
of this mini-review is to provide a brief overview of different
established approaches for the development of biofabricated
organotypic co-culture platforms that recapitulate NSC niche
tissue regions.

PRIOR MODELS TO RECAPITULATE
TISSUE-SPECIFIC ORGANOTYPIC
CULTURES

Static Transwell Co–Cultures
Great interest has been shown on the possible applications that
neuronal culture models could ultimately provide, such as tissue
regeneration, physiologic and pathophysiologic properties, and
drug toxicity or permeabilization. Early attempts that were made
to mimic the brain complexity were co-culture of astrocytes along
with endothelial cells on treated membranes (Neuhaus et al.,
1991; Gaillard et al., 2001). These efforts along with the different
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cell populations and interactions between them comprised the
neural tissue of the blood–brain barrier (BBB). These platforms
not only enabled scientists to study the physiologic properties of
this specific region in terms of pharmacologic permeability but
also proved to be valuable and validated tools for studying the
properties of these tissues under pathophysiologic conditions.
Several other attempts regarding the BBB have already been
described and vary mainly on the choice of the co-cultured
cell types (Nakagawa et al., 2009; Hatherell et al., 2011) as well
as on the decision of the materials for membranes (Neuhaus et al.,
1991; Gaillard et al., 2001; Ma et al., 2005) or coating. In most of
these approaches, a common trend observed was the use of
Transwell membranes (Nakagawa et al., 2009; Hatherell et al.,
2011; Stone et al., 2019) due to the fact that they offer a variety of
options regarding the different cell type populations and seeding
localization (Li et al., 2006; Stone et al., 2019). Regarding the
material of choice, there were several previous attempts which
involved the development of novel hydrogels and decellularized
region–specific materials to ultimately mimic the brain
microenvironment composition, structure, and interactions.
Ma et al., in 2004 had produced a membrane based on silicon
nitride and showcased that the pore size along with the coating
material prohibited the permeabilization of astrocyte bodies

through the membranes but allowed their intermediate
filaments to pass through the pores, thus resembling better the
physiologic tissue (Ma et al., 2005). Transwell platforms have also
been used successfully for developing reliable models of the
air–liquid lung interface, which later can ultimately be studied
and output data from cancer growth and therapeutics (Hassell
et al., 2017) till high-throughput screenings for drugs against the
SARS-Cov-2 virus (Mulay et al., 2020). Eventually, as we will
describe in more detail in the next Dynamic Transwell Co-
Cultures section, these platforms had been widely customized
regarding the membrane materials and integrated with
microfluidic chips to better facilitate the dynamic conditions
that comprise the stem cell niches.

Dynamic Transwell Co-Cultures
Another important factor that contributed substantially to the
wide applicability of the Transwell setup is the fact that it can be
used both for static and dynamic studies. The integration of
microfluidic chips with membranes allows researchers to produce
specific regions on a chip and study the complex interactions in
an in vitro dynamic model. Shin et al. had produced a 3D micro
Transwell device with two distinct flows of culture media through
the microfluidic channels (Shin et al., 2014) in order to produce a

FIGURE 1 | ECM of the ventricular–subventricular zone (V-SVZ) of the stem cell niche. Diagrammatic representation of the neural stem cell niche cellular
constituents (E, ependymal Cells; NSC, neural stem cells; NB, neuroblasts; TAPs, transit amplifying progenitors; BV, blood vessels; ECM, extracellular matrix; BL, basal
lamina). Moreover, the ECM of the SVZ has several components named fractones (F) which are in proximity with all cell types.
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vascularized 3D model of the NSC niche. They showcased that
the spatiotemporal properties of the produced NSCs were found
to influence the differentiation capacity of astrocytes. Regarding
the development of 3D dynamic BBB model chips, Herland et al.
utilized a collagen-based gel with embedded cells within a
microfluidic channel to study the human analogue of an
inflammatory response (Herland et al., 2016). Interestingly,
they found that the dynamic model is more physiologically
relevant compared to a static Transwell culture, regarding the
release of cytokines produced by an inflammatory stimulation. In
addition, Wang et al. successfully established a microfluidic array
for constructing NSC in vitro niches and thus studied the cell fate
decisions in various culture conditions, such as the perfusion rate
and the material of choice (Wang et al., 2017). In the same year
and in a similar manner, Hassell et al. demonstrated that human
lung cancer cells can grow within an organ-on-a-chip culture
device that mimics the dynamic lung structure and function
(Hassell et al., 2017), pointing out the versatile usage of these
platforms. Consequently, researchers are currently trying to
miniaturize the scale and the processes in 96-well air–liquid
cultures (Bluhmki et al., 2020) in an effort to produce high
throughput, reproducible, and reliable setups by reducing the
space and the amount of expensive consumables. Thus, developed
customizable devices and platforms proved to be promising tools
for studying tissue regeneration, physiologic and
pathophysiologic properties, and drug screening analysis
regarding the toxicity or permeabilization of drugs. Many
other studies had already been conducted and are analytically
described in the review articles (MofazzalJahromi et al., 2019;
Oddo et al., 2019), utilizing similarly the Transwell setups along
with microfluidic technologies.

