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Many premature babies who are born with neonatal respiratory distress syndrome (RDS)
go on to develop Bronchopulmonary Dysplasia (BPD) and later Post-Prematurity
Respiratory Disease (PRD) at one year corrected age, characterized by persistent or
recurrent lower respiratory tract symptoms frequently related to inflammation and viral
infection. Transcriptomic profiles were generated from sorted peripheral blood CD8+ T
cells of preterm and full-term infants enrolled with consent in the NHLBI Prematurity and
Respiratory Outcomes Program (PROP) at the University of Rochester and the University
at Buffalo. We identified outcome-related gene expression patterns following standard
methods to identify markers for oxygen utilization and BPD as outcomes in extremely
premature infants. We further identified predictor gene sets for BPD based on
transcriptomic data adjusted for gestational age at birth (GAB). RNA-Seq analysis was
completed for CD8+ T cells from 145 subjects. Among the subjects with highest risk for
BPD (born at <29 weeks gestational age (GA); n=72), 501 genes were associated with
oxygen utilization. In the same set of subjects, 571 genes were differentially expressed in
subjects with a diagnosis of BPD and 105 genes were different in BPD subjects as defined
by physiologic challenge. A set of 92 genes could predict BPD with a moderately high
degree of accuracy. We consistently observed dysregulation of TGFB, NRF2, HIPPO, and
CD40-associated pathways in BPD. Using gene expression data from both premature
and full-term subjects (n=116), we identified a 28 gene set that predicted the PRD status
with a moderately high level of accuracy, which also were involved in TGFB signaling.
Transcriptomic data from sort-purified peripheral blood CD8+ T cells from 145 preterm
and full-term infants identified sets of molecular markers of inflammation associated with
independent development of BPD in extremely premature infants at high risk for the
disease and of PRD among the preterm and full-term subjects.
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INTRODUCTION

Acute and chronic respiratory morbidities are common in
extremely premature infants (1). Increased survival of very
premature infants is leading to increasing numbers of children
with chronic lung disease. Since the end of the last millennium,
the rate of premature births <34 weeks of gestation have
consistently increased in the United States, and in 2008 it was
12.3% (2). Among the extremely preterm infants, 20%–35% die
before their discharge to home (1, 3). Prematurity-related deaths
accounted for 35% of all infant deaths in 2010, more than any
other single cause. Preterm birth cost the U.S. health care system
more than $26 billion in 2005 (4). Among NICU survivors,
approximately 40% develop Bronchopulmonary Dysplasia
(BPD), a chronic lung disease of the newborn. BPD has both
genetic and environmental risk factors. It is characterized by
varying degrees of lung injury potentially due to required
supplemental oxygen, exposure to inflammatory conditions in
utero, and mechanical ventilation and is often associated with
infection (5, 6). BPD results from abnormal repair and impaired
lung development after acute lung injury. Airway function may
even deteriorate during the first year of life in infants with BPD
(7). A key component of BPD is persistent inflammation of the
lung (8, 9). Infants with BPD are more likely to die than those
without chronic lung disease, even if they survive the initial
hospitalization. However, improved medical treatment plans
have been developed that have led to a lower hospital mortality
rate, however, the respiratory sequelae into childhood remain
poorly defined (10). By developing a better understanding of the
inflammatory process of infants with BPD, we could potentially
identify biomarkers that relate to respiratory sequelae. Using
such information, certain pathways could be targeted for drug
development to improve the health of infants with BPD (11).

The NIH NHLBI Prematurity and Respiratory Outcomes
Program (PROP) enrolled 835 extremely premature infants
across the US and collected multiple biospecimens over time
and extensive data including BPD and respiratory morbidity
outcomes over the 1st year of life. PROP investigated the
molecular mechanisms contributing to the risk of respiratory
disease in premature neonates over the first year of life. A set of
clinical and non-invasive respiratory assessments were performed,
based on the respiratory status of the infant at the time of testing,
and was used to predict the severity of respiratory outcomes in
the first year of life. The primary goal of the PROP studies was to
identify biomarkers (biochemical, physiological, and genetic)
that are associated with, and thus potentially predictive of,
respiratory morbidity in preterm infants up to 1-year corrected
age. A validated, objective measure of pulmonary outcome at 1
year does not currently exist. In addition to the identification of
markers of BPD, one of the primary outcomes in the PROP study
was defined as presence or absence of Post-Prematurity
Respiratory Disease (PRD) (12). In order to be classified as
having PRD, infants were required to have a positive response in
at least one of the four morbidity domains [(1) hospitalization for
respiratory indication, (2) home respiratory support, (3)
respiratory medication administration, and/or (4) respiratory
Frontiers in Immunology | www.frontiersin.org 2
symptoms without a cold] during at least two separate parental
interviews conducted at 3-, 6-, 9-, and 12-months corrected
age (13).

