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Abstract

Background

Recent evidence suggests a role for the gut microbiome in the development and progres-

sion of many diseases and many studies have been carried out to analyse the microbiome

using a variety of methods. In this study, we compare MinION sequencing with meta-tran-

scriptomics and amplicon-based sequencing for microbiome analysis of colorectal tumour

tissue samples.

Methods

DNA and RNA were extracted from 11 colorectal tumour samples. 16S rRNA amplicon

sequencing and MinION sequencing was carried out using genomic DNA, and RNA-

Sequencing for meta-transcriptomic analysis. Non-human MinION and RNA-Sequencing

reads, and 16S rRNA amplicon sequencing reads were taxonomically classified using a

database built from available RefSeq bacterial and archaeal genomes and a k-mer based

algorithm in Kraken2. Concordance between the three platforms at different taxonomic lev-

els was tested on a per-sample basis using Spearman’s rank correlation.

Results

The average number of reads per sample using RNA-Sequencing was greater than 129

times that generated using MinION sequencing. However, the average read length of Min-

ION sequences was more than 13 times that of RNA or 16S rRNA amplicon sequencing.

Taxonomic assignment using 16S sequencing was less reliable beyond the genus level,

and both RNA-Sequencing and MinION sequencing could detect greater numbers of phyla

and genera in the same samples, compared to 16S sequencing. Bacterial species associ-

ated with colorectal cancer, Fusobacterium nucleatum, Parvimonas micra, Bacteroides fra-

gilis and Porphyromonas gingivalis, were detectable using MinION, RNA-Sequencing and

16S rRNA amplicon sequencing data.
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Conclusions

Long-read sequences generated using MinION sequencing can compensate for low num-

bers of reads for bacterial classification. MinION sequencing can discriminate between bac-

terial strains and plasmids and shows potential as a cost-effective tool for rapid microbiome

sequencing in a clinical setting.

Introduction

The gut microbiome and its relationship to human health and disease is an area of emerging

research. Alterations in microbiome composition have been associated with diarrhoea [1],

developmental disorders [2], immune system changes [3], Crohn’s disease [4], psychological

disorders [5], irritable bowel disease [6], and cancer [7]. Colorectal cancer (CRC) is associated

with high mortality, and the incidence is increasing, globally [8, 9]. Lifestyle and diet are strong

risk factors for the disease, and changes in the gut microbiome have been linked to CRC devel-

opment and pathogenesis in an increasing number of studies [10]. The assessment of micro-

biomes in a clinical setting is not widely practised. Reasons for this include the lack of access to

sequencing technology and clinical training for the interpretation of microbiome sequencing

data [11]. Sampling, library preparation, and sequencing are expensive and time-consuming,

which makes it less feasible for many applications [12, 13].

Microbiome community composition is most commonly assessed using amplicon sequenc-

ing of the bacterial 16S ribosomal RNA (rRNA) gene. This gene is highly conserved in bacteria

and contains variable regions that can be used for taxonomic differentiation [14]. Protocols

and downstream analysis tools are widely available for 16S analysis [15]. Amplicon-based

sequencing can be reliably used to detect genus- and phylum-level differences, but has less

power for detecting species- and strain-level differences [16]. Additionally, the technique lacks

the ability to analyse plasmids or any genomic region outside of the marker gene, e.g. virulence

or antibiotic resistance genes, or variations unique to a species/strain [17, 18].

Meta-transcriptomics using RNA-Sequencing is a powerful tool for interrogating tran-

scribed genes in a sample [19] and can be utilised for microbial classification based on specific

RNA transcripts [20]. However, RNA-sequencing is labour-intensive and requires costly

reagents and specialised protocols. Currently, bioinformatics analysis of meta-transcriptomics

data requires specifically designed software, which is more computationally intensive com-

pared to tools available for human gene-expression analysis [21].

Oxford Nanopore Technologies has developed a small, inexpensive and portable sequenc-

ing platform, the MinION, which addresses many of the shortcomings of other available typi-

cal next-generation sequencing platforms, such as cost, reagent usage, and analysis

bottlenecks, by utilising a non-synthesizing sequencing method [13, 22]. This platform can

produce sequencing reads from all genomic material in an environmental or clinical sample,

and allows taxonomic classification of elements that may not be detected using marker genes

or actively transcribed gene sequencing alone.