BIOFABRICATION ADVANCES IN TISSUE
RECONSTITUTION

The field of biofabrication allowed new research approaches to be
involved and provided novel insights on how to reconstitute
different tissues by incorporating different cell populations,
embedded in supportive materials at precise regions to better
mimic the physiologic architecture. Below, we provide a brief
discussion on recent developments in the biofabrication field,
which may prove to be suitable for adaptation and integration
with dynamic systems mentioned above to have much more
reliable 3D organotypic models. We will focus mainly on the
materials and the methods that were utilized.

Hydrogels and Decellularized ECM as
Bioinks
Regarding the material of choice used in the biofabrication field,
there are several previous demonstrations which involved the
development of novel hydrogels and decellularized
region–specific materials to ultimately mimic the brain
microenvironment composition, structure, and interactions.
First, hydrogels have been utilized to produce suitable
microenvironments that not only promote cell adhesion and

stemness maintenance but also support the mechanical and
rheologic properties of the reconstituted tissue. Han et al.,
used chitosan and gelatin-based hydrogels to establish an
NSC/ependymal cell co-culture system and showcased that
gelatin promoted angiogenesis in this application and that
their hydrogels can be injectable (Han et al., 2019). In a
similar manner, a previous study generated from our
laboratory utilized a mixture of alginate and gelatin-based
bioink, in order to biofabricate an early 3D model of the SVZ
niche (Ioannidis et al., 2020) using a custom-made 3D bioprinter.
GelMA, a hydrogel consisting of gelatin methacryloyl with UV
crosslinking capability, is also utilized in many research articles
for the development of NSC niches with biofabrication
approaches. For example, Li et al. used GelMA supplemented
with laminin and alginate with embedded neurospheroids and
bioprinted columns inside a supporting crosslinking bath
containing embedded astrocytes to fabricate a model of the
SVZ (Li et al., 2020). Other thermoresponsive hydrogels have
also been used for the study of NSC behavior in 3D environments.
Hsieh et al. (2015) developed a hydrogel consisting of
biodegradable polyurethane and showed the impact of stiffness
on NSC proliferation and differentiation. Moreover, effort has
been put on developing new synthetic hydrogels that possess
protein motifs in their network. These hydrogels can be tailored
for a specific application as needed. Farrukh et al. investigated a
polylysine (PL) hydrogel matrix and a 19-mer peptide containing
the laminin motif IKVAV (IKVAV) on neuronal progenitor cells
under different stiffness regimes (2 and 20 kPa) (Farrukh et al.,
2017), whereas Balion et al. investigated synthetic hydrogel
matrices of polyethylene glycol (PEG) functionalized with
collagen-like peptide (CLP) alone or conjugated with either
cell adhesion peptide RGD motif (mimicking fibronectin) or
IKVAV motif (mimicking laminin) and their impact on
cancer cell migration (Balion et al., 2020). Similarly, Aronsson
et al. pointed out that a polypeptide-functionalized hyaluronan
(HA) and polyethylene glycol (PEG)–based hydrogel possess a
highly versatile engineering customization for biofabrication
approaches (Aronsson et al., 2020). These hydrogels can be
further processed for meeting the extrusion-based
biofabrication standard criteria of injectability and shear
thinning and even been processed to enhance the cellular
attachment and cell–cell signaling in an effort to regulate or
stimulate the stem cell behavior (Uman et al., 2020). Recent
studies also show great interest in utilizing decellularized tissues
to produce region-specific bioinks to be used in the biofabrication
of microtissues. These dECMs can be further functionalized or be
combined with other hydrogels, where their chemical
manipulation is well-established to achieve better rheologic,
crosslinking, and cell adherence properties. For instance, Mao
et al. demonstrated the fabrication of liver microtissues using
liver-specific dECM bioinks in combination with GelMA and
utilized the digital light process-based bioprinting method (Mao
et al., 2020). As for the NSC biofabrication approaches, Xu et al.
used tissue-specific dECMhydrogels which were derived from the
solubilized spinal cord and peripheral nerve tissue and showcased
the differential material’s potential on enhancing and promoting
cell proliferation and regeneration ability (Xu et al., 2021).
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Additionally, for a proper SVZ niche recapitulation, more
research needs to be conducted to identify the specific ECM
component ratios and ECMmechanical forces in order to develop
a more precise tissue-specific bioink. The only parameter
specified with certainty is CSF flow velocity, as Mestre et al.
have demonstrated with particle-tracking studies in live mice that
CSF flow was 18.7 µm/sec (Mestre et al., 2018). Finally, another
important parameter for developing bioinks is the biofabrication
approach. For instance, all those attempts mentioned above
utilized injectable bioinks with different biomaterials (alginate,
gelatin, GelMA, and dECM) depending on the utilized
biofabrication technology. Thus, depending on the
biofabrication approach, those materials need to be combined
with laminin, fibronectin etc. with their specific ratios found on
the native tissue, an issue that needs to be further exploited in the
future.