High throughput sequencing for genome-wide transcriptomic
analysis, by RNA-Seq or microarrays, is an unbiased approach
applied to identify biomarkers that may provide predictive value.
These approaches have been proven to be powerful tools capable
of biomarker discovery for various disease states including BPD.
We have previously presented an analysis of lung tissue gene
expression in subjects with BPD (14). Application of blood-based
gene expression profiling can potentially provide novel
biomarkers for diagnosis and therapeutic management of BPD.
Previous studies have used whole blood–derived peripheral blood
mononuclear cells (PBMC) as a means of mining for novel
markers for BPD (15). PBMCs are relatively easy to obtain from
whole blood and can be sorted into leukocytes, including B cells, T
cells, monocytes, and natural killer cells (16). The use of peripheral
blood has identified changes in CD4+ T cell populations in
subjects with diagnosed with BPD (17, 18). Additional studies
have identified that patterns of proinflammatory cytokines in
blood from subjects with BPD were associated with the phenotype
of BPD (19). Our study was funded to complete transcriptomics
analyses of the CD8+ T cell population.

Emerging data suggest an important role for T lymphocytes in
the pathogenesis of chronic lung disease in babies born
prematurely. CD8+ T cells, TNF-a, TNF receptors, and NK cells
provide protection from viral infection but also contribute to the
immunopathology, by contact-dependent effector functions
(perforin and FasL). IFN-g and particularly TNF-a are thought
to be primary perpetrators of T-cell-mediated lung injury (20).
Furthermore, one study shows that CD8+ T cells isolated from
blood of infants with BPD exhibited lower levels of surface CD62L,
which is consistent with an activated phenotype (21). CD8+ T cells
have shown adaptive immune insufficiency in newborn mice
infected with influenza A within 1 week of birth (22). RSV
infected neonatal mice recruited CD8+ T cells defective in IFN-g
production in association with mild symptoms. Re-infection as
adults however resulted in limited viral replication but enhanced
inflammation and T cell recruitment, including Th2 cells and
eosinophils (23, 24). Depletion of CD8+ T cells (but not CD4) cells
during the primary neonatal infection was protective against the
adult challenge. We have previously shown that CD8+ T cells
appear to play a pathogenic role in subjects with BPD, and may be
associated with overall risk for lung morbidity (25). In related
studies, we have observed that CD8+ T cells are increased in both
mouse and human lungs exposed as neonates to hyperoxia, and
have a hyper-responsive, fibrotic and destructive response to
subsequent viral infection (14, 26). Further, these cells have a
predominant role in direct cytotoxicity in the lung, via interactions
with epithelial cells and as regulators of macrophage responses, as
well as in general human resistance to viral infection. In a separate
population of premature infants, enrolled in the PROP study,
phenotyped T cells at birth, at 36 weeks of adjusted gestational age,
and at 12-months corrected age, were associated with a PROP-
defined respiratory morbidity at 12 months (27). The goal for the
current study was to demonstrate that transcriptional profiling of
January 2021 | Volume 11 | Article 563473
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CD8+ T cells, obtained from premature infants at discharge, can
identify disease-related gene expression patterns informative for
pathogenesis and capable of predicting risk of future respiratory
distress. We hypothesized that transcriptomic analysis of sorted
lymphocyte sub-populations could identify predictive markers
and pathways associated with respiratory outcomes. We
followed a cohort of 157 infants, ranging from 23 to 41 weeks of
gestation at birth, enrolled in the Prematurity and Respiratory
Outcomes Program (PROP) at the University of Rochester
Medical Center and Children’s Hospital of Buffalo (12).

Here, we present a novel gene expression RNA-seq data set
generated from CD8+ T cells from 145 subjects with varying
levels of premature birth and report the identification of disease
biomarkers for BPD and PRD. In subjects who were diagnosed
with BPD, we identified pathways associated with TGFB
signaling (Regulation of Epithelial-Mesenchymal Transition
Pathway) and T cell activation and polarization (e.g., IL-2, IL-
17, IL-4, and iCOS signaling). In subjects who developed PRD at
one year of life, we also identified the TGFB pathway as being
important as well as the Cell2Cell pathway (which includes genes
important for CD8+ T cell activation). Given that TGFB has been
identified as an important factor for controlling CD8+ T cell
mediated inflammation (28–32), we provide new makers in
CD8+ T cells that are associated with the BPD and PRD. Such
information will be of interest to researchers who are trying to
develop a better understanding of factors associated with
inflammatory pediatric lung disease.
METHODS

This study aimed at generating transcriptomic profiles of CD8+
T cells from newborn human blood. This study was approved by
the Institutional Review Board of University of Rochester with a
Memorandum of Understanding executed with the University of
Buffalo IRB. Subjects were enrolled within gestational age at birth
(GAB) epochs, in order to characterize the relationship among
prematurity, disease risk, and gene expression. The steps
involved in the process, starting from sample collection to
isolation of total RNA have been described in detail in our
previous publication (16). Additional steps relevant to this study
are shown in Supplemental Figure 1.