To investigate the utility of MinION sequencing for complex microbiome analysis, this

study has compared the microbiome component of 11 CRC tissue samples using three differ-

ent sequencing methods: RNA-sequencing, 16S rRNA amplicon sequencing, and MinION

sequencing. The study used Kraken2 for rapid k-mer based assignment of taxa. The aim was to

determine the applicability of using multiplexed MinION sequencing as a method for rapid,

cost-effective bacterial taxonomic classification of clinical tissue samples.
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Methods

Patient cohort

Colorectal cancer samples were obtained from treatment-naïve tumours during surgical resec-

tion. Study participants gave informed written consent, in compliance with the University of

Otago Human Ethics Committee (ethics approval number: H16/037). All the relevant guide-

lines and regulations were followed during the study. Sample metadata can be found in

Table 1.

DNA and RNA extraction

Tissue samples were frozen in liquid nitrogen and stored at -80˚C post resection, and subse-

quently transferred to RNAlater ICE™ (Qiagen) and stored at -20˚C. As described previously

[23], nucleic acid extraction was performed on< 20mg of tissue by a single operator in one

batch to avoid variation in protocol. Tissue disruption was carried out using a Retch Mixer

mill. DNeasy Blood and Tissue Mini Kit (Qiagen) and RNEasy Plus Mini Kit (Qiagen) were

used for DNA and RNA extraction, respectively. Quantification of the extracted nucleic acids

was carried out using a NanoDrop 2000c spectrophotometer (Thermo Scientific, Asheville,

NC, USA) and samples were stored at -80˚C.

16S rRNA and RNA sequencing

16S rRNA amplicon sequencing (16S-Seq) and RNA-Sequencing (RNA-Seq) data were

accessed from publicly available sequence data stored in Sequence Read Archive, study

SRP117763 [19]. The data files corresponding to the samples accessed in the current study are

given in S1 Table.

16S rRNA libraries were constructed using 20ng of DNA for each sample using primer

pairs flanking the V3 and V4 variable regions of the 16S rRNA gene were used (16SF_V3: 50-
TATGGTAATTGGCCTACGGGAGGCAGCAG-30 and 16SR_V4: 50-AGTCAGTCAGCCGGAC
TACHVGGGTWTCTAAT-30). Using Illumina sequencing adaptors and barcodes, 40 cycles of

limited cycle PCR were performed. The Illumina MiSeq platform was used for amplicon

sequencing to generate paired-end reads 250bp long.

Table 1. Colorectal cancer patient cohort metadata.

Sample Side Differentiation Gender TNM stage

1 Left Moderate M 1

2 Left Well F 2

3 Right Moderate M 3

4 Right Poor F 2

5 Left Moderate M 1

6 Left Poor F 3

7 Right Well F 1

8 Right Moderate F 3

9 Right Moderate F 3

10 Right Well F 2

11 Right Poor F 3

TNM, tumour-node-metastases; M, male; F, female.

https://doi.org/10.1371/journal.pone.0233170.t001
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RNA-sequencing libraries were generated using Illumina TruSeq V2 reagents following

ribodepletion using RiboZero Gold. The Illumina HiSeq2000 platform was used to generate

paired-end reads 125bp in length.

MinION library preparation

Eleven DNA samples from CRC tissue, corresponding to those used for 16S rRNA sequencing

were used for MinION sequencing (see S1 Table). DNA concentration was recorded using a

Qubit1 2.0 fluorometer prior to library preparation. A reagent blank (nuclease-free water) was

included as a technical control. Size restriction was performed on each of the samples, using

0.45x the volume MagBio High Prep beads. For each sample, 400ng genomic DNA was used,

the volume adjusted to 7.5μl with nuclease-free water, and 2.5μl of barcode fragmentation mix

was added, as per MinION protocol RBK_9054_v2_revA. The samples were incubated in a

thermal cycler at 30˚C for 1 minute and 80˚C for 1 minute. The barcoded samples were then

pooled, and DNA was purified using AMPure XP beads and resuspended in 10 μl of 10 mM

Tris-HCl pH 7.5 with 50mM NaCl. Then, 1μl of RAP (Rapid sequencing AdaPtor) were added

to the barcoded DNA. The resulting library was loaded onto a single MinION R9.4.1 (106)

flow cell and sequenced for 48 hrs.

