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A B S T R A C T   

It has been realized throughout the years that an ideal combination of high toughness, hardness 
and strength is required in many engineering applications that need load-bearing capabilities. 
Ceramics and related materials have significant constraints for structural and particular non- 
structural applications due to their low toughness and limited strength while having substan-
tially superior hardness than typical metallic materials. For example, hydroxyapatite (HAp) has 
gained attention for applications in orthopaedic implants, dental materials, drug delivery, etc. 
Researchers have continued to strive to produce HAp materials with reliable properties within the 
acceptable Weibull modulus (m) for load bearing. The Weibull analysis (WA) is a statistical 
analysis adopted widely in reliability applications to detect failure periods. Researchers have 
confirmed it to be an effective technique to get results on the reliability of materials at a 
moderately low rate with assured reliability of the material or component. This review summa-
rizes the WA and the steps in the Weibull method for its reliability analysis to predict the failure 
rate of ceramics like HAp and other related materials. Also, the applications of WA for these 
materials were reviewed. From the review, it was discovered that Weibull distribution is proven 
to confer to the feeblest-link concept. For brittle materials, it was revealed that the Weibull 
Modulus ranges from 2 to 40, and environment, production processes, and comparative factors 
are well-thought-out contributing factors for reliability. In addition, the confidence interval can 
be up to 95 %. The frequently used technique for reliability valuation is to syndicate the Weibull 
statistics. Also, a very narrow distribution is desirable to offer the expected likelihood. Further-
more, when paired with trials, Monte Carlo simulations prove to be a very helpful tool for 
forecasting the dependability of different estimate techniques and their optimization. Finally, if 
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the equivalent m is anticipated to be high, it signifies that the material has a high degree of 
homogeneity of properties and high reliability. WA can find application in predicting the 
dependability and lifetime of materials, making it widely utilized in engineering and other dis-
ciplines. It is especially useful for analysing data in which the likelihood of failure per unit of time 
varies over time.   

1. Introduction 

The restoration of bone defects and osteoporosis are two significant challenges in bone repair activities that require the reliability of 
the implant material [1–3]. Several techniques, including plasma spraying, and hydroxyapatite (HAp) coatings are used to achieve 
osseointegration and graft external treatment [4–7]. However, HAp and other porous coating materials are the most often used 
remedies today [8]. Using a coating layer aims to achieve effective osseointegration and critical bone-implant interaction. Researchers 
have continued to investigate the production of HAp scaffolds for bone tissue applications in recent years because of their essential 
bioactivity and osteoconductivity [9]. HAp is an inorganic bio-ceramic component of natural bones and teeth with high biocompat-
ibility, osteoinductivity, surface area (100 m2 g− 1), and bioactivity [10–12]. HAp has the following characteristics: The apatite mo-
lecular formula is Ca5(PO4)6(OH)2, similar to human apatite, which has a Calcium - Phosphate ratio of 1.67. 

HAp has been confirmed by different researchers to be the most stable biomaterial with these basic qualities (biocompatibility, 
osteoinductivity, and bioactivity) when employed in bone repair [13]. The bones of cattle or bovine, camels, horses, and fish can 
produce natural HAp. Egg shells, plants, algae, and limestone can also produce it [14–22]. In the work conducted by [23], some of the 
physiochemical, mechanical, and biological characteristics of HAp, and some of the methods for producing HAp powder were listed. 
The composite biomaterials like synthetic or natural polymers plus HAp have mechanical properties most similar to human bone tissue 
[24]. HAp has low fracture toughness and flexural strength, which prevents it from being used as a graft material on a large scale in 
orthopaedics and dentistry [25]. As a result, in the field of biomedical engineering for bone implants, their mechanical qualities and 
reliability are critical. One way to determine the reliability of ceramic materials is through Weibull statistical analysis by knowing the 
Weibull modulus, m [26–29]. Numerous methods have been employed to measure the Weibull modulus, m, and its physical conse-
quences on the statistical distribution of fracture strengths in brittle materials [30]. Despite the importance of the Weibull modulus, m, 
as a measure of the mechanical reliability of ceramic materials, only a few research reports are available on the Weibull modulus and 
fracture strength of HAp. Weibull Analysis (WA) is a statistical approach for analyzing a material’s life cycle statistics. The results of 
measuring a product’s life are known as life statistics [31]. Failure analysis is a dynamic system of understanding a system’s consistent 
features and activities, employing a minimal model scope of the area [32–37]. WA is a valuable tool for determining a product’s 
lifetime performance. Weibull techniques can be used to evaluate sample data acquired concerning failures and time to aid in 
responding to major concerns [38]. The capacity to investigate failure tendencies and provide failure predictions based on known 
sample data sets is the main value of WA, which is related to its flexibility and ability to apply to small sample sets quickly. It also 
provides a visual and graphical representation of failure data [39–41]. 

A technique for assessing life data is WA. Measurements of a product’s life yield its life data. Product life data is measured in hours, 
miles, number of cycles, or other metrics that are used to determine a product’s efficient functioning, depending on the product or 
industry [42]. Weibull analysis’s main benefits are as follows: It may provide fairly precise failure assessment and failure predictions 
with tiny data samples, enabling solutions to be implemented as soon as a flaw is detected [43–46,47]. The Weibull distribution is 
extensively employed in failure time prediction due to the large range of probability curve shapes that may be produced by varying the 
two parameters, β (shape parameter), and α (scaling parameter) [48,49]. Even though the procedure of the normal distribution 
normally involves at least 20 failures or facts from previous experience, WA works exceedingly fine when there are as limited as 2 or 3 
failures, which is serious when the result of a failure comprises safety costs. Other advantages of Weibull distribution include [50–52]:  

(i) It is expansively used to assess mechanical, chemical, and material failures.  
(ii) Afford discreetly precise failure analysis and failure predictions with very small data samples, making results likely at the 

earliest signs of a problem.  
(iii) Afford modest and valuable graphical plots for distinct failure modes that can be simply read and understood, even when data 

insufficiencies occur.  
(iv) Signify a wide array of distribution shapes so that the distribution with the finest fit can be selected.  
(v) Afford physics-of-catastrophe signs according to the slope of the Weibull possibility. 

Some research has been done to buttress these advantages. To evaluate the mechanical reliability of porous HAp, Pires et al. [53] 
employed WA to investigate the fracture toughness of dense polycrystalline HAp bioceramic made from cow bones after adding 
ZnO/TiO2 nanoparticles and TiO2 nanotubes. The WA results indicated that adding 5 % of TiO2 nanoparticles improved the Weibull 
parameter (m), but there was no statistically significant variation from the pure HAp. ZnO2 nanomaterials at a 5% proportion reduced 
the HAp characteristic strength without altering m. Fan et al. [54] studied the strength of extremely porous HAp. The partly sintered 
HAp samples were cracked in biaxial flexure using a ring-on-ring examination fitting. The fracture strength declined monotonically 
with declining sintering temperature from 4.8 MPa for samples sintered at 1025◦C–0.66 MPa for samples sintered at 350◦C. However, 
the value of m rose unexpectedly, extending from 6.6 to 15.5. Ćurković et al. [55] employed WA to investigate the flexural strength of 
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alumina ceramics. The three-point bend test was used to determine the flexural strength of standard purity alumina ceramics. Flexural 
strength was determined to be between 266.7 and 357.5 MPa. The numerical randomness of flexural strength calculated by the 
three-point bend test was investigated using a two-parameter Weibull distribution (Wd) function. Flexural strength was measured at 
17.4 Wm. They concluded that this restriction can be used to characterize the variability in the tested material’s flexural strength as 
well as its consistency. What matters most for the mechanical characteristics of brittle materials (bioceramics) is the Weibull modulus, 
m [56]. In the production of bioceramics, the m can also be influenced by the following factors in addition to the microstructure: 
powder treating methods [57], strength evaluation methods [58], rate of loading [59,60], particle size and form [61], and finishes on 
the surface [62,63]. A two-parameter WA can be employed to evaluate the fracture data of valid cracked samples [64,65]. Generally 
speaking, only moderately dense bioceramic samples are covered in the literature when discussing the m of brittle materials [66]. 