Oxygen Exposure, BPD Diagnosis, and
PRD
The traditional categorical approach of classifying BPD as absent
or present is likely an oversimplification. Tooley (33)
recommended that oxygen use at 28 days of age would identify
preterm infants with BPD. Almost a decade later, Shennan and
colleagues proposed that the best predictor of abnormal
pulmonary outcomes among very low birth weight premature
infants was the clinical use of oxygen at 36 weeks postmenstrual
age (PMA) (34). A workshop convened by the National Institutes
of Health (NIH) proposed severity-based diagnostic criteria for
BPD (35) that included the use of oxygen for at least 28 days (not
Frontiers in Immunology | www.frontiersin.org 3
necessarily consecutive) and an assessment of respiratory
support at 36 weeks PMA, recognizing that some infants
breathing room air at 36 weeks PMA may have residual lung
disease. The majority of infants with birth weights less than 1 kg
will have a diagnosis of at least mild BPD by the Consensus
Conference definition based on 28 days in oxygen (35). Given
clinical variations in oxygen administration, a structured trial of
room air test was developed by the NICHD Neonatal Research
Network (36), the frequency of BPD among the subjects was
determined using two previously published definitions: the
Shennan definition (34), which defines BPD as supplemental
oxygen requirement at 36 weeks PMA in infants born with birth
weight (BW) less than 1,500 grams, and a physiologic definition
with a room-air challenge (RAC) which defines BPD as
requirement of oxygen support (>21% O2) for at least 28 days
and a subsequent assessment at 36 weeks PMA or discharge,
whichever comes first (13, 36).

NICU oxygen exposure was calculated, as previously
reported, from the FIO2 recorded in the medical record once
each noon for the first 14 days of life. FIO2 was corrected to
Effective FiO2 for low nasal cannula flow using established tables
(37). Oxygen utilization or OxygenAUC was calculated by the
formula defined in Benaron and Benitz (37) using information
recorded in the daily respiratory flowsheet data (FIO2,
respiratory support mode, and applied airway pressure or
cannula flow) through the first 28 days of life. We chose to
look at OxygenAUC at 14 days of postnatal age (OxygenAUC14) to
include the second postnatal week to capture pulmonary
deterioration as presented in BPD (38).

The infants enrolled in the study were followed up
periodically for up to 12 months of age, corrected by
gestational age (CGA) at birth. At the 12-month CGA follow-
up visit they were assessed for persistent respiratory distress
based on the frequency of hospitalization due to any kind of
respiratory distress. Persistent Respiratory Distress (PRD) was
diagnosed if there were positive responses in at least one of the
following domains: (1) hospitalization for respiratory indication,
(2) respiratory support at home, (3) respiratory medication
administration, and/or (4) cough or wheeze without a cold,
reported on at least two caregiver post-discharge surveys
completed at 3, 6, 9, and 12 months CGA, as previously
reported (13). The definitions and criteria for the different
diagnoses have been listed in Supplemental Table 1.

Sample Collection and RNA Isolation
An average of 2.5 ml of venous blood was collected into sodium
heparin glass vacutainers from premature infants enrolled with
consent in the Prematurity and Respiratory Outcomes Program
(PROP), at the time of hospital discharge at the University of
Rochester and the University at Buffalo and shipped to a central
laboratory in Rochester. Freshly purified PBMCs were isolated by
Ficoll gradient (Amersham Pharmacia Biotech # 17-1440-03)
centrifugation, from the whole blood diluted 1:2 with 1x dPBS,
and counted according to previously established protocols (39).
In subjects with at least 8 million cells, 5 million cells were
stained with antibodies to individual lymphocyte markers, and
January 2021 | Volume 11 | Article 563473
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sorted on a FACSAriaII sorter at the Flow Cytometry Core
facility of the University of Rochester as previously reported
(16). CD3+CD8+, CD3+CD4+, CD3-CD56+ (NK), or CD3-
CD19+ (B) cells were collected separately. Non-marker positive
and dead cells were discarded. Sorted cells were spun into pellets,
which were further lysed and frozen. The steps from collection to
lysis of each sample were completed within a 24-h period in
order to preserve RNA quality and integrity. Frozen lysates were
thawed and RNA was extracted using Agilent Absolute RNA
Microprep kit (catalog #400805), with an on-column DNase
digestion, as per manufacturer recommended protocol.

RNA-Seq and Data Generation
For the current study, RNA isolated from the sorted CD8+ T
cells from 145 pre-term and full-term subjects, was used for
transcriptomic profiling by RNA-seq. cDNA libraries were
generated with 1 ng RNA, using the SMARter Ultra Low
Amplification kit (Clonetech, Mountain, CA). cDNA quantity
was determined with the Qubit Flourometer (Life Technologies,
Grand Island, NY) and quality was assessed using the Agilent
Bioanalyzer 2100 (Santa Clara, CA). Libraries were sequenced
(single endreads) on the Illumina HiSeq2500 (Illumina,
San Diego, CA) to generate 20 million reads/sample.
Reads generated from the sequencer were aligned using
the TopHat algorithm (40) and expression values were
summarized using HTSeq (41). The data from this study has
been provided in dbGAP. The dbGaP accession assigned to this
study is phs001297.v1.p1.

Normalization and Filtering
Samples were excluded based on poor read count/mapped read
numbers, or if they were extreme outliers in hierarchical
clustering and Principal Components Analysis (PCA). Genes
were excluded if they were not consistently identified as
expressed (a count of zero in over 1/3 of subjects). Subjects
with high prevalence (>75%) of zero/low reads (raw count value
≤5) were excluded. Genes with high prevalence (>75%) of low
counts (normalized count value ≤3) across subjects
were excluded.