Sequence processing

16S rRNA amplicon sequencing. Data were accessed from the publicly available sequence

data stored in the Sequence Read Archive, study SRP117763 [24]. In brief, the following steps

were taken: short overlapping forward and reverse reads from the same fragments were joined

using FLASh v1.2.11 [20], and joined overlapped sequences were trimmed to contain only

those reads with a 99.99% accuracy. Minimal length of fragments was kept at 50bp using Solex-

aQA++ v3.1.15 [21]. Using DADA2, chimeric sequences were removed and amplicon

sequence variants were picked to assign bacterial taxonomy from a sequence table using the

SILVA132 16S rRNA database (13/12/2017 release) [19]. Commands used can be accessed at

the DADA2 GitHub page (https://benjjneb.github.io/dada2, accessed 08/05/2018) and in S1

Data. 16S sequencing data can be accessed at the Zenodo repository [24].

RNA-Sequencing. Reads >50bp with an accuracy of 99.9% were retained for analysis. A

GRCh38p12 human genome index with RefSeq annotation was generated, and RNA

sequences mapped using STAR v2.5.3a [23]. Unmapped reads were converted to FASTQ,

sorted, and separated from mapped reads using samtools [24]. Bedtools was used to extract

unmapped reads as FASTQ files for use in subsequent taxonomic classification analysis [25].

Singletons and paired datasets were combined post taxonomic classification. Additional

genome indices for B. fragilis Q1F2 and F. nucleatum subsp. nucleatum ATCC 25586 were gen-

erated and used for RNA-Seq mapping, using STAR v2.5.3a [23].

MinION sequencing. Base-calling and first-pass demultiplexing was performed using

Albacore v2.3.3. Sequence quality analysis was performed using NanoPlot 0.16.4 [25]. Pore-

chop v0.2.3 was used to remove barcodes and adaptors, and to verify Albacore demultiplexing.

Reads were filtered for quality and length, >Q8 and>120bp, respectively, using FiltLong

v0.2.0. The GRCh38p12 human genome index was created using Minimap2 v2.14-r883 [26],

to which all MinION reads were mapped. Unmapped read SAM files were extracted and con-

verted to BAM, and then to FASTQ format using samtools v1.9 [27]. Sequencing data can be

found in the Zenodo repository [28]. Additional genome indices for B. fragilis Q1F2 and F.

nucleatum subsp. nucleatum ATCC 25586 were generated and used for MinION read map-

ping, using Minimap2 v2.14-r883 [26].
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Taxonomic classification

Taxonomic assignment. Taxonomic classification was carried out on all reads that passed

processing filters, and did not map to the human genome. Kraken2 v2.0.6-beta was used for

taxonomic classification of all Illumina RNA and ONT sequencing data [29]. The genetic data

for constructing the databases were retrieved from the NCBI RefSeq library. The database con-

tained archaea and bacterial taxa complete genomes from the RefSeq NCBI database (S2 Table)

and included partial assemblies of selected taxa from a group of species known to be associated

with CRC (S3 Table). Results were tabulated and analysed using Pavian [30]. Interactive Geno-

mics Viewer v2.4.18 [31] was used to analyse and visualise alignment of sequencing reads with

selected bacterial genomes. For 16S rRNA data, amplicon sequence variants were picked to

assign bacterial taxonomy from a sequence table using the SILVA132 16S rRNA database (13/

12/2017 release) [19], using DADA2. Commands used can be accessed at the DADA2 GitHub

page (https://benjjneb.github.io/dada2, Accessed 08/05/2018) and in S1 Data.

Statistics. Spearman correlation analysis was carried out using RStudio (R version 3.6);

details can be found in the S1 Data document.

Results

Read number and length of sequences for each platform

The average number of raw reads per sample was 13,951,214, 233,193 and 68,534 for RNA-Seq,

16S and MinION sequencing, respectively. After processing the raw reads (quality control and

removing reads mapping to the human reference), the per-sample average number of reads

was 1,941,172, 141,743 and 15,020 for RNA-Seq, 16S and MinION sequencing, respectively

(See Table 2).

RNA-Seq and 16S rRNA paired-end reads were 250bp and 125bp in length, respectively,

giving a 250 and 500bp query maximum for these platforms, while the average MinION read

length was 1631bp, giving a genomic query sequence more than three times longer on average;

the longest MinION read, at 46,392bp, was 92 times longer than the other platforms.