Bioceramics belong to a family of biomaterials employed in biomedical engineering. Because of their versatility in fabrication, high 
compressive strength, variable porosity, and bioactive qualities in the body, ceramics are frequently employed as implant materials 
[67]. This type of biomaterial can be synthesized from bovine and catfish bones [68–72]. The boom in bovine and catfish farming in 
Nigeria has led to a substantial upsurge in the creation of bone biowastes. These biowastes can be used as raw material for producing 
HAp, a pervasive calcium phosphate substance used in biomedical engineering [73]. The economy, environment and general health 
could all significantly gain from this conversion of biowastes [74]. The conversion of these biowastes into HAp is a good development, 
but the analysis to determine or predict its reliability using WA is of great importance and is challenging. This review summarizes the 
overview of WA and some steps in the Weibull method for its reliability analysis to predict the failure rate of HAp. Also, the appli-
cations of HAp are presented. This review thus serves as a reference for further advanced studies on determining the m of naturally 
derived HAp from an array of sources like bovine and catfish bones to predict its reliability. 

2. Overview of Weibull analysis (WA) 

Weibull distribution is proven to confer to the feeblest-link concept [75–78]. For brittle materials, the literature revealed that 
environs, production processes, and comparative factors are well-thought-out contributing factors for reliability [79–82]. The 
frequently used technique for reliability valuation is to syndicate the Weibull statistics [83]. In this condition, the strength is defined as 
a definite distribution but not a single numeral. The estimated m from strength distribution can reveal the strength potential of the 
material investigated. A very narrow distribution is desirable to offer likelihood. The equivalent m is anticipated to be high, signifying 
the material has a high degree of homogeneity of properties and high reliability [84–87]. For materials with a homogeneous flaw 
density, Weibull analyzes fracture statistics [39]. 

WA is a widely utilized distribution in the analysis of reliability and durability data. The Weibull distribution may describe 
diminishing, cumulative, or constant risk functions, allowing it to define any stage of the item’s life cycle [88–93]. Waloddi Weibull 
introduced a statistical distribution in 1939 that frequently defines identified failures. Weibull’s distribution was given as a single 
specialized subject. The distribution was based on Pierce’s concept of the “weakest link," and since then, it’s been broadly used to 
evaluate the fracture-related mechanical properties of ceramics and metals. Equation (1) below gives the cumulative probability 
function of Weibull two parameters, Wd [94–97]: 

P=1 − exp
[
−
( x

xo

)m]
(1)  

where P = probability of failure at a given fatigue life, x, or lower; xo and m are scale and shape parameters, respectively. 
The following assumptions support the Weibull model [98]:  

1. The sum of defects alleged in one intermission is autonomous for a fixed group of time. The number of detected failures is 
indiscriminate at this point.  

2. At the start of the period in which the package is noticed, there is a fixed number of flaws (N) in the package. In life testing, taking 
the logarithms of the failure times is usual. The log failure times have a normal distribution if the log-normal distribution is the 
assumed distribution. The assumption that the lifespan follows a Weibull distribution is more widely held. In this instance, the 
distribution of the log failure times is location-scale rather than typical.  

3. The period of defects of failure is scattered as a Weibull distribution with parameters xo and m. In Weibull regression, it is typically 
assumed that the shape parameter is constant and the scale parameter depends on the predictor variables.  

4. A defect is amended instantly deprived of presenting new defects in the package. When choosing an experimental design, one 
should take the number of parameters that need to be estimated into consideration. All of the model’s parameters should be 
estimable by the design. 

We can formally simulate the interaction if assuming a common shape parameter, xo, for the Weibull distribution (or constant scale 
parameter m in the distribution). For instance, Dey et al. [99] disclosed that the individual data of nano-hardness and Young’s modulus 
were estimated with the aid of Weibull statistics. As the indentation stress was increased from 10 to 1000 mN, the Weibull moduli data 
for both the nano-hardness and Young’s modulus of the MIPS-HAp coating increased. The Wd fixtures for the nano-hardness value of 
the coating are presented for the low (10–100 mN) loads and the high (300–1000 mN) loads. Recently, Tiryakioglu and Campbell [100, 
101] presented procedures for understanding Weibull probability plots as well as the three-parameter Weibull distribution and Weibull 
combinations. Their result showed that ceramics, with their low-fracture toughness, are also likely to yield fracture properties that will 
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trail the two-parameter Weibull distribution. According to Ref. [102], the Weibull distribution (Wd) is elastic to diverse distributions. 
In conclusion, the use of Wd has three great advantages [103]:  

1. It can precisely model quality and performance characteristics (PC), and its elasticity brands it supreme for use in analyzing a 
dataset with an unknown distribution.  

2. Following that, it denotes a significant quantity of a task.  
3. It gives precise failure investigation and hazard forecasts with trivial models. 

The parameters have actual denotation and m shows whether the rate of the measured PC is increasing, steady, or falling at its 
current rate. A β < 1.0 shows that the feature is decreasing, while an α > 1.0 shows that it is an upward rate (Fig. 1). 

2.1. Graphical representation of Weibull parameters 

The shape, β, parameter depicts the distribution’s shifts from 0, with a negative shape indicating a shift to the left of 0 and a positive 
shape indicating a shift to the right. The scale parameter, α, is the statistics’ 63.2 percentile, and it represents the Weibull arc’s link to 
the shape in the same way as the mean characterizes the place on a standard curve. The Weibull curve’s shape is determined by the 
shape parameter. The properties of distinct dissimilar life dispersals can be perfected by modifying the shape [109,110]. The 63.2 
percentile of the distribution is the Weibull scale parameter (α) [111]. This indicates that, for instance, 63.2 % of the observed values 
will be less than 2 if a Weibull distribution with α = 2 is used. The image that follows illustrates how the scale parameter changes while 
maintaining a constant shape parameter (β = k = 3.5) (Fig. 2). 

As illustrated by Liu et al. [112] (Fig. 3a), the scale parameter for 80 % of the 205,873 fitted Weibull Probability Density Function 
(PDF) was less than 70 s. This indicates that 63.2 % of all observations for those 80 % of probabilities had a dwell time value of less than 
70 s. The distribution’s plan is modelled by the shape parameter, β. An exponential distribution replaces the Weibull distribution if β =
1. A normal distribution is comparable to the Weibull probability density function (PDF) when β is between 3 and 4. Consider Fig. 3b 
which represents a Weibull PDF with a steady shape parameter (β = 20) varied from 0.5 to 2, 3.5, and 8 [112]. 

2.1.1. Weibull Distribution with shape < 1 
When β is between 0 and 1, the graph displays that the likelihood declines exponentially from infinity. About the catastrophe rate, 

the value that this distribution has is a greater number of early failures, which declines over the period as the faulty samples are 
removed from the model. Since these failures occur in the early period of an item’s life, it is referred to as “infant mortality" [113–117]. 
In this review hereafter, the scale parameter, α is replaced with xo, the shape parameter, β is replaced with m, and the threshold 
parameter, γ is replaced with yo. Fig. 4a shows a typical Weibull distribution with the shape parameter less than 1. 

2.1.2. Weibull Distribution with shape = 1 
If m is equal to 1, the Wd declines exponentially from 1/ xo, where xo = the scale parameter. This proves that with time, the failure 

degree is steady. This shape is suitable for haphazard catastrophes and multiple-cause catastrophes, which can be adapted to perfect 
the valuable life of items [118]. Fig. 4b shows a typical Weibull distribution with the shape parameter equal to 1. 

2.1.3. Weibull Distribution with Shape between 1 & 2 
When m, is between 1 and 2, the Weibull Distribution increases to its highest rapidly, before declining over time. The failure rate 

Fig. 1. Typical of Weibull distribution showing the shape parameters [104–108].  
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rises completely, with the quickest rise happening first. This shape is revealing premature failures due to wear and tear [116,119]. 
Fig. 4c shows a typical Weibull distribution with the shape parameter between 1 and 2. 

2.1.4. Weibull Distribution with shape = 2 
The direct growing failure rate is when m = 2, in which the risk of wear-out failure climbs progressively during the item’s lifetime. 

The Rayleigh distribution describes the Wd’s characteristics [120–122]. Fig. 4d shows a typical Weibull distribution with the shape 
parameter equal to 2. 

2.1.5. Weibull Distribution with Shape between 3 & 4 
If m is between 3 and 4, the Wd is symmetrical and bell-shaped, just like the typical curve. This Wd approach simulates quick wear- 

Fig. 2. Typical Weibull distribution plot [111].  

Fig. 3a. Typical 63.2 % Weibull distribution showing shape parameters [112].  

Fig. 3b. Typical 63.2 % Weibull distribution with varied shape parameters [112].  