The subject-specific conditional upper quartile (UQ, 75th

percentile) among non-zero reads was computed. The subject-
specific normalization factor was calculated by dividing the UQ
for a given subject by the mean UQ across all subjects. The
normalized gene values for a given subject were calculated by
dividing the raw count values by the normalization factor for that
subject. After adding 1 to all values to account for zeros, the
normalized counts were log2 transformed.

Selection of Univariately Differentially
Expressed Genes
Differences in gene expression between subject groups was
assessed by SAM-Seq (42) and Likelihood Ratio Test (LRT).
SAM-Seq was used to identify genes with expression patterns
significantly (FDR<0.05) associated with BPD, RAC. LRT for log
(normalized RNA-Seq), adjusted for GAB via logistic regression,
was used to identify genes with expression patterns significantly
Frontiers in Immunology | www.frontiersin.org 4
(FDR<0.05) associated with BPD in subjects born at less than 29
weeks of age. For quantitative analysis, the correlations between
normalized counts and oxygen utilization at 14 days were
estimated. Expression changes of the genes, identified as
significantly different in BPD by the tests, were assessed in
transcriptomic profiles of PBMCs obtained from infants with
BPD, and age matched controls generated from an independent
cohort (15), using the data available on Gene Expression
Omnibus (GSE32472).

Prediction of Bronchopulmonary Dysplasia
(BPD) via Screened Principal Components
The following method is our minor variant of Screened Principal
Components Analysis (sPCA) (43), where the genes were
univariately screened, and those with a nominal Wilcoxon
p < 0.10 were used for further analysis. The first principal
component (PC1) of the genes was derived, and genes with
loadings close to 0 were removed. Genes most strongly
univariately associated with BPD (with or without adjusting for
gestational age) were selected using a screening threshold chosen
by cross-validation (CV). The first Principal Component (PC1)
of the genes passing the univariate screen was constructed and a
logistic regression model was fit to predict BPD as a function of
PC1 (and optionally gestational age). Receiver Operating
Characteristic (ROC) curves depicting sensitivity and
specificity along with associated AUC were estimated without
(naïve AUC) and with an outer loop of nested CV (CV-AUC).

Prediction of Post-Prematurity Respiratory
Disease (PRD) via Canonical Pathways
We have used canonical pathway analysis where we grouped our
13,434 genes into 1,330 biologically-relevant pathway-based gene
sets of molecular signature database (mSigDB) (44), where each
gene belongs to 0, 1, or more pathways. We then reduced the
constituent genes in each pathway to their PC1. Genes belonging
to 0 pathways were thus excluded from consideration, while CV
screened logistic forward selection (or LASSO) was applied to the
1,330 pathway-based PC’s. Bivariate CV was used to
simultaneously select both the threshold for univariate logistic
likelihood ratio test screening of pathways (with or without
adjusting for gestational age) and the final number of pathways
chosen by forward selection (or the LASSO penalty). The entire
procedure was then nested within an outer loop of nested CV in
order to estimate performance via the Receiver Operating
Characteristic (ROC) curve and its associated Area Under the
ROC Curve (CV-AUC). This method has been described in
details in our previous publication (45).

Functional Classification
Genes identified as differentially expressed in individual
comparisons were used for independent functional classification
through canonical pathway analysis, and upstream regulators
identification using Ingenuity Pathway Analysis (IPA; Qiagen,
Carlsbad, CA). Pathways and upstream regulators were identified
as significantly associated with the diagnoses by Fisher’s exact test
(p < 0.05 or -log(p-value) > 1.3) as calculated by IPA.
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Quantitative Reverse Transcriptase–
Polymerase Chain Reaction (qPCR)
cDNA was synthesized from 100 ng RNA using iScript cDNA
synthesis kit (Biorad, HerculesCA) and quantitative reverse
transcriptase–polymerase chain reaction (qPCR) was
performed with a Viia7 (Applied Biosytems, Carlsbad, CA)
using SYBR green chemistry as previously described (14) using
noncommercial (http://pga.mgh.harvard.edu/primerbank)
assays. Gene expression levels were calculated relative to
GAPDH as an internal, endogenous control, according to the
ddCT method.
RESULTS

Subject Demographics
Peripheral blood was collected at the time of first hospital
discharge, from 145 preterm and full-term infants enrolled in
the NHLBI Prematurity and Respiratory Outcomes Program
(PROP) at the University of Rochester and the University at
Buffalo. Of the 145 subjects, 72 were extremely premature having
been born at less 29 weeks of gestation. There was insufficient
evidence that the distribution of race (p=0.64) or sex (p=1)
differed between BPD and non-BPD subjects, while as expected
gestational age at birth was lower for those with BPD (p=0.03).
Similarly, among all subjects (n=130) there was insufficient
evidence of any difference in race (p=0.70) or sex (p=1) by
PRD status, while as expected gestational age at birth was lower
for those with PRD (p=0.01; Table 1). The age (in days) at the
time of sample collection varied by subject, and it ranged from
four days to 6 months after birth, depending on the gestational
age at birth. However, age was consistent in terms of corrected
gestational age, which ranged between 39 to 41 weeks. Detailed
diagnostic and demographic information for the individual
subjects in provided in Supplemental Table 2.