Mapping to the human genome

RNA-Seq reads were mapped to the human genome GRCh38p12 using the STAR aligner. An

average of 1.9 million unmapped reads remained per sample after mapping, 13.9% of the total.

Table 2. Raw and processed read counts per sample for each platform.

Raw Reads Processed/Unmapped

Sample 16S RNA ONT 16S RNA ONT

1 333335 10210344 53982 176823 157209 12212

2 175589 16767600 70967 104310 277886 14184

3 210849 11692023 75250 119255 356303 17591

4 238258 12414326 50637 133700 4690127 16877

5 233536 14196953 68558 129813 259746 15884

6 291890 11891786 94040 148406 230809 17449

7 173621 18376957 77914 96744 664882 13748

8 254700 13680558 97671 145899 775763 24821

9 210014 13982612 54786 126141 197291 8280

10 334496 15947939 43361 195656 1023419 17952

11 69391 14302258 66714 40037 222110 8056

https://doi.org/10.1371/journal.pone.0233170.t002
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MinION sequencing reads were mapped to a GRCh38p12 index using MiniMap2, and an

average of 762 non-human reads remained per sample after mapping, 16.9% of the total. All

unmapped reads were putatively bacterial and were used in subsequent classification analysis.

Comparison of bacterial taxonomic profiles derived using different

sequencing platforms

Taxonomic profiles to the species level were generated using Kraken2 for all three sequencing

platform data (S4 Table). The concordance between the sequencing platforms (Fig 1) on a per-

sample basis was found to be highest at the phylum level between RNA-Seq and MinION.

However, at the genus and species levels, the correlation between 16S rRNA and RNA-seq was

stronger.

Using Spearman’s rank correlation coefficients to evaluate concordance, we found an aver-

age of 0.63, 0.39 and 0.31 concordance between 16S rRNA amplicon sequencing and RNA-Seq

at the phylum, genus and species levels respectively. Concordance between RNA-Seq and Min-

ION was 0.68, 0.29 and 0.13 at the phylum, genus and species levels, respectively, and concor-

dance between 16S rRNA sequencing and MinION sequencing was 0.57, 0.23 and 0.19 at the

phylum, genus and species levels respectively, per sample.

The taxa identified at each taxonomic level from all 11 samples were substantially different

between sequencing platforms, ranging from 80.5% similarity in identified phyla to only

18.9% similarity at the species level between 16S rRNA amplicon sequencing and RNA-Seq

(Table 3).

Microbiome sample composition

To estimate the relative abundance of taxa within samples using Kraken2, we used the number

of assigned reads as an indicator of an individual bacteria. Fig 2A shows the proportional com-

position detected using each of the platforms, as estimates of abundance of different taxa. The

relative abundance of phyla detected using each platform varied, with 16S rRNA sequencing

detecting higher levels of Firmicutes than Bacteroidetes, compared to the other platforms,

while a larger proportion of MinION sequencing reads were assigned to Proteobacteria. As

expected, Firmicutes, Bacteroidetes, Fusobacterium and Proteobacteria were the most abun-

dant phyla detected, although their relative abundance differed depending on the sequencing

platform used.

The relative abundance at the genus level also differed substantially between sequencing

platforms, as shown in Fig 2B. A lower proportion of Bacteroidetes and a high proportion of

Prevotella was detected using 16S rRNA sequencing. RNA-Seq detected a significantly larger

proportion of Fusobacterium Hungatella, and Porphrymonas compared to the other platforms.

At the species level, RNA-Seq was able to detect a greater number of species than the other

two platforms, while MinION sequencing could detect more than 80 species undetected by

RNA-Seq or 16S sequencing. Only 689 species were detected using 16S rRNA sequencing,

almost all of which were detected using at least one of the other platforms (Fig 3). The number

of reads needed to have sufficient evidence for a species is dependent on the read length of the

query [32], and, therefore, the number of raw reads required to classify species is much higher

for short-read sequencers. MinION was able to detect one species on average every 893 reads,

while 16S rRNA amplicon sequencing required 3724 per species, and RNA-Seq performing

most poorly, assigning a single species for every 42,987 reads (Table 4). In this sense, MinION

sequencing had an 11.5- and 3.7-fold increase in efficiency over RNA-Seq and 16S rRNA

amplicon sequencing, respectively.
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Detection of colorectal cancer-associated bacterial species