O.A. Osuchukwu et al.                                                                                                                                                                                                



Heliyon 10 (2024) e32495

6

out failures in the final stages of an item’s life when maximum disasters occur [120]. Fig. 4e shows a typical Weibull distribution with 
the shape parameter between 3 and 4. 

2.1.6. Weibull Distribution with shape > 10 
When m > 10, the Wd resembles an end data distribution, and this distribution system can perfect the ultimate passé of a product 

lifespan [117,123,124]. Fig. 4f shows a typical Weibull distribution with the shape parameter greater than 10. 
Considering the bathtub graph shown in Fig. 5, a typical failure pattern and several stages can be noticed. One specific kind of 

failure rate graph is the bathtub curve. The deterioration prediction and reliability engineering both make use of this graph. The term 
’bathtub’ describes a line with two edges of the curve that resemble a bathtub. Three areas make up the bathtub curve [125,126]:  

(i) Because of these early failures, the first region has a declining failure rate. Where shape parameter <1.  
(ii) Because of sporadic failures, the middle section has a steady failure rate. Where m = 1.  

(iii) The final area shows a rising failure rate as the result of wear-out issues. Where shape parameter >1. 

Fig. 4a. Typical Weibull distribution with shape parameter less than 1 [116].  

Fig. 4b. Typical Weibull distribution with shape parameter equal to 1 [116,118].  

Fig. 4c. Typical Weibull distribution with shape parameters between 1 and 2 [116].  
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Not every product has a bathtub curve failure rate. A product is considered to follow the bathtub curve when early causes of 
potential failures, like manufacturing defects or damage received during transit, are identified and addressed. Throughout a product’s 
midlife, failure rates are consistent. As a product age, wear out increases the failure rate. The life cycles of many consumer electronics 
goods exhibit the bathtub curve [115,127,128]. 

2.2. Procedure for the 2-parameter Weibull analysis (2-PWA) 

The 2-parameter Wd serves as the foundation for Load and Resistance Factor Computations (LRFC). This method begins by applying 
a 2-parameter Wd to an entire data set or a subset of data in place of the distribution’s lower end [120,129]. The Wd is categorized by 
two parameters: m (dimensionless) and x0 (m/s) [130–132]. Several approaches to assessing Weibull parameters have been proposed 
by various researchers. Dodson [133] presented various procedures to evaluate the m (dimensionless) and x0 (m/s), plus the highest 
probability estimator and likelihood plotting. The highest probability technique is suggested for ceramics [130]. The cumulative 
distribution function is denoted by Equation (1) stated above [130]. Fig. 6 is a typical 2-parameter Weibull plot. 

Fig. 4d. Typical Weibull distribution with shape parameter equal to 2 [121].  

Fig. 4e. Typical Weibull distribution with shape parameters between 3 and 4 [116].  

Fig. 4f. Typical Weibull distribution with shape parameter greater than 10 [117,124].  
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The Probability Density Function (PDF) is represented by equation (2) [130]: 

P(x)=
dP
dx

=
m
xo

( x
xo

)m− 1
exp

[
−
( x

xo

)m]
(2) 

For two parameters only, Tiryakioğlu and Hudak [101] in a study presented a stepwise way of conducting Weibull analysis that 
depends upon the linear regression procedure, which is normally applied in the analysis of fracture value. In what follows, these steps 
are highlighted. 

2.2.1. Allocate probability to Individually statistics point 
Several probability estimators (alternatively referred to as simple rank-estimator functions) can be found in the literature 

[134–137]. For large data, the formula should be used according to Equation 3 (a) [135]: 

P(x)=
t − u
n + v

(3a)  

where t = ascending order rank, n = sample size, and u and v = empirical constants. 
In reality, the plotting locations in equation 3 (b) and (c) below are generally used [138–143]: 

P(x)=
t − 3 /8

n + 1 /4
for n ≥ 10 (3b)  

P(x)=
t − 1 /2

n
for n ≥ 11 (3c) 

Monte Carlo simulation investigations [144–150] disclosed that probability estimators yield partial evaluations of the Wm (the 
mean of predictable Weibull moduli) and are dissimilar from the factual Wm (model sizes (n) among 5 and 100). The extent of the bias 
rests on the values of u and v as well as the sample size. With a small number of statistics, other distributions, particularly the normal 

Fig. 5. A typical bathtub curve showing failure stages [125,126].  

Fig. 6. Typical 2-parameter Weibull distribution plot [101,130].  
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distribution, resolve and possibly afford suitable turns. Monte Carlo simulation investigation is the commonly used method in 
probabilistic analysis in engineering. It is used to generate Weibull data points and for the validation of the reliability analysis and easy 
approximation of the analysis for the accuracy of the results [151–156]. Since it allows for operational or correlation-type interactions 
of the data being used, Monte Carlo simulation is significantly more flexible [157]. Also, for the estimation of standard errors 
[158–161]. it makes it easier to understand the multipart mathematical equations with accurate prediction [162–166]. 

2.2.2. Obtain linear regression fit 
That is the plot of ln(x) against ln[ − ln(1 − P)] [167]. The most frequently applied approach to solving the Weibull is the Weibull 

probability graph. Changing equation (1) to linear form, we have equation (4) [101]: 

ln[ − ln(1 − P(x))]=m ln(x) − m ln(x0) (4)  

From the above equation, m is the slope, and m ln(xo) is the intercept of the plot. Henceforth, the best-fit line for this probability plot 
signifies the linear regression way for assessing the two Weibull parameters (i.e., m = shape and x0 = scale). 

2.2.3. Conduct goodness-of-fit (GOF) test 
A GOF test is a numerical trial that regulates whether the analysis figures trail the distribution model. If the figures excel in the GOF 

test, it proves that it trails the typical form thoroughly enough that forecasts can be decided and founded on that model. If the figures 
fail the GOF test, it shows that the figures do not trail the model thoroughly enough to make forecasts and that the figures do not look to 
trail a definite form [168–170]. Weibull outcomes are effective when GOF tests are fulfilled. GOF tests for a Wd comprise the following 
[171].  

(i) R2 linear regression (least squares). If R2 > 0.9, it is an acceptable fit for linear regression.  
(ii) Kolmogorov-Smirnov: uses the confidence level and P-value to determine if the figure is a good fit. 

If P > 1 - confidence level, the test passes [172]. 
The GOF of the Weibull design can also be evaluated using the straightness of the Weibull plot, according to Park et al. [173–176]. 

The sample correlation coefficient of the matching points can be used to determine the degree of linearity in the Weibull plot as shown 
in Equation (5) [101,176]: 

ln x, ln[ − ln(1 − P(x))] (5)  

Let: Ux = ln x; Vx = ln[ − ln(1 − P(x))]; Ux =

∑
Ux

n and Vx =

∑
Vx

n [176]: 
then; The sample correlation coefficient, R, from the plot, is denoted by Equation (6) [176]: 

R=

∑n
i=1(Ux − Ux )(Vx − Vx )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Ux − Ux )
2
.
∑n

i=1(Vx − Vx)
2

√ (6) 

The application of a probability plot, nevertheless, is independent and inadequate, and so, it is assuredly suggested that probability 
plots are constantly supported by other GOF tests [177]. However, rich rules for the exploitation of R2 as a GOF test have only recently 
been established by Tiryakioğlu et al. [178], who conducted Monte Carlo simulations to fix the points of R2 at x0 = 0.05 (R2

0.05). 
Tiryakioğlu et al. stated that equation (7) may be applied for trial sizes between 5 and 100 [178]: 

R2
0.05 =1.0637 −

0.4174
n0.3 (7) 

Fig. 7a. Typical Weibull graph for two samples [178].  
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The proposition that the statistical set trails the tried distribution is excluded once the p-value for the estimated R2 < a quantified 
data for the Category I error, which is characteristically set as 0.05. Otherwise, if the estimated R2 > R2

0.05, it can be resolved that the 
figure originates from a Wd. Hence, the WA must be rejected and stages 4.4 through 4.66 will not be engaged [178]. 