Transcriptomic profiles were generated from sorted and
purified CD8+ T cells obtained from the blood collected at
discharge. The analytical data set includes values from 13,455
genes for 130 samples, post filtering. As reported previously, the
average number of sequence reads in the samples were high
(9.93 ± 3.69 million sequence reads). Overall, approximately 60%
Frontiers in Immunology | www.frontiersin.org 5
of possible genes showed detectable transcript as expected for a
subset of differentiated cell type (16) as shown in Supplemental
Figure 2.

Molecular Markers for BPD
Gene expression patterns associated with cumulative oxygen
exposure (over the first 14 days of life) in subjects at greatest
risk for BPD (born at GAB<29 weeks; n=72) was assessed. Rank
correlation analysis identified 501 genes to be significantly
associated (at pFDR<0.1) with oxygen exposure, of which 403
were upregulated in BPD, while 98 genes were downregulated in
BPD. The magnitude of change, however, was not large, with
only 1 gene (GPCPD1) induced by 2.3 fold, while all other
changes were less than 2-fold, irrespective of the directionality.
Twelve of these genes (RETN, EPHX2, CD27, NOSIP, APOA1BP,
TMCO6, KLHL3, B3GALNT1, SLC9A4, PRKCD, ZNF791, and
B3GNT2) were also identified as differentially expressed in BPD
in an independent study studying BPD markers in PBMCs (15).
The 501 genes, when further assessed for functional classification
by Ingenuity Pathway Analysis (IPA), were found to be
associated with 104 pathways and 300 upstream regulators
(Figure 1). The pathways associated with oxygen utilization
included TGFB signaling (epithelial-mesenchymal transition),
and multiple immune signaling pathways, while tubule
formation associated and immunologic molecules were present
among the upstream regulators.

Data from 72 subjects born at <29 weeks CGA was used to
identify gene expression associated with BPD as defined by
physiologic challenge (RAC) or by Shennan criteria. Using
SAM-Seq (at mFDR<0.1), 571 genes were differentially
expressed in subjects receiving a diagnosis of BPD (Shennan).
While all of the 571 genes were upregulated in BPD, only five
genes (GPCPD1, TMEM2, USP2, TSPYL2, and ELL2) showed a
magnitude of induction of greater than 2.0 fold. Fourteen of these
genes (RNF125, FEM1C, FAM54A, ZNF791, AXIN2, B3GNT2,
ZNF565, SPON1, TIPARP, ZBTB3, FAM115C, PELO, MXD1,
and PFKFB3) were also identified as differentially expressed, and
over expressed in BPD in an independent study looking at BPD
markers in PBMCs (15). These 571 genes, when further assessed
for functional classification by IPA, identified 113 canonical
pathways and 409 upstream regulators to be associated with
BPD. In addition, 105 genes were differentially expressed (SAM-
TABLE 1 | Subject demographics.

Subjects with
GAB < 29 Weeks (n=72)

BPD
N=34

Non BPD
N=38

P value*

GAB in Weeks, mean ± SD 26.1 ± 1.4 26.9 ± 1.5 0.03

Male Sex, No. (%) 17 (50) 18 (47) 1.00

White Race No. (%) 20 (59) 20 (53) 0.64

Demographics
All Subjects (n=130)

PRD YES
N=70

PRD NO
N=46

PRD NA#

N=14
P value*

GAB in Weeks, mean ± SD 28.5 ± 3.3 31.1 ± 5.2 32.2 ± 4.1 0.01
Male Sex, No. (%) 34 (48) 23 (50) 10 (71) 1.00
White Race, No. (%) 43 (61) 30 (65) 9 (64) 0.7
January 2021 | Volume 11 | Articl
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Seq at mFDR<0.1) in subjects who failed a room air challenge.
While all of the 105 genes were upregulated in BPD, only two
genes (GPCPD1 and TSPYL2) showed a magnitude of induction
of greater than 2.0 fold. These 105 genes when analyzed by IPA,
identified 18 canonical pathways and 415 upstream regulators
(Figure 2). Among the pathways associated with BPD, PEDF,
CD40, PI3K/AKT, VEGF and NF-kB signaling were predicted to
be activated, while p53 signaling was inhibited in BPD. Among
the BPD associated upstream regulators, CD23, CD28, PTEN,
Frontiers in Immunology | www.frontiersin.org 6
and TCR, are inhibited, while NFkB inhibitor, camptothecin, and
dexamethasone were activated in BPD.

When adjusted for gestational age at birth, 75 genes were
associated with the diagnosis of BPD (Shennan) as identified by
the Likelihood Ratio Test (LRT at FDR<0.1), and were
upregulated in BPD. On further analysis by IPA, the genes
provided 113 canonical pathways and 409 upstream regulators
(Figure 3), of which neuroinflammation pathway appeared to be
inhibited, while upstream regulators, CD23, CD28, and TCR, are
A B

FIGURE 1 | Functional analysis using 501 genes associated with oxygen utilization at day 14 (OxygenAUC14) identified with 104 pathways and 300 upstream
regulators. Shown here are selected significant canonical pathways (A) and upstream regulators (B), along with their significance level (-logP) as generated by
Ingenuity Pathway Analysis (IPA).
A B