Several bacterial species implicated in CRC were detected across all platforms, such as B. fragi-
lis [10], F. nucleatum [33] and Prevotella intermedia [34]. Of the 81 species detected only by

MinION sequencing (Table 4), several were closely related Bacillus, Burkholderia, Streptomyces
and Pseudomonas species. A total of nine species were detected only by 16S rRNA amplicon

Fig 1. Level of concordance per sample between platforms using Spearman’s rank correlation coefficients of all detected and

absent taxa data at A–C) the phylum level, D–F) the genus level and G–I) the species level. The dashed line indicates the average

correlation across all samples.

https://doi.org/10.1371/journal.pone.0233170.g001

Table 3. Similarity in taxa identified between platforms.

16S v RNA-Seq 16S v MinION MinION v RNA-Seq 16S v RNA-Seq v MinION

Phyla 80.50% 67.60% 66.70% 59.50%

Genus 36.70% 35.80% 51.50% 23.30%

Species 18.90% 19.50% 35% 9%

https://doi.org/10.1371/journal.pone.0233170.t003

PLOS ONE Comparison of microbiome analysis platforms for clinical samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0233170 May 20, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0233170.g001
https://doi.org/10.1371/journal.pone.0233170.t003
https://doi.org/10.1371/journal.pone.0233170


sequencing, with Sphingobium sp. YG1 being the most abundant (S4 and S5 Tables). RNA-Se-

quencing was able to detect 1944 species not detected by any other platform (Table 4), includ-

ing 49 Candidatus sp, and many species yet to be cultured. In addition, RNA-seq and MinION

could detect several commensal species, such as Lachnoclostridium sp known to be involved in

gut health [35], which were not detected using 16S rRNA amplicon sequencing. Across all plat-

forms, B. fragilis was the most abundant species, followed by Hungatella hatheway, F. nuclea-
tum, B. vulgatus and Faecalibacterium prausnitzii (S4 Table).

Alignment of reads to colorectal cancer-associated bacteria

After bacterial identification, we wished to evaluate which regions of the genome MinION and

RNA-Seq reads would align to. MinION and RNA-sequencing reads were aligned to the

genome of F. nucleatum subsp. nucleatum ATCC 25586, which has been associated with CRC

[33, 36]. A single 9 kb MinION read covered a region containing four coding genes, including

those coding for a putative TetR transcriptional regulator, involved in antibiotic resistance,

and for an amino-histidine dipeptidase. Separated by four hypothetical protein-coding genes,

Fig 2. Comparison of relative abundance of between sequencing platforms at A) the phylum level and B) the genus level.

https://doi.org/10.1371/journal.pone.0233170.g002
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the mapped region also contained a metal-binding protein gene and manganese transport

gene. RNA-Seq reads predominantly mapped to these latter two genes, with few reads map-

ping to the region downstream of the hypothetical protein genes (Fig 4A). Additionally,

sequencing reads were aligned to a conjugative plasmid of B. fragilis strain Q1F2 (Fig 4B).

Fig 3. Comparison of bacterial species detection between each sequencing platform.

https://doi.org/10.1371/journal.pone.0233170.g003

Table 4. Number of different taxa detected using each sequencing platform.

RNA-Seq 16S rRNA MinION

Phyla detected 41 33 29

Genera detected 1156 424 605

Species detected 3570 689 1365

Unique phyla 5 0 1

Unique genera 405 0 6

Unique species 1944 9 81

Reads per species 42,986 3723 893

https://doi.org/10.1371/journal.pone.0233170.t004
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Four MinION reads, of lengths 4200, 1913, 1760, and 308bp, mapped to the plasmid to cover a

5317bp region. RNA-Sequencing had 75 reads align at the highest peak, aligning to a total

region of 1557bp. The majority of RNA-Sequencing reads mapped to the promoter region of a

FecR iron transport gene and a corresponding sigma-70 polymerase gene.

Discussion

Microbiome studies are increasingly being carried out on clinical samples and are expanding

our knowledge of the involvement of the gut microbiome in human health and disease.