2.2.3.1. Real life examples. The real-life example here is two datasets reported by Ref. [178] that were used to show the application of 
the GOF methods suggested by the researchers. The two datasets were extracted from a study by Green and Campbell [179,180], who 
revealed that the tensile strength (TS) of alloys is influenced to a high degree in the mould-filling phase. If the mould is filled gently, TS 
is greater and has better reliability. On the other hand, tensile strength has a lesser average and greater unpredictability when the 
mould filling is intense. The two datasets exemplify these two kinds of mould filling: top-filled which is relatively intense, and 
bottom-filled, which is gentle. The mould filling sample size is 45 and 36 for top filling and bottom filling, respectively. For the graph 
point formula (equation (3c)), v is 0.481 and 0.466 for top filling and bottom filling, respectively, and u = 0 [181]. The Weibull 
probability plots are shown in Fig. 7a and the predictable parameters as well as goodness-of-fit measures are presented in Table 1. 

For top fill, R2 < R2
0.05, signifying that the Weibull fit has to be unacceptable. It can be observed that in Fig. 7a, the slope for the last 

five points appears to be less when compared with other data. This variation in slope demonstrates a reliable instrument to estimate the 
GOF to the Weibull distribution. The important data for R2 with ̨ R2 = 0.05 (R2

0.05
)

were estimated for each dataset size (Fig. 7b) using 
equation (7). The distribution of the mechanical testing data is Weibull if R2 ≥ R2

0.05. Hence, they concluded that equation (7) be used 
for the GOF test [178]. 

2.2.4. Determine confidence intervals (CI) for the calculated Weibull parameters 
It remains imperative to understand that the calculated Weibull parameters have their statistical distributions. Therefore, it is 

necessary to compute assurance intervals for the two Weibull parameters, particularly. The calculated Wm distribution does not trail at 
all in the prescribed distribution. Hence, the practice of percentage points is essential to estimate the confidence intervals. If the 
distribution of the projected scale parameter is normal, then the use of percentage point tables is not essential [181]. 

The standard deviation, Sxo, of the predictable scale parameter (after standardization) is computed using the probability estimators 
according to equation (8) [181]: 

Sxo =
0.359

̅̅̅
n

√ (8)  

Thus, confidence intervals for the factual xo can be gotten using equation (9): 

x̂o

1.000 + Z1− xo
2
.0.359̅̅

n
√

≤ xo ≤
x̂o

1.000 + Zxo
2
. 0.359̅̅

n
√

(9) 

Let α = 0.05 (95 % confidence), Z1− xo
2 

and Zxo
2 

are 1.96 and − 1.96, respectively [101]. 

Let’s examine the bottom fill data with n = 36, m = 38.4, and x̂o = 311.4 from the real-life example (subsection 2.2.3.1) to 
demonstrate how to evaluate the lower limit values. A single-side 99 % confidence interval, according to Ref. [181], occurs when m >
26.6. Calculated from 38.4/1.446, the lower bound of a single-side 99 % confidence interval for m = 1.446. Equally, x̂o > 273.4 is the 
single-sided 99 % confidence interval for a neutral estimate for x̂o. The single-sided 97.5 % confidence interval for the population 10th 
percentile (P′ = 0.10) is found to be 0.60 when Inserting m = 26.6, x̂o = 1.0 is used. 

Determining the confidence interval with results for the 10th percentile in Table 2 (Appendix A) of Ref [178], provides a 97.5 % 
confidence that the P* > 0.82. This means we are 97.5 % confident that 90 % of the population is > 0.82. In conclusion, different 
confidence intervals are added to get the final estimate. Thus, if x̂o = 1.0, then there is a 99 % confidence that m > 26.6 and we can be 
97.5 % confident that the P* >0.82. In other words, when x̂o = 1.0, we are around 96 % (0.99 × 0.975) certain that the population’s P* 
> 0.82. Furthermore, we can be around 95 % (0.96 × 0.99) convinced that the P* > 224.2 (273.4 × 0.82) because there is 99 % 
confidence that x̂o > 273.4. 

2.2.5. Estimate lesser assured values 
As soon as the Weibull parameters are known, it is necessary to get conventional estimates in design ideals, by calculating a certain 

percentile (pct) of the Wd [182]. To find a certain pct of the Weibull distribution, equation (1) can be reorganized to give equation (10) 
[101]: 

xp = xo[ − ln(1 − P)]
1
m (10) 

Table 1 
Typical statistics of two Weibull data [178].  

Serial Samples n R2
0.05

)
m 

1 Top Fill 45 0.9305 11.16 
2 Bottom Fill 36 0.9213 38.40  
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where xp is the Pth percentile. Since x0 & m are unknown, corresponding approximations, x̂o and m̂ have to be applied to estimate the 
percentile. Because x̂o and m̂ have their distributions, the appraised percentiles will take a distribution, which is anticipated to be 
controlled by the distribution of m̂, due to the weighty consequence of m on the percentile. Hudak and Tiryakioğlu [181] recently 
established a way to evaluate the percentiles of a Wd at a certain confidence level (CL). The authors presented tables for several sample 
sizes obtained from Monte Carlo simulations by substituting xo = 1 and m = 1. When m is not equal to one (1), the pct (columns) for a 
certain CL (rows) is calculated by Equation (11.1) [181]: 

P=1 − exp〈 −
{

[ − ln(1 − Pʹ)]
1
m

}

〉 (11.1)  

where P∗ = percentile of attention. For example, the authors in Ref. [181] studied a situation where m̂ = 3; and n = 40 to compute the 
distribution for the 10th percentile. Using Equation (10), Putting m̂ = 3; and Pʹ = 0.10, the value of P* = 0.376. This means that the 
distribution for the 37.6th pct when m̂ = 1 and m = 1 gives the same result for the distribution as the tenth pct when m̂ = 1 and m̂ = 3. 
Afterwards, interpolation can be applied to evaluate the percentile standards (or values). 

The failure probability Pf(x) can also be found using Equation (11.2) [182–188]: 

Pf (x)=
a − 0.3
N + 0.4

(11.2)  

Where N = Sum of trials; a = the failure sequential number, and Pf (x) is the failure probability. 
The Coefficient of Deviation can be calculated as given in equation (11.3): 

/

CD
/

=
Sd

MTTF
(11.3) 

According to some researchers, Sd and MTTF can be calculated as given in equation (11.4) [189–192]: 

Standard deviation, Sd = xo

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂
(

1 +
2
m

)

− ∂2
(

1 +
1
m

)√

(11.4)  

∂ = gamma function and/CV/is the function of parameter m [1 93]. 
Also according to Equation (11.5) [193]: 

Mean Time to Failure (MTTF)= xo∂
(

1+
1
m

)

(11.5)  

According to Equation (11.6) [193], 

Assume m >8,CV =
1.2
m

(11.6) 

Revol et al. [193] confirmed that the correlation CV = 0.78/ √n offered a perfect connection with experimental results. To identify 
an appropriate number of samples to produce a restricted variation of the anticipated strength, the influence of the fluctuation of m on 
the predicted value of strength was explored. 

2.2.6. Comparison of two Weibull moduli 
As the Wm has been applied as a degree of reliability of manufacturers, a proper process is essential to evaluate the Weibull moduli 

Fig. 7b. The important data of R2 = 0.05 for model sizes between 5 and 100 [178].  
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from two groups of manufacturers. The authors have recently presented the outcomes of their Monte Carlo simulations for weighing 
two Weibull moduli for sample scopes between 10 and 100. It was observed that 92.5 and 97.5 percent of the distributions for m1/m2,

where n1 ≥ n2. The values can be adopted to examine the proposition that the two Weibull moduli are equal at xo = 0.05 [101] 
(Table 3, Appendix A). 

2.3. Weibull Distribution for three-parameter 

The reality of failures covers critical data around the firmness of the system. Particularly for very reliable systems, the application of 
this data to forecast a likely uncertainty is important. Uncertainty in a product can be viewed as an alteration of the dispersal of period 
among failures; the distribution may vary or a change may occur. These conditions can be detected using a statistical control plan 
[194–196]. Nevertheless, generalities of the exponential distribution (like Weibull and Gamma) are beneficial in showing reliability 
[197–205]. Three-parameter Weibull distributions are beneficial in the sense that their logic implies that verge parameters are 
considered in modelling [206–208]. This section will review the three-parameter Weibull Distribution. 

Let β = m; α = xo and γ = yo, then; the PDF for the three-parameter Weibull distribution is denoted by Equation (12) [206,208]: 

P(x; xo,m, yo)=1 − exp
{

−

(
x − yo

xo

)m}

(12)  

where xo > 0 = scale parameter, m > 0 = shape parameter and yo < x = threshold parameter. Then Equation (13.1) gives the cor-
responding PDF [131,209,210]: 

p(x; xo,m, yo)=
m
xo

(
x − yo

xo

)m− 1

exp
{

−

(
x − yo

xo

)m}

(13.1) 

For an unknown shape parameter, m, xo,and yo, they have to be found by an iteration system because of uncontrollable nonlinear 
terms in the likelihood calculations. Ref [211] found clear modified maximum likelihood (MML) estimators of the threshold and scale 
parameters yo and xo which are asymptotically equivalent to extreme probability estimators. 