FIGURE 2 | Functional analysis of genes associated with bronchopulmonary dysplasia (BPD). Separate analyses were performed for gene sets identified from
analysis of 571 genes associated with BPD (Shennan) and 101 genes associated with room-air challenge (RAC) as identified by SAM-Seq, and 92 genes identified
by Screened Principal Components Analysis (sPCA) [adjusted for gestational age at birth (GAB)] to be associated with BPD (Shennan). Selected canonical pathways
(A) and upstream regulators (B) identified are listed for each analysis (columns), with significance (-logP) and directionality (activated/inhibited) as generated by
Ingenuity Pathway Analysis (IPA).
January 2021 | Volume 11 | Article 563473
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inhibited, and camptothecin, and dexamethasone were activated
in BPD. Screened Principal Components Analysis (sPCA), with
screening adjusted for GAB, outperformed both screened LASSO
and forward selection and identified a classifier gene set
consisting of 92 genes (naïve AUC=0.86; CV-AUC=0.71)
associated with BPD (Shennan), representing 21 canonical
pathways and 253 upstream regulators (Supplemental Figure
3). All of the 92 genes were upregulated in BPD, however, none
of the genes except GPCPD1 had a magnitude of induction of
greater than two-fold. These 92 genes were also inclusive of all
the 75 genes identified by LRT. We subsequently assessed gene
expression changes in BPD based on multiple physiologic and
clinical definitions and were successful in identifying nine genes
(GPCPD1, MTSS1L, USP15, DDX24, KLF9, CLK1, ZC3H7A,
ITCH, and PIK3R1) that were consistently different, and
upregulated in BPD, irrespective of definitions, or analytical
approaches (Supplemental Figure 4).

Classifiers for PRD Status
Gene expression data from all subjects with PRD status (n=116),
was used to identify a set of marker genes, based on our novel
canonical pathway analysis (45), in order to classify the subjects
by PRD status (PRD: n=70 and No PRD: n=46). Screened logistic
forward selection outperformed both screened LASSO and
sPCA, and gestational age was excluded since it did not
improve performance. This process identified a set of 28 genes,
derived from four canonical pathways (Table 2), which predicted
PRD status with a moderately high degree of accuracy (naïve
AUC=0.85; CV-AUC=0.70) (Figure 4). Interestingly, gene
predictors of PRD were associated with pathways involving
TGFB signaling, and organic ion transport. Several genes
identified are also involved in T cell skewing and activation
(e.g., PRKCZ and FKBP1A).
Frontiers in Immunology | www.frontiersin.org 7
qPCR Validation
Molecular validation of the BPD-associated transcriptomic
changes, was attempted on a set of eleven genes selected based
on their magnitude of difference or biological relevance, by
quantitative reverse transcriptase-polymerase chain reaction
(qPCR) (Table 3). For each gene, the UQ normalized RNA-seq
counts were correlated with the gene expression levels
determined by qPCR of the CD8+ T cell cDNA as defined by
the dCt. GAPDH was used as the endogenous control or
housekeeping gene, whose Ct was subtracted from gene Ct to
determine the dCT values for each of the genes tested.
Spearman’s rank correlation coefficient was estimated along
with an associated p-value for each gene. We observed
validation of the sequence data for nine of the 11 genes, as
defined by a significant Spearman rank correlation (p<0.05) in
expression between sequence-based and qPCR-based expression
levels. Three genes (KLF9, DLG5, and ZNF44) differed in
expression between BPD and non-BPD subjects (p<0.05),
while one additional gene (PSME4) had borderline yet
insufficient evidence of a difference (0.05<p<0.10).
DISCUSSION

Premature birth is defined as birth taking place prior to 37 weeks
of GAB. Prematurity associated lung diseases have been reported
to affect not only children as newborns but to also predispose to
prolonged respiratory morbidity later in life. Unfortunately, not
much is known about the pathophysiology of the prematurity
associated lung diseases, such as BPD, and other chronic and
prolonged childhood respiratory diseases. BPD is a complex
disorder involving genetic–environmental interactions, with each
preterm subject having a range (e.g., 1%–99%) of both hereditary
A B