Living Bioinks
Apart from using dECMs, great effort has already been put in
biofabricating microtissues using highly dense spheroids with
various biofabricating approaches as previously analytically
reviewed by Dalton et al. (2020). Briefly, Hall et al.,
established a living bioink consisting of highly dense callus
organoids and were able to demonstrate the healing of critical-
sized murine bone defects through spontaneous self-bio assembly
of the microtissues (Nilsson Hall et al., 2020). In a similar manner
and by utilizing extrusion and aspiration-assisted bioprinting,
Daly et al. were able to fabricate a high-density microtissue model
consisting of human mesenchymal stem cells which were able to
fuse together during culturing and form larger constructs with
precise deposition of cells (Daly et al., 2021). These living bioinks
can be produced either by using a high number of spheroids
fusing together in a scaffold-free manner or by being integrated
within the biomaterials (Pedde et al., 2017).

Current Limitations in Biofabrication
These methods have proven to be versatile for usage between
different tissue’s reconstitution but lack an efficient way to mimic
the dynamic nature of the physiologic parameters across different
tissues. That is typically illustrated by the lack of the vascular
network to efficiently provide the necessary nutrients for cell
survival, which are required either when cultured for prolonged
timepoints or when scaling up the size of the biofabricated
constructs. To address this issue, Scott et al. developed both
cardiac and cerebral microtissues fabricated from an organoid-
based bioink, which contained different tissue-specific organoids
and was afterward deposited in a sacrificial bath using the SWIFT
method (Skylar-Scott et al., 2019). Their results suggest that the
SWIFT biomanufacturing method was able to provide rapid
perfusable constructs with increased cell viability of high-
density microtissues and, therefore, paving the way for more
accurate and sustainable prolonged culture approaches.
Moreover, another important limitation in biofabrication is
time consumption during the bioprinting process. Researchers
are currently trying to develop photoresponsive bioinks
combined with stereolithography-based bioprinting
technologies to minimize the time needed for developing

bigger constructs (Bernal et al., 2019). As mentioned above, all
these attempts may not specifically involve the reconstitution of
the brain, but they all point interesting novel methods that could
be further developed and integrated with other established or
non-established methods and platforms to fabricate the most
relevant and dynamic organotypic 3D model of the SVZ stem cell
niche. Static organotypic culture use is simpler to fabricate,
cheaper to design, more readily available, and more broadly
used. Also, there are many well-established protocols, but they
fail to recapitulate the in vivo analog like the 3D static or dynamic
biofabricated approaches do. Between 2D dynamic and 3D
biofabricated organotypic cultures, the latter possess the
advantage of specific deposition of cells, although the
complexity and costs are highly increased. In our opinion, the
most suitable model to recapitulate the SVZ analog is the 3D
biofabricated dynamic model as it mimics the 3D ECM
architecture, includes the different cell types comprising the
SVZ, and recapitulates the dynamic flow rates of the CSF
found in the SVZ native tissue. Their advantages and
disadvantages are displayed in Table 1. Ultimately an in vitro
model of the SVZ would be designed with spatial pattern–
utilizing 3D dECM–based bioinks inside a microfluidic
perfusion chamber. This will not only mimic the in vivo
analog but will also miniaturize the samples and enable high-
throughput drug screening analysis and discovery. Moreover,
cells identified in biofabricated niches will further enhance the
maturation process by further producing ECM proteins and by
releasing chemical agents such as growth factors and cell
signaling molecules. By accommodating all those factors, we
strongly believe that this in vitro model will be closely be
comparable to the in vivo analog. This SVZ in vitro model
could also be utilized for the study of specific diseases whose
pathophysiology is linked to the SVZ, such as CH, stroke, post-
stroke SVZ neurogenesis (Cuartero et al., 2021), and SVZ-
originating glioblastoma (Bardella et al., 2018).

CONCLUSION

A niche is anatomically and functionally defined as a local
tissue microenvironment capable of maintaining and
regulating a particular kind of stem cell or progenitor
(Morrison and Spradling, 2008). The abovementioned
study highlights the ultimate need for the development of
reliable in vitro tissue models that are capable of resembling
adequately the physiology of the niche and the interactions
occurring in this microenvironment. A variety of materials
with various modifications have been investigated for the 3D
culture of neural tissue, but even the most advanced materials
struggle to mimic the complexity of the natural tissue.
However, thanks to the utilization of organoid and
hydrogel cultures, a favorable degree of complexity has
been achieved compared to other in vitro methodologies.
These cultures do, however, suffer from scale-up issues as
they have poor nutrient diffusion abilities due to lack of
vascularization. Even though 3D in vitro reconstitution of
functional stem cell niche establishment still remains a big
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challenge, it becomes more and more evident that it holds
great promise for its clinical significance in terms of disease
modeling, pharmacologic applications, and surgical
implantations in the future.
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