Using the first two terms in the Taylor series expansion they got the subsequent estimators given in equations (13.2)–(13.5) [212, 
213]: 

m̂ =
T +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T2 + 4nZ

√

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n (n − 1)

√ (13.2)  

xo =U + Vm̂ (13.3)  

where: 

W− 1
(i) ≅ τ1i − ρ1iWi, τ1i =2k(i)

− 1
; ρ1i = k− 2

(i) ; ki =G
(
W(i)

)

Wyo − 1
(i) ≅ τ2i + ρ2iW(i), τ2i =(2 − yo)kyo − 1

(i)

ρ2i =(yo − 1)kyo − 2
(i) , (1≤ i≤ n)

t=(yo − 1)
∑n

i=1
ρ1i + yo

∑n

i=1
ρ2i  

U=

{

(yo − 1)
∑n

i=1
ρ1i + yo

∑n

i=1
ρ2ix(i)

}

t  

V=

{

yo
∑n

i=1
τ2i − (yo − 1)

∑n

i=1
τ1i

}

t  

T= yo

∑n

i=1
ρ2i

(
x(i) − U

)
− (yo − 1)

∑n

i=1
ρ1i(xi − U)

Z=(yo − 1)
∑n

i=1
ρ1i

(
x(i) − U

)2
+ yo

∑n

i=1
ρ2i(xi − U)

2 (13.4)  

Note : ki =G
(
W(i)

)
≈ k(i) ≅ M− 1

(

i/(n + 1)

)

(13.5) 
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where F− 1
(x) is known as the inverse distribution function for the 3-parameter Wd. Though the Fisher data matrix was applied to get 

asymptotic alterations and covariance as it occurs for yo > 2, it is also possible to find the MML estimators for 1 < yo < 2 [214,215]. 
The symmetry settings are not fulfilled for the maximum likelihood (ML) estimate of the three-parameter Weibull distribution since 

the backing of the PDF rests on the unidentified parameter once the threshold parameter yo is not known. The ML estimators may not 
be available at that point, and even if they are, they may not have the standard asymptotic properties [216–221]. Arising from this, 
several different procedures have been sought after in the literature. Different researchers have specified comprehensive explanations 
of several procedures for parameter estimation of the 3-parameter Wd [216–229]. For example, Ahmad [230], Juki’c et al. [231], and 
Markovic et al. [232] investigated several types of least-squares estimators for the three-parameter Weibull distributions. The least 
squares estimate (LSE) based on doubly Type-II censored samples was investigated by Nagatsuka [233]. Cousineau [234] provides a 
succinct overview of parameter estimation for a three-parameter Weibull distribution based on a full sample. 

2.3.1. Estimation of the shape parameter, m 
Moderately, limited approaches have been projected to evaluate the unidentified shape parameter, m, for the three-parameter 

Weibull distribution [235–237]. Sürücü & Sazak [194] used a calibration procedure [195] to determine m by estimating ln l of 
some values of m and the equivalent estimates x̂o and ŷo (which have unambiguous algebraic formulae), as given [238]: 

V(x) ≅
∏n

i=1

yo

m̂

(xi − xo

m̂

)yo − 1
exp

{(xi− x̂o

m̂

)yo}
(13.6)  

x ≥ xo ; m̂, yo > o 

Tiku & Akkaya [238] estimated (Equation (13.6)) at points yo = i× D,i = 0,1,….n and D = 0.1. The statistics of yo, which take full 
advantage of the likelihood role, will be the estimate for m. Sürücü & Sazak [194] recommend that since m affects the estimates for 
xo and yo, the early model width should be as large as possible (say, greater than or equal to 30) to get an appreciable evaluation of ‘m’. 
Some researchers noted that when xo approaches the first-order statistic, the likelihood can tend to infinity which could result in 
inconsistent MLEs of the other two parameters. They suggested a fix regarding the possibility of solving this issue [239,240]. Using 
Monte Carlo simulations, different methods were adopted by Cousineau [228] to estimate the Weibull shape parameter. 

To determine failure analysis measures, Shafiq et al. [241] employed an intelligent numerical computer solution that was reliant on 
artificial neural networks (ANN) (software). Using the software, the study investigates a dependability model based on the inverse 
power law model and the exponential Weibull distribution. Based on their findings, they came to the remarkable conclusion that when 
combined with the appropriate statistical model, ANNs can practically compute dependability metrics. In another study, a model of 
reliability designed on inverse power law and a generalized inverse Weibull model was proposed. The work gave a perfect structure for 
showing the effectiveness and functionality life cycle of equipment. It was observed that the valuation of the recommended distri-
bution differs from the conventional model of inverse Weibull, and that impacts the average time to failure of the component 
considered [242]. In the study, reliability was modelled according to equation (14.1) [242]: 

Hr =
1

krδ (14.1)  

where: Hr = Failure mean time; r = degree of stress; k = characteristic that can be influenced by design; and δ = stress: 
It is feasible to show how different condition levels can affect the lifespan of equipment by using equation (14.2) [242]. 

f(x \ m, k, r, δ )=
1

krδ mx− (m+1)xo
m exp

{

−
1

krδ

(xo

x

)m
}

(14.2)  

2.3.2. Models and hyperparameters in Weibull Distribution 
Hyperparameters are parameters whose values dictate the model parameters that a learning algorithm ultimately learns and 

regulates the learning process. The prefix “hyper" implies that these are “top-level" parameters that govern the process of learning and 
the resulting model parameters [243–246]. Algorithms for machine learning (ML) have been applied extensively in many different 
fields and applications. An ML model’s hyper-parameters need to be adjusted to suit it to various tasks. The performance of ML models 
is directly affected by the choice of optimal hyperparameter configuration. It frequently calls for in-depth familiarity with 
hyper-parameter optimization methods and ML algorithms [246]. A model is defined or represented by the model parameters [243]. 

Conversely, parameters are found inside the model. Because hyperparameters cannot be altered by the model when it is being 
trained or learned, they are referred to be extrinsic to the model [244]. Hyperparameters regulate the model’s training process, 
whereas parameters enable the model to learn the rules from the data. Data is how parameters determine their values. Hyper-
parameters, on the other hand, do not get their values from data. Before training the model, they must be manually specified 
[245–249]. The importance of hyperparameters in ML includes: determining how any ML model turns out, and they aid in achieving 
this. It has a significant impact on how quickly any ML algorithm converges [250,251]. When optimizing hyperparameters, the set of 
hyperparameters is frequently chosen based on the generalization performance, or score, of a validation set after being fitted on a 
training set. Nevertheless, there’s a chance that this process will overfit the hyperparameters to the validation set. 

Reliability distribution and data-driven models are the two general categories into which failure estimation approaches for ma-
terials may be divided [252]. Based on the reliability model and the distribution of the equipment’s entire life period, fault data, as well 
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as other reliability information, the failure estimation technique is established. Then, using the statistical approach, the failure and 
error data are computationally investigated to calculate the equipment’s reliability measurement [251]. The exponential distribution 
[253] and the Weibull distribution [49] are the two primary life distributions that are frequently utilized in material reliability 
estimation. Weibull distribution is commonly employed in the reliability modelling of materials [52]. The advantages of using a 
reliability model include a straightforward model, quick training times, and good predictive power; nevertheless, the method’s fitting 
capabilities and prediction accuracy are limited in situations with irregular distributions and insufficient data [51]. 

The parameter calculation approaches in traditional statistics are frequently utilized to calculate the parameters of Weibull dis-
tribution. The usually used techniques include MLE, moment estimation, and the least square technique. Some researchers [254] 
related the features of the mentioned estimation techniques, and the results reveal that the value evaluated by the MLE technique can 
well equate to the real necessities. Hence, the tiny material failure data is processed using the maximum likelihood estimate technique. 

Fig. 8. A simple diagram for modelling in Weibull distribution (a) Plan and (b) ML Execution [51].  
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First, the Weibull distribution’s shape parameter (m) and scale parameter (x0) are taken into account. This method has the benefit of 
being able to predict the failure rate for a long period after the proper failure rate density function is identified; however, it has the 
disadvantage of requiring sufficient failure data and adhering to a particular distribution rule [51–53,254]. 