Although microbiome analysis is not currently used in the clinical setting, it is likely, with the

advent of microbiota-based therapeutics and prognostication, that this type of analysis will be

co-opted for clinical use in the near future. The majority of published studies to date have used

16S rRNA amplicon sequencing to describe the structure of the gut microbiome. This has

proven a useful tool in determining large-scale changes in the microbiome but using a region

of a single gene has less utility in detecting subtle changes in microbial composition at the spe-

cies level in comparison to metagenomic sequencing, as 16S rRNA amplicons are often too

similar at the sequence level to differentiate between species [37]. Metagenomic analysis using

shotgun sequencing allows for a more in-depth analysis of the microbiome to the species or

even strain level, in addition to capturing mobile genetic elements and plasmids that would

not be detectable using amplicon-based approaches. A recent shift towards identifying changes

in microbiome function, in addition to composition, has encouraged meta-transcriptomics

approaches to microbiome analysis. However, both metagenomics and meta-transcriptomics

analyses generally involve short sequencing reads and necessitate high read-depth for adequate

genome coverage and accurate alignment.

The Oxford Nanopore MinION is a portable sequencing device that has recently emerged

as a rapid and cost-effective sequencing platform that produces long reads, and has multiple

Fig 4. Alignment of MinION and RNA-Sequencing data to bacterial genomes. A) Mapping to F. nucleatum subsp. nucleatum ATCC 25586 genome.

B) Mapping to B. fragilis Q1F2 plasmid. MinION reads are represented in purple and RNA-Seq reads in orange.

https://doi.org/10.1371/journal.pone.0233170.g004
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applications in clinical microbiology, such as pathogen detection [38], bacterial genome

assembly [39] and plasmid and resistance gene detection [40, 41]. Specific to microbiome anal-

ysis, the utility of the MinION platform has been demonstrated in rRNA amplicon-based

sequencing [42–44] and in metagenomics for outbreak analysis of bacteria [45] and viruses

[46].

In this study, we compared MinION sequencing to two currently used microbiome analysis

platforms, 16S rRNA amplicon sequencing and meta-transcriptomics using RNA-Sequencing.

The analysis was carried out using heavily host-sequence contaminated RNA/DNA extracted

from colorectal tumour tissue samples and no attempt was made to reduce the amount of host

genomic material in any of the extraction methods; only 16S rRNA sequencing samples

selected specifically for microbial DNA.

For MinION sequencing, we barcoded the 11 samples and ran them as a multiplexed library

on a single flow-cell at a cost of approximately US$1000, a fraction of the cost of 16S rRNA

and RNA-Sequencing. Labour and capital costs are very important considerations for pilot

studies, and in particular for studies where samples are limited. As there was no amplification

step involved, the numbers of reads were several orders of magnitude lower than 16S sequenc-

ing or RNA-Seq. Following a demultiplexing step, the available putative bacterial reads per

sample were as low as 8056 for some samples. Despite this, the most abundant organisms

could still be detected in these samples. One contributing factor to the low numbers of post-

mapping reads was that almost half of the sequenced reads were not barcoded, which, in addi-

tion to reducing the power of the analysis, may introduce a sampling bias. Additionally, the

lower number of reads generated by MinION sequencing reduces its capacity to detect rare

taxa present at low abundance in samples. An enhanced library preparation protocol may

increase the overall fraction of barcoded reads. Multiplexing of samples also meant that the

DNA input per sample was relatively low. Sequencing a single sample or fewer multiplexed

samples per flow-cell would increase the overall number of acquired reads per sample. Since

the inception of this study, due to improvements in library preparation chemistry, software

and improved flow-cell manufacturing, the throughput and basecalling accuracy of Oxford

Nanopore MinION sequencing has increased, with higher numbers of reads of consistent

quality and length being produced, widening its applications and reliability of results [47–50].

We used Kraken2 [29] for rapid taxonomic identification of MinION and RNA-Seq data,

with a customised database that included many additional CRC-associated taxa. Kraken2 uses

a k-mer based algorithm that uses fragmented whole genomes as the basis of taxa classification

[51], without requiring large amounts of computational resources, and with increased speed

compared to direct alignment of genomic sequences, such as BLAST [52].

Concordance between 16S rRNA sequencing and the other two platforms ranged from

59.5–80.5% at the phylum level but was as low as 9% at the species level. This reflects the

reduced ability of 16S rRNA sequencing to differentiate between species. Concordance

between RNA-Seq and MinION sequencing was 66.7% 51.5% and 35% at the phylum, genera

and species levels, respectively. The relatively low concordance between RNA-Seq and Min-

ION sequencing can be attributed to the considerably higher number of RNA-Seq reads.