FIGURE 3 | Functional analysis of 75 predictor genes for bronchopulmonary dysplasia (BPD) defined by Likelihood Ratio Test (LRT), identified 113 canonical
pathways and 409 upstream regulators. Selected significant canonical pathways (A) and upstream regulators (B) identified are shown, along with their significance
level (-logP) as generated by Ingenuity Pathway Analysis (IPA).
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and environmental risks (46). We have previously published data
on hereditary components to BPD risk by genetic analysis in the
PROP cohort, including some of the subjects described in the
current manuscript (47, 48). Transcriptomic assessment using
gene-expression microarrays has previously been used to
identify markers for normal lung development as well as BPD
(14, 49, 50). As an alternative to lung tissues, gene expression
analyses using peripheral blood have been used in lung diseases to
study pathogenesis, severity, and recently as a diagnostic tool (45,
51). In this study, we have used high-throughput sequencing to
explore peripheral gene-expression changes associated with
prematurity and helps to add to the literature base on potential
defects in the immune system of infants with BPD (11). Our
analysis identified 571 genes differentially expressed in subjects
with diagnosed instances of BPDwhen compared to extremely low
birth weight (ELBW) controls born at less than 29 weeks of GAB
by SAM-Seq. An independent study also that examined BPD
marker genes from bulk PBMCs identified 12 genes (RETN,
EPHX2, CD27, NOSIP, APOA1BP, TMCO6, KLHL3,
B3GALNT1, SLC9A4, PRKCD, ZNF791, and B3GNT2) that were
differentially expressed in BPD (15). Thus, our results are
consistent with published literature.
Frontiers in Immunology | www.frontiersin.org 8
Our gene list is further restricted to 92, when we adjust for
gestational age at birth (sPCA) as shown in Supplemental
Figure 4. In addition, we have identified markers, pathways
and upstream regulators putatively associated with cumulative
oxygen utilization. The pathway most closely associated with
oxygen utilization involves several TGFB signaling genes
(epithelial-mesenchymal transition pathway), which is
important for helping to diminish CD8+ T cell activation (28–
32). Additional pathways involved with T cell activation (e.g., T
cell receptor signaling) and differentiation (e.g., IL-12 signaling).
Thus, we have identified pathways that could be useful for
identifying new therapeutic targets to treat the postnatal
inflammation of preterm infants and to improve the health of
children with BPD (52).

Among the differentially expressed genes associated with
BPD, the PFKFB3 gene was not only consistently identified as
FIGURE 4 | Receiver Operating Characteristic (ROC) curves for gestational
age and our four-pathway 28-gene model, with associated Area Under the
ROC Curve (AUC).
TABLE 2 | Canonical pathway based analysis selected four pathways including
a total of 28 genes using cross-validated screened logistic forward selection for
prediction of Post-Prematurity Respiratory Disease (PRD) status.

Source: Pathway Pathway
Coefficient (logOR)

Gene Gene OR

Reactome: Recycling Of Bile
Acids And Salts

-1.49 SLC10A1 0.61
SLC27A5 0.66
SLCO1A2 0.71

Reactome: Transport Of
Organic Anions

1.71 SLCO1A2 0.71
SLCO3A1 1.27
SLCO4A1 1.58
SLCO4C1 1.45

Reactome: TGF-Beta
Receptor Signaling In
Epithelial To Mesenchyme
Transition

-0.49 ARHGEF18 0.93
CGN 0.84
F11R 0.77
FKBP1A 0.72
PARD3 0.58
PARD6A 0.88
PRKCZ 0.69
RHOA 0.76
RPS27A 0.85
SMURF1 0.91
TGFB1 1.07
TGFBR1 0.81
TGFBR2 1.09
UBA52 0.87

Biocarta: Cell2Cell Pathway -0.46 ACTN1 0.5
CSK 0.86
CTNNA1 0.87
CTNNB1 1.01
PECAM1 0.65
PTK2 0.76
PXN 0.76
VCL 0.82
*Pathway logOR are log of odds ratios per standard deviation (SD) of the 1st PC of the
screened genes (Wilcoxon p<0.1) within the pathway. *** Gene OR = exp (Gene Loading *
log (Screened Pathway OR)/SDPathway) = (Pathway OR)(Gene Loading/(SD of Pathway)).
Shown are pathway and gene names, estimated pathway coefficients (logOR), and constrained
gene odds ratios (OR) factoring in the PCA loadings for each gene within a pathway.
TABLE 3 | Validation of bronchopulmonary dysplasia (BPD) markers.

Gene Rank Correlation (r, GAPDH) P-Value

USP15 0.49 <0.01
SOD2 0.35 <0.01
ITCH 0.13 0.27
AHR 0.28 0.02
PSME4** 0.34 <0.1
STAT1 0.60 <0.01
GFI1 0.18 0.14
KLF9* 0.29 0.02
DLG5* 0.27 0.02
ZNF44* 0.25 0.04
NEAT1 0.42 <0.01
January 2021 | Volume 11 | Articl
*KLF9, DLG5, and ZNF44 differed in expression between BPD and non-BPD subjects
(p<0.05),
**PSME4 had borderline yet insufficient evidence of a difference between BPD and non-
BPD (0.05<p<0.10).
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differentially expressed in BPD subjects irrespective of the
approach used, but was also identified as a BPD marker in an
independent transcriptomic analysis of PBMCs derived from
BPD subjects (15). Through murine studies PFKFB3 has been
identified as potential therapeutic target for the treatment of
Pulmonary Hypertension (PH) (53). Increased expression
PFKFB3 in BPD is consistent with PH associated with BPD
which is characterized by abnormal vascular remodeling, and
vascular growth arrest, which are well documented
pathophysiology associated with BPD (54). In vitro studies
have reported that PFKFB3-kinase activity attenuates the
activation of T cells, and demonstrated the effectiveness of
PFKFB3 antagonists, even in small amounts, as T cell
immunosuppressive agents (55). One of the differentially
expressed genes, KLF9, has been previously identified as
differentially expressed in T cells from patients with
autoimmune rheumatoid arthritis (56), while another, DLG5, is
involved in the HIPPO pathway and modulated TGFB signaling
(57–59).