Deep learning is typically utilized in the data-driven modelling space to structure fault estimation models. Different researchers 
have recently used a variety of more advanced deep learning systems for fault prediction. To get around the LSTM model’s poor 
training pace, Liu et al. [255] developed a Gated Recurrent Unit (GRU), which can achieve a higher convergence rate and produce 
prediction results that are comparable to the LSTM model. Wan et al. [256] suggested that a CNN architecture that excels at handling 
time series issues is the Temporal Convolutional Network (TCN). It addresses the “degradation" caused by the rise in network hierarchy 
and speeds up the feedback and convergence of deep networks through residual connectivity. Guo Ling et al. [257] used TCN to 
determine the distinctive characteristics of the time series data and then used the non-linear fit ability of the GRU neural network to 
create the TCN-GRU model to further improve the accuracy of prediction of time series data. Short-term forecasting derived from 
manufacturing load data shows that its estimation ability is notably more accurate compared to other point prediction models. 

2.3.2.1. Hyperparameter model in Weibull Distribution. According to Ref. [51] the TCN side uses two hubs in the Weibull distribution 
fault estimation model to extract structures. Primarily the background involves level number (F) and lowest order length (L) in the 
hyperparameter (H). The volume of training parameters will rise if F is fixed large enough, which could cause the model to overfit and 
impair its performance. F may be set too small too in which case the model couldn’t fit well and the extracted features might not be 
significant enough. L is the total of the convolution’s lengths at and before the current point. The prior L-1 data and the current position 
make up the convolution data. An excessively large value for F contributes an excessive amount of information about the positions that 
came before it, which could result in more pointless calculations and less improvement in the model’s efficiency. An excessively small 
value for F could result in insufficient prefix information being introduced and a decreased capacity to fit the model. 

Orthogonal experiments adequately determine the proportions of both super-parameters. For example, to create a two-component, 
four-level experiment, F and L, the two orthogonal experiment factors, establish an array of parameters for each factor based on 
experience [258]. They then choose four suitable discrete values from the range. L needs to be an odd number to guarantee a fixed 
convolution centre anchor location [259]. A simple diagram for modelling in Weibull distribution is given in Fig. 8 (a) and (b). Adjust 
the model’s learning parameters based on the level and design considerations. By varying the convolution layer F and sequence length 
L values, many fault prediction models are constructed. The accuracy and recall rate on the validation set are utilized as test results to 
assess the suitability of the parameter combination [51]. 

2.4. Weibull Modulus for different ceramics materials 

In materials science, Weibull analysis was initially used almost solely for ceramics and glasses [260–262]. The unpredictability in 
measured material strength of brittle materials is defined by the dimensionless Weibull modulus, a parameter of the Weibull distri-
bution [263–267]. In this scenario, the Weibull distribution model’s form parameter, the Weibull modulus, accounts for the likelihood 
of a component failing under different loads. One should exercise caution when relying on the precision of the Weibull moduli that are 
obtained from a small number of tests. The Weibull modulus and its physical effects on the statistical distribution of fracture strengths 
in brittle materials have been estimated in several ways. For example, the theoretical value of the Weibull modulus labelling the 
dispersion in fracture toughness is proven to be a constant, i.e., Weibull modulus (m) = 4 [268], under the assumption that the fracture 
probability is proportionate to the volume of a fracture progression region in a brittle material. The application of fractal theory has 
revealed a relationship between the Weibull modulus, fractal dimension, and m < 6 in highly fractured rocks [30,269–271]. Weibull 
modulus elaborates on the mechanical behaviours of materials [70,269]. 

A higher m value suggested a narrower range of fracture stresses and a higher dependability/reliability because the m value 
represented the degree of variation in the strength of the tested samples [272–274]. Table 4 lists the typical values of the m for a few 
materials, such as bulk metallic glasses based on magnesium which were compiled. 

2.5. Summary of steps in Weibull Distribution and its benefits 

Brittle materials are widely characterized in the biomedical sector by Weibull statistics [281,282]. Ceramics, particularly 
high-performance ceramics like alumina, zirconia, or HAp, are routinely examined using the Weibull modulus (m) to ensure the 
consistency and dependability of their structure. Despite the rather robust probabilistic criterion for using the Weibull distribution for 

Table 4 
Weibull modulus values for certain materials  

S/N Material Weibull Modulus, m References 

1 Local ceramics (Chalk, Brick, Pottery) >2 [275,276] 
2 Advanced ceramics (Al2O3, HAp, SiC) ≤10 [275,277] 
3 Mg glass >40 [277,278] 
4 Glass Ceramics <7 [279] 
5 Zirconia <7 [280] 
6 Graphite <13 [280]  
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brittle materials, an appropriately uncomfortable parameter estimate made its practical implementation difficult [281,283]. Much 
progress has been made recently in terms of making the Weibull distribution accessible. Elastic general-purpose statistical models exist 
that can be used to calculate the two-parameter Weibull distribution utilizing least squares (LS) or maximum likelihood (ML) ap-
proaches, or both [284–286]. A number of them offer tests for parameter variation among factor levels, appropriate probability graphs, 
and 95 % confidence intervals for the Weibull parameters. Additionally, a free open-source Excel calculator that facilitates a 
computerized LS calculation of Weibull parameters and the associated 95 % CI is available [287]. Despite this outstanding 
advancement, data analysis is still a source of unpredictability [288]. 

In summary, WA has the following advantages [289–291]: (a) It can be used to describe the data of materials without the re-
strictions of a pre-defined distribution hypothesis because it is robust enough to assume a variety of various distributions, such as the 
normal, exponential, and beta distributions. (b) The parameters m, xo, and yo predict the distribution’s index rate(s). (c) The analysis 
can deliver precise performance analysis and risk predictions even with very tiny samples. 

The steps for WA using a worksheet (MS Excel) can be summarized as given [291].  

1. Production of the materials and preparing the samples for mechanical testing  
2. Collection of the data  
3. Ranking of data in ascending order for the plots  
4. Calculating the PDF (ln x, ln[ − ln(1 − P(x))]) for the distribution and plotting of the graphs  
5. Determine the m and other parameters 

2.6. Monte Carlo simulation 

A popular way for assessing the performance of statistical methods is Monte Carlo simulation. When paired with trials, Monte Carlo 
simulations prove to be a very helpful tool for forecasting the dependability of different estimate techniques and their optimization 
[284,292]. It comprises generating random numbers (strength data) for a particular modulus (m) and character strength in the 
framework of the two-parameter Weibull distribution. It is certain that the basic Weibull sampling distribution assumption holds and 
that the precise parameter values (m, xo) of this distribution are known thanks to the utilization of Monte Carlo techniques. This kind of 
technique has several benefits [287,292]. 

1. Real experiments do not need to be conducted to create strength information based on a Weibull distribution using specific pa-
rameters m and xo  

2. Parameter values are freely selectable; for example, they can be set to values often noticed in dental material research.  
3. The number of samples can be arbitrarily adjusted and as many results as desired can be obtained.  
4. A statistical method can be used in the same manner as measured data to analyze a particular simulated sample. 

On the other hand, estimations of parameters generated from the simulated sample (ṁ,ẋo) could be juxtaposed to the observed true 
values (m, s) to assess the statistical technique’s effectiveness in terms of relative error and bias, unlike measured data [287]. 

2.7. Case study: related works on the application of Weibull analysis on HAp and related materials 

In a Weibull modulus analysis, the samples should be cracked with a standard test procedure like the 4-point bend test or a biaxial 
flexure test [293–295]. Weibull Analysis has been extensively adopted to analyze the failures in an estimated property, such as fracture 
strength [296,297]. Consequently, the Weibull Modulus, m is directly connected to the material’s reliability. Naturally, WA is carried 
out on a set of samples that are supposedly alike. Aguirre et al. [26] reinforced HAp with boron nitride platelets to increase the fracture 
toughness of the HAp samples and achieved 2.3 MPa m1/2 and 79.79 MPa for fracture toughness and flexural strength, respectively. 
The Weibull distribution showed a low failure probability and a safety factor. The factor of Safety (FOS) = Yield Stress/Working Stress. 
If the FOS = 1, then it signifies that the design load = to the safety load [298,299]. Abifarin et al. [300] considered a two-parameter 
Weibull distribution on the mechanical properties of HAp to ascertain the reliability of the produced scaffold. 