However, despite the low numbers of reads acquired using MinION sequencing, more than

a 1300 species could be assigned taxonomy, the majority of which were also detected in the

corresponding RNA-Seq data but not using 16s rRNA. Specific analysis of long, high-quality

MinION reads demonstrated that MinION’s longer reads can compensate for a lower number

of reads, as it is possible to observe more inter-microbial genomic complexity giving a higher

resolution taxonomic assignment. This has been demonstrated by Wommack et al., who

found that long reads could detect 72% more hits than short read lengths of up to 400bp at

twice the read depth [32]. Although Oxford Nanopore long-read sequencing is acknowledged
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to have an inherently high error rate, longer read length has been shown to compensate for

this [53].

Comparison of the three sequencing platforms at different taxonomic levels showed that at

the phylum level, all three platforms could detect a core set of common phyla, which included

the most common gut-associated phyla from the Human Microbiome Project [54]. RNA-Seq

was able to detect five phyla that were not detected in the MinION data, reflecting the high

numbers of reads achieved with that sequencing approach, but may also be attributed to the

non-synthesis-based method of sequencing MinION employs that may influence which

sequences are analysed by a pore, introducing a possible selection bias. Additionally, the higher

performance of RNA-Seq compared to MinION sequencing could be due to RNA-Seq tran-

scripts being more likely to be found in microbial genome databases, leading to a higher likeli-

hood of detection and improved estimates of relative abundance [55].

Although the concordance between MinION and RNA-Seq was high at the phylum level,

the overall taxonomic assignments at the species level were considerably lower, likely due to

the reduced numbers of reads observed using MinION sequencing. Mapping of RNA-Seq and

MinION reads to the most recent complete genome of B. fragilis, showed alignment to plas-

mids, including genes that code for a putative iron transporter protein, a nutrient thought to

be involved in B. fragilis virulence [56]. Additionally, MinION reads mapped to a region of the

F. nucleatum genome which contains a putative antibiotic resistance gene. These results sug-

gest that MinION sequencing can be informative for the analysis of regions of interest, such as

antibiotic resistance genes and mobile elements [57]. Using a more refined protocol, it would

be feasible to screen an entire plasmid using single long reads, or low read depth to detect path-

ogenicity and antibiotic resistance genes. The RNA-Seq platform likely did not detect the

genes associated with antibiotic resistance as they were not being actively transcribed at the

time. This highlights the importance of choosing the appropriate sequencing platform or com-

bination of platforms to suit the experimental conditions.

Conclusions

Here, we have shown that direct microbiome sequencing from CRC tumour samples is feasible

using the MinION platform, and gives high taxonomic concordance compared to RNA-Seq,

and may be superior to 16S rRNA sequencing for taxonomic classification to the species level.

We have shown that long-read sequences can compensate for low read depth for classification

purposes. Our investigation has also shown the ability of MinION sequencing to discriminate

between bacterial strains and detect bacterial plasmids, and shows potential as a tool for cost-

effective microbiome sequencing in a clinical setting.
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14. Větrovský T, Baldrian P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Conse-

quences for Bacterial Community Analyses. PloS one. 2013; 8(2):e57923. https://doi.org/10.1371/

journal.pone.0057923 PMID: 23460914

15. Osman MA, Neoh HM, Mutalib NSA, Chin SF, Jamal R. 16S rRNA gene sequencing for deciphering the

colorectal cancer gut microbiome: Current protocols and workflows. Frontiers in Microbiology. 2018; 9

(APR).

16. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. Strengths and Limitations of 16S

rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics. PLOS ONE.

2014; 9(4):e93827. https://doi.org/10.1371/journal.pone.0093827 PMID: 24714158

17. Ravi A, Valdes-Varela L, Gueimonde M, Rudi K. Transmission and persistence of IncF conjugative plas-

mids in the gut microbiota of full-term infants. FEMS microbiology ecology. 2018; 94(1).