Pathway analyses indicate dysregulation of NRF2, HIPPO and
CD40 pathways to be consistently associated with BPD. Another
marker, PSME4, has been associated with tuberculosis through in
vitro and in vivo cultures, and is also related to CD4, IFNb1, and
TGFBI pathways (60). Interestingly, NRF2 has been linked to the
generation of reactive oxygen species that contributes to
inflammation in a variety of diseases (61). The HIPPO has
been shown to play a role in T cell receptor signaling and in
Th17 differentiation (62, 63). Systemic administration of
agonistic CD40 antibody has been shown to increase CD8+ T
cell responses in the lungs of non-human primates (64). While
IL2 signaling is expected, Gnaq is known to play a role in survival
of immune cells (B and T-cells) (65, 66). In addition, iCOS-
iCOSL are known to be involved in T-cell skewing, and reduced
SOD expression is related to impaired CD8+ T cell responses in
tumor infiltrating lymphocytes (67). Interestingly, regulators
associated by anti-survival, dexamethasone and camptothecin,
appear to be activated in BPD, while T cell co-receptors, CD3 and
CD28, appear to be inhibited in BPD. One study shows that T
cells isolated from patients with chronic viral infection rely on
topoisomerase activity to maintain DNA stability and inhibit
apoptosis (68). It is well established that chronically activated T
cells become hyporesponsive to T cell receptor mediated
stimulation (69). These may indicate potential arrest in lung
development as a consequence of BPD and indicate induced
immune and stress response as a result of therapeutic responses
to BPD, due to either oxidative stress, or surfactant treatment
(70). Thus, we have identified significant differences in the
expression of several genes and pathways in BPD subjects that
are related to T cell signaling and effector function.

In addition to studying CD8+ T cell gene expression in
relationship to BPD, we also explored multiple approaches to
identify a set of genes whose expression may be useful for
classification of markers associated with Post-Prematurity
Respiratory Disease (PRD) respiratory morbidity. This
included approaches to leverage biological priors as a means of
identifying the most robust predictors since (1) expression
Frontiers in Immunology | www.frontiersin.org 9
changes at the individual gene level alone may not be sufficient
to identify biologically meaningful data and (2) there exists
substantial statistical advantages to dimension reduction
strategies in the analysis of genome-wide data. We used a
curated list of genes (71) to partition our transcriptomic data
into 1,330 biologically-relevant gene sets. Using a novel data
reduction approach, we identified a 28 gene set classifier that
groups subjects according to their PRD status with a moderately
high degree of accuracy. Similar to BPD, the TGFB pathway was
also found to be associated with PRD status. Several genes
identified control T cell function. For instance, SMURF1
accumulation in cells infected with RNA viruses leads to the
downregulation of Type I Interferons (72). RhoA is a GTPase
plays an essential role in the migration and activation of T cells
(73). PRKCZ is a protein kinase C family member that is highly
expressed in Th2 CD4+ T cells (74). PARD3 and PARD6A have
been shown regulate the RhoA signaling pathway (75). PARD3
also modulates HIPPO signaling pathways (75). FKBP1A is a
signaling molecule in the mTOR pathway that regulates memory
CD8+ T cell formation (76). Expression of F11Rm which encodes
for the protein junctional adhesion molecule A, plays a role in
T cell adhesion and migration that is upregulated in T cells of
lupus patients (77). Their association with persistent respiratory
disease indicates propensity to future immunological
complications, which may result in chronic lung disorders.
Even with the limited set of predictive markers, it does appear
that gene expression changes, in peripheral blood at the time of
initial discharge after birth, are indicative of future respiratory
diseases later in childhood.

One of the limitations of this study is the use of CD8+ T-cells
in identifying biomarkers of a lung disease. While peripheral
markers have been widely used in identifying expression based
markers, it needs to be acknowledged that these hematopoietic
cells are from different cell lineage from the pulmonary system,
which is the primary organ system affected in BPD and
subsequently in PRD. However, even with only one cell type of
a different lineage, we have been able to identify previously
known, as well as novel molecular markers, and pathways,
associated with pulmonary disease due to premature birth. In a
longitudinal study involving a subset of subjects from the current
cohort, we were able to identify differences in T cell development,
post birth, which were able to predict respiratory outcome at 1
year of age (25). Another limitation of the study is the usage of
multiple definitions of BPD in order to assess transcriptomic
changes caused by it. Despite the various definitions and
analytical approaches used, we were able to identify a set of
nine marker genes that were observed to be increased in BPD,
irrespective of the diagnostic definition and approach used. By
using approaches similar to those presented here, researchers will
be able to develop better correlations between clinical courses of
preterm infants with alterations in the immune system.
Previously published data indicate that the patterns of
cytokines in the blood of BPD patients relates to the subtype
of disease (19). Through the current study we have established
proof-of-principle that gene expression provides value for
predicting respiratory morbidity following pre-term birth.
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In conclusion, we have successfully generated genome-wide
transcriptomic data from sort-purified peripheral CD8+ T cells
obtained from early pre-term, late preterm, and term infants. We
have identified molecular markers, pathways and upstream
regulators putatively associated with cumulative oxygen
utilization, BPD diagnosis, and PRD prediction. Further
studies are needed to determine if the findings are unique to
the circulating T cells sampled in this study, or reflective of
similar effects in other cells including lung parenchymal cells.
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