The fracture toughness, flexural strength, compressive, and hardness data/statistics can be analyzed with the aid of the Weibull 
probability density function (PDF). Equation (2) and the probability of failure, P(x), for a sample under a given stress can be calculated 
using the Weibull cumulative distribution function (CDF): equation (1) [301–308]. Notwithstanding the usefulness of the m, as a 
measure of the mechanical reliability of brittle materials, there is little research on m for porous HAp [293]. It has long been 
acknowledged that there is a strong relationship between strength and flaw distribution. The extent of its impact on strength is one 
implication of statistical strength behaviour in brittle materials. Its continued existence has been predicted hypothetically [308–310] 
and shown in numerous exploratory trials [148,311]. Using WA, the reliability of a ceramic material like HAp can be predicted. 

In another study by Fan et al. [66], m was estimated for 441 sintered HAp samples cracked in biaxial flexure for 0.08 ≤ P ≤ 0.62. 
The m against P graph was “U-shaped” with a varied band of m data for P < 0.1 (Area 1) and P > 0.55 (Area 3), and a thinner band of m 
data in the transitional porosity area of 0.1 < P < 0.55 (Area 2). The restricted array of m (~4 < m < 11) in Area 2 has vital inferences 
as Area 2 comprises the P array for the majority of the uses of porous brittle materials. The grain size versus density path of the HAp 
samples revealed a distinct value with limited grain development for samples with relative densities of less than about 0.8–0.9. Fig. 9 is 
a typical Weibull plot as given by Fan et al. Ćurković et al. [55] used Weibull analysis to investigate the flexural strength of alumina 
ceramics. The three-point bend test was used to determine the flexural strength of standard purity alumina ceramics. Flexural strength 
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has been determined to be between 266.7 and 357.5 MPa. The numerical unpredictability of flexural strength calculated by the 
three-point bend test was investigated using a two-parameter Wd function. Flexural strength was measured at 17.4 Wm. This re-
striction can be used to characterize the variability in the tested material’s flexural strength as well as its consistency. 

Nevarez-Rascon et al. [312] investigated the inconsistency in mechanical properties of a nanocomposite using Weibull statistics. 
Uniaxial compression examinations at room temperature of specimens 6.35 ± 0.03 mm in diameter and 12.50 ± 0.63 mm in length 
and Vickers hardness readings on polished surfaces were conducted. The indentation fracture toughness (KIC) was obtained from the 
average crack length and WA was made on the statistics. The ATZ2 (18.0 wt % Al2O3 + 2.0 wt % (w) + 80.0 wt % ZrO2 (TZ-3Y)) 
nanocomposite gave the maximum average compressive load of 1200 MPa, the maximum data of distinctive strength, σo, of 1340 MPa 
with m of 3.25 and moderately high fracture toughness (4.7 ± 0.7 MPa m1/2), signifying that with the wide variety of mechanical 
properties gotten in the study, the material is characterized by diverse dental usages. However, zigzagged cracks were observed. In the 
two composites, the fracture shape was a mixture of transgranular and intergranular fractures [313–316]. The notch of intergranular 
fracture rises with the growing Al2O3 content leading to low fracture toughness. 

A 3D-printed HAp scaffold’s dependability was predicted with the aid of Weibull analysis using compressive strength values [317]. 
With a correlation coefficient (R2) above 0.90, the Weibull plots demonstrated good linearity (Fig. 10 (a) – (d)) [317]. All the scaffolds 
had a survival probability greater than 90 %. In their work, the highest value of m obtained was 1.0 [317,318]. 

Isaacson et al. [319] performed a compressive failure of porous gyroid scaffolds. The Weibull moduli of the scaffolds were 
discovered to be self-reinforcing, therefore initial failures brought on by minor manufacturing irregularities didn’t seem to be the main 
reason for the scaffold’s early catastrophe. HAp was reinforced with graphene and silver for dental applications. The Weibull analysis 
was used to determine the reliability of the binding strength to dentin. Four samples were tested and the obtained Weibull modulus 
ranged from 2.0 to 3.4. The Weibull plots are presented in Fig. 11 [320]. Using Mussel shells, Galotta et al. [321] produced nano-
crystalline HAp. A Weibull Modulus of 9.1 was obtained for the HAp sample. D’Andrea et al. [322] produced HAp via the photo-
polymerization process and the mechanical reliability of ceramic scaffolds was assessed using the Weibull modulus. For the estimation 
of the Weibull modulus, strength information from the cantilever and notched beams was combined. The Weibull modulus was 
determined as the slope of the linear fit of the data. From the plot, the obtained m at 143 MPa was 2.6. The value of m can be improved 
by post-sintering surface machining which removes or strappingly decreases surface defects [323]. The assessment of a novel 
commercially obtainable ion-releasing HAp and their connections to establish anti-carcinogenic sources was done by Marovic et al. 
The reliability of the material was evaluated using WA. The result showed that the glass ionomer had the highest water sorption and 
the least predictable distribution of mechanical characteristics or properties [324]. 

Zhao et al. [325] performed the Weibull analysis of carbon-fibre-reinforced HAp composites. Huang et al. added HAp nanowires to 
produce an insulation network. Weibull modulus of 2.65 was obtained for the reliability analysis [326]. Karimi & Paydar [327] studied 
an anode electrode’s fracture pattern and mechanical performance for solid use. Porosity and compressive strength measurements 
were between 59 and 75 % and 2.7 and 14.02 MPa, respectively. The Weibull study revealed a direct correlation between the Weibull 
modulus and cooling rate. Using quasi-static and high strain rates, an experiment was conducted to assess the transverse tensile 
strength of red deer. There was an 83 MPa improvement in tensile strength. The WA revealed that the osteo progress trend had greater 
tensile ductility than the osteon progress trend’s transverse [328]. Przystupa [329] evaluated the reliability and durability of the 
coating surfaces of roofing materials. Higher shape and scale parameters were obtained which meant higher durability and reliability 
of the materials. Par et al. studied the flexural behaviour of an experimental composite. Flexural strength and modulus were appraised 
using a three-point bending test and WA was done to estimate material reliability. A higher Weibull modulus of 5.0 was obtained, 
signifying that the material is reliable for the intended applications [330]. 

Monteiro et al. [331] investigated the bond strength of various ceramic and dental materials to estimate the reliability of the 
merged edges. WA was executed to find the probability of failure (POF), Weibull modulus (m), and characteristic strength (CSS). At a 
bond strength of 24.88 MPa lower POF, greater m, and greater CSS were obtained. The highest data were obtained at 20.07 MPa. Lira 
et al. [332] studied the WA of fibre supports diluted with diverse cement forms and mechanically aged. Weibull behaviour strength of 
the materials was considerably high. The effect of laser sintering was observed to advance the bioactivity of a modified HAp. The 

Fig. 9. Typical Weibull plot of HAp at different temperatures [66].  
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Fig. 10. Typical Weibull plots of 3D printed HAp [317].  

Fig. 11. Typical Weibull plots of reinforced HAp [320].  
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bioactive coat’s reliability was inveterated by severe high-energy ultrasonic cavitation experiments and friction experiments against 
bovine bone, indicating no transferal of HAp to the bone. Additionally, WA was done to establish the changeability of the documented 
strength figures for every set. Equation (1) was employed to compute the Weibull modulus, m. The results showed a higher value of the 
m which points to larger homogeneity in the obtained strength values of the set [333]. Ilie [334] compared the manner contemporary 
resin-based composites react to mechanical stress associated with the tooth structure they are intended to substitute. WA was per-
formed to determine the value of m and 5.2 was obtained. 

Liao et al. [335] employed equation (4) in determining the reliability of a metallic glass wire and a Weibull modulus of 81.0 was 
obtained. They concluded that the Weibull modulus m reveals the reliability of the material’s samples and a higher m value signifies a 
narrow distribution of the fracture strength and thus higher reliability. For the reliability analysis of metallic glass fibres, Liu et al. 
[336] performed two and three – Weibull analyses. They obtained m values of 5.71, 3.73, 4.27, & 4.03 and 3.36, 2.07, 2.10, &2.30 for 
the two and three Weibull analyses respectively. In another study by Wang et al. [337], the WA was used to obtain the Weibull modulus 
m of an amorphous alloy with a special structure and the value of m represented the dissemination range of the fracture strength of the 
material. 