18. Szabo M, Nagy T, Wilk T, Farkas T, Hegyi A, Olasz F, et al. Characterization of Two Multidrug-Resistant

IncA/C Plasmids from the 1960s by Using the MinION Sequencer Device. Antimicrob Agents Che-

mother. 2016; 60(11):6780–6. https://doi.org/10.1128/AAC.01121-16 PMID: 27600047

19. Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, et al. Efficient and robust RNA-seq pro-

cess for cultured bacteria and complex community transcriptomes. Genome Biol. 2012; 13(3):R23.

https://doi.org/10.1186/gb-2012-13-3-r23 PMID: 22455878

20. Yan Y-W, Zou B, Zhu T, Hozzein WN, Quan Z-X. Modified RNA-seq method for microbial community

and diversity analysis using rRNA in different types of environmental samples. PloS one. 2017; 12(10):

e0186161. https://doi.org/10.1371/journal.pone.0186161 PMID: 29016661

21. Krizanovic K, Echchiki A, Roux J, Sikic M. Evaluation of tools for long read RNA-seq splice-aware align-

ment. Bioinformatics. 2018; 34(5):748–54. https://doi.org/10.1093/bioinformatics/btx668 PMID:

29069314

22. Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing

to the genomics community. Genome Biology. 2016; 17:239. https://doi.org/10.1186/s13059-016-1103-

0 PMID: 27887629

23. Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate

with consensus molecular subtypes of colorectal cancer. Sci Rep. 2017; 7(1):11590. https://doi.org/10.

1038/s41598-017-11237-6 PMID: 28912574

24. NCBI Sequence Read Archive SRP117763 [Internet]. 2017.

25. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and process-

ing long-read sequencing data. Bioinformatics. 2018; 34(15):2666–9. https://doi.org/10.1093/

bioinformatics/bty149 PMID: 29547981

26. Lee Y, Kim WH, Lee S-j, Lillehoj HS. Detection of chicken interleukin-10 production in intestinal epithe-

lial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA. Veterinary

Immunology and Immunopathology. 2018; 204:52–8. https://doi.org/10.1016/j.vetimm.2018.10.001

PMID: 30596381

27. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

28. Taylor WP, Rachel. MinION sequence data: MinION sequencing of colorectal cancer tumor micro-

biomes–a comparison with amplicon-based and RNA-Sequencing. 2019.

29. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments.

Genome Biol. 2014; 15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807

PLOS ONE Comparison of microbiome analysis platforms for clinical samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0233170 May 20, 2020 14 / 16

https://doi.org/10.1002/ijc.29210
http://www.ncbi.nlm.nih.gov/pubmed/25220842
https://doi.org/10.1371/journal.pone.0171602
http://www.ncbi.nlm.nih.gov/pubmed/28151975
https://doi.org/10.1016/j.copbio.2011.11.013
https://doi.org/10.1016/j.copbio.2011.11.013
http://www.ncbi.nlm.nih.gov/pubmed/22154470
https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1371/journal.pone.0057923
http://www.ncbi.nlm.nih.gov/pubmed/23460914
https://doi.org/10.1371/journal.pone.0093827
http://www.ncbi.nlm.nih.gov/pubmed/24714158
https://doi.org/10.1128/AAC.01121-16
http://www.ncbi.nlm.nih.gov/pubmed/27600047
https://doi.org/10.1186/gb-2012-13-3-r23
http://www.ncbi.nlm.nih.gov/pubmed/22455878
https://doi.org/10.1371/journal.pone.0186161
http://www.ncbi.nlm.nih.gov/pubmed/29016661
https://doi.org/10.1093/bioinformatics/btx668
http://www.ncbi.nlm.nih.gov/pubmed/29069314
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.1186/s13059-016-1103-0
http://www.ncbi.nlm.nih.gov/pubmed/27887629
https://doi.org/10.1038/s41598-017-11237-6
https://doi.org/10.1038/s41598-017-11237-6
http://www.ncbi.nlm.nih.gov/pubmed/28912574
https://doi.org/10.1093/bioinformatics/bty149
https://doi.org/10.1093/bioinformatics/bty149
http://www.ncbi.nlm.nih.gov/pubmed/29547981
https://doi.org/10.1016/j.vetimm.2018.10.001
http://www.ncbi.nlm.nih.gov/pubmed/30596381
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1371/journal.pone.0233170


30. Breitwieser FP, Salzberg SL. Pavian: Interactive analysis of metagenomics data for microbiomics and

pathogen identification. bioRxiv. 2016:084715.
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