In a related study, we extracted HAp from bovine and catfish bones to synthesize a novel mix of HAp that can be useful for 
biomedical applications [69–74,82,338,339]. The samples were prepared and the compressive test was performed using a Universal 
Testing Machine. After completing the compressive strength tests, equation (4) was used to determine the strength values of the 
produced HAp samples, Plotting ln (ln (1/survival probability or the median rank) versus ln (compressive strength, x0) produced the 
distinctive Weibull modulus and distribution. The results showed that the novel combination of these powders is a good and promising 
biomaterial for high-strength biomedical applications. Examining the correlation between the characteristic compressive strength and 
the Weibull modulus (m), a higher m was obtained for all the samples indicating a more favourable test design [82]. Sample C100 had 
the highest value of m (5.29) with a standard deviation of 0.92, while sample B75/C25 had the lowest value of m (2.67) with a standard 
deviation of 1.0. The high value of m (m > 1) indicates the materials might not fail in their early stage when relating the obtained m 
value with the bathtub [283,340]. Fig. 12 depicts the procedures employed in the production of the HAp samples and the WA of the 
novel mixture of HAp. The generated scaffolds are somewhat reliable by the acquired results, making them appropriate for use in 
biological fields. The Weibull plots from the work are presented in Fig. 13. 

3. Conclusion and Future works 

In this paper, we have reviewed the steps in Weibull distribution to critically analyze the strength data of brittle materials, such as 
ceramics and related materials. The WA and the steps for the analysis were highlighted. With the aid of WA, the m of the samples can be 
investigated to predict their failure rates. From the review, it was discovered that Weibull distribution is proven to confer to the 
feeblest-link concept. For brittle materials, the literature revealed that environs, production processes, and comparative factors are 
well-thought-out contributing factors for reliability. The Weibull modulus and characteristic strength from the analyses are appro-
priate in many circumstances, but it should be noted that they are estimations. The literature can provide confidence limits or un-
certainty for these estimates. As the number of specimens increases to 10 or more, estimations of the characteristic strength quickly 

Fig. 12. Schematic details of the synthesis, characterization, and computational procedures [82].  

O.A. Osuchukwu et al.                                                                                                                                                                                                



Heliyon 10 (2024) e32495

20

Fig. 13. Weibull plots of hydroxyapatite with high m [82].  
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converge on population values. Weibull modulus estimations, on the other hand, can vary when the sample set contains only a small 
number of test specimens or when the data does not fall on a single line. To acquire good estimations of the Weibull modulus, at least 
10 test specimens, preferably thirty, are often required. 

Abbreviations 

ANN Artificial Neural Network 
CI Confidence Interval 
GRU Gated Recurrent Unit 
GOF Good-of-Fit 
HAp Hydroxyapatite 
LRFC Load and Resistance Factor Computations 
MLEs Maximum Likelihood Estimators 
MLs Maximum Likelihoods 
ML Machine Learning 
PC Performance Characteristics 
PDF Probability Density Function 
TCN Temporal Convolutional Network 
WA Weibull Analysis 

Funding 

This research/literature review did not receive funding from any organization or individual. 

4. Data availability 

This is a review paper. No raw data was used. 

CRediT authorship contribution statement 

Obinna Anayo Osuchukwu: Writing – original draft, Visualization, Validation, Project administration, Methodology, Concep-
tualization. Abdu Salihi: Writing – review & editing, Project administration. Abdullahi Ibrahim: Visualization, Supervision. Adamu 
Abdullahi Audu: Validation, Supervision. Mahdi Makoyo: Investigation. Sikiru Adepoju Mohammed: Methodology, Investigation. 
Mohammed Y. Lawal: Methodology, Investigation. Precious Osayamen Etinosa: Writing – review & editing, Resources. Ibitoye 
Opeyemi Isaac: Visualization, Validation. Peter Gbenga Oni: Methodology. Oreoluwa Gabriel Oginni: Writing – review & editing, 
Investigation. David Olubiyi Obada: Writing – review & editing, Supervision, Methodology, Formal analysis, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

APPENDIX A. TYPICAL WEIBULL RESULTS  

Table 2 
Typical Weibull fits of two values [178].  

Data Set n Plotting Position Parameter Estimates Goodness - of Fit m 95 % CL 

u v m xo (MPa) R20.05 R2 Weibull 
Confirmation 

xo (MPa) 

TF 45 0.481 0 11.16 288.3 0.931 0.928 Not Agreed   
BF 36 0.466 0 38.40 311.4 0.921 0.952 Agreed 28.16 55.36 278.7 352.8 
BFmod 37 0.468 0 50.71 279.7 0.922 0.980 Agreed 37.34 72.73 250.7 316.3   
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Table 3 
A Table showing two Moduli [101].  

n2 n1 

10 15 20 25 30 35 40 50 60 70 80 90 100 

0.412 2.434 2.262 0.475 2.222 0.488 2.151 0.494 2.124 0.505 2.100 0.507 2.089 0.517 2.058 0.524 2.049 0.535 2.042 0.534 2.027 0.536 2.011 0.540 2.030  
0.489 2.069 0.511 1.976 0.531 1.951 0.543 1.906 0.550 1.881 0.559 1.877 0.574 1.854 0.581 1.827 0.591 1.821 0.594 1.823 0.599 1.798 0.595 1.798    

0.526 1.889 0.553 1.851 0.571 1.799 0.575 1.798 0.585 1.767 0.600 1.722 0.609 1.708 0.614 1.703 0.621 1.690 0.629 1.693 0.629 1.693      
0.567 1.771 0.581 1.728 0.598 1.720 0.599 1.677 0.615 1.661 0.624 1.647 0.632 1.630 0.639 1.620 0.644 1.618 0.649 1.600        

0.596 1.677 0.608 1.662 0.621 1.622 0.634 1.612 0.643 1.597 0.653 1.583 0.660 1.573 0.661 1.559 0.668 1.549          
0.614 1.624 0.623 1.605 0.643 1.568 0.658 1.560 0.671 1.545 0.674 1.523 0.683 1.516 0.684 1.505            

0.636 1.569 0.655 1.552 0.668 1.531 0.674 1.515 0.685 1.510 0.693 1.492 0.694 1.489              
0.665 1.504 0.678 1.483 0.689 1.466 0.694 1.458 0.702 1.447 0.708 1.432                

0.690 1.444 0.702 1.439 0.709 1.420 0.713 1.412 0.721 1.402                  
0.710 1.415 0.714 1.399 0.724 1.389 0.731 1.380                    

0.722 1.384 0.731 1.382 0.739 1.360                      
0.737 1.361 0.741 1.355                        

0.752 1.331   
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[25] M. Espanol, R.A. Pérez, E.B. Montufar, M.P. Ginebra, Ceramics. Biomimetic, Bioresponsive, and Bioactive Materials: an Introduction To Integrating Materials With 

Tissues, 2012, pp. 161–189, https://doi.org/10.1002/9781118129906. 
[26] T.G. Aguirre, C.L. Cramer, V.P. Torres, T.J. Hammann, T.B. Holland, K. Ma, Effects of the addition of boron nitride nanoplate on the fracture toughness, 

flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering, J. Mech. Behav. Biomed. Mater. 93 (2019) 
105–117, https://doi.org/10.1016/j.jmbbm.2019.01.021. 
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[322] L. D’Andrea, D. Gastaldi, F. Baino, E. Verné, G. Saccomano, L. D’Amico, P. Vena, Mechanical characterization of miniaturized 3D-printed hydroxyapatite parts 

obtained through vat photopolymerization: an experimental study, J. Mech. Behav. Biomed. Mater. 141 (2023) 105760, https://doi.org/10.1016/j. 
jmbbm.2023.105760. 

[323] F. Baino, G. Magnaterra, E. Fiume, A. Schiavi, L.P. Tofan, M. Schwentenwein, E. Verné, Digital light processing stereolithography of hydroxyapatite scaffolds 
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[328] C. Tuncer, M. Güden, M. Orhan, M.K. Sarıkaya, A. Taşdemirci, Quasi-static and dynamic Brazilian testing and failure analysis of a deer antler in the transverse 
to the osteon growth direction, J. Mech. Behav. Biomed. Mater. 138 (2023) 105648, https://doi.org/10.1016/j.jmbbm.2023.105648. 

[329] K. Przystupa, Research on the durability and reliability of industrial layered coatings on metal substrate due to abrasive wear, Materials 16 (5) (2023) 1779, 
https://doi.org/10.3390/ma16051779. 
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