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Themovement-related cortical potential (MRCP) is a low-frequency negative shift in the electroencephalography (EEG) recording
that takes place about 2 seconds prior to voluntary movement production. MRCP replicates the cortical processes employed in
planning and preparation of movement. In this study, we recapitulate the features such as signal’s acquisition, processing, and
enhancement and different electrode montages used for EEG data recoding from different studies that used MRCPs to predict the
upcoming real or imaginary movement. An authentic identification of human movement intention, accompanying the knowledge
of the limb engaged in the performance and its direction of movement, has a potential implication in the control of external
devices.This information could be helpful in development of a proficient patient-driven rehabilitation tool based on brain-computer
interfaces (BCIs). Such a BCI paradigm with shorter response time appears more natural to the amputees and can also induce
plasticity in brain. Along with different training schedules, this can lead to restoration of motor control in stroke patients.

1. Introduction

The idea of predicting the motor tasks was initially presented
by Helmholtz in 1867. Later on, in the fifties Sperry and
Von Holst expressed that motor commands make an internal
replica which uncovers the anticipated movement and its
subsequent sensations [1–3]. From that point forward, the
thought of predicting the results of motor tasks by humans
has risen as a conspicuous theory in all features of sensori-
motor commands.

The brain’s current motor activity can be understood
in real time through EEG, which can be further employed
for prediction of the next voluntary motor task. Real-time
EEGmight present novel nonmuscular control channel Brain
Computer Interfaces (BCIs) for delivering messages and

commands to the external world [4].The immediate objective
of BCIs is to provide completely paralyzed users with basic
communication capabilities and determine their intent from
a range of different electrophysiological signals [4]. Further-
more, research has demonstrated great prospective in the
study of brain rhythms and event-related potentials (ERPs)
recorded by EEG. Therefore, understanding and analysis of
the brain rhythms and ERPs can be used to predict the
future motor activity and can be utilized for rehabilitation of
physically impaired persons [5].

Studies have shown that EEG comprises enough real-time
information to be utilized for different purposes/tasks such
as internet browsing, controlling environment (e.g., light,
television, and temperature), word processing, controlling
a two-dimensional cursor movement on screen, or even

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 346217, 13 pages
http://dx.doi.org/10.1155/2015/346217

http://dx.doi.org/10.1155/2015/346217


2 Computational and Mathematical Methods in Medicine

operating neuroprosthesis [4]. Tasks can be designed which
can be used for neurorehabilitation of patients affected with
neurodegenerative diseases such as amyotrophic lateral scle-
rosis [6] and other traumatic brain disorders like stroke [7].

The concept of “premovement” or “before themovement”
indicates the time when no muscle movement is evident or is
unrelated if it occurs, but the subject is fully familiar with the
action he is going to perform in the near future. This is also
referred to as planning/preparation of themovements. In this
time interval (i.e., 0.5–2 s prior to the movement onset), the
cortex is adapted for implementation of action [8, 9].

This paper aims to review the different studies which
have used movement-related cortical potentials (MRCPs) to
predict the upcoming movements. In the next section, we
illustrate the key modifications in the EEG data reported
prior to the voluntary movement and how the knowledge
of these variations can be used to extract information about
the forthcoming movement. In each case, we discuss the
main foundations of the study and evaluate the EEG setup
and protocols. Finally, in the Conclusion, we recapitulate the
key ideas with the hope to bring more consideration to the
affluence of premovement and premotor imagery EEG.

2. Detectable Changes in Brain Rhythm before
Onset of Movement

In this section, we summarize the reported changes in EEG
prior to the onset of the actual or imagery movement. All the
following phenomena have been delineated both when the
movement is imagined and when it is actually executed. One
or an amalgamation of these progressions is the fundamental
spotlight of the studies acquiring features from premotor
imagery or premovement period, discussed in Section 3.

2.1. MRCP and Its Components. The implementation of a
motor task in humans measured over the primary motor
cortex is preceded by a slow decrease in the EEG amplitude
(within at least 500ms) and this potential is known as an
MRCP [10], as shown in Figure 1. The MRCP produced
in corporation with the planning and execution of a cue-
based movement is known as contingent negative variation
(CNV) [11], and the one generated in response to self-
paced movement is known as Bereitschaftspotential (BP)
[12, 13]. The MRCP is present in real as well as in imaginary
volitionalmovements [10].TheMRCP comprises three events
called readiness potential (RP) or BP, motor potential, and
movement-monitoring potential (MMP), which are thought
to reflect movement planning/preparation, execution, and
control of performance, correspondingly [14, 15]. The MRCP
has been further investigated in normal persons as well as
in patients diagnosed with Amyotrophic Lateral Sclerosis,
tremor, Parkinson’s disease, and stroke, supporting the exe-
cution of their motor tasks [14, 16–18]. MRCPs associated
with imaginary tasks make them useful for rehabilitation in
patients obstructed in movements but still with the ability to
wish and imagine a movement [19, 20].

2.1.1. Bereitschaftspotential. BP or RP is a negative cortical
potential which starts to grow around 1.5 to 1 s prior to
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Figure 1: MRCPs of a healthy subject for real and imaginary right
ankle dorsiflexion. Each wave is an average of 50 large Laplacian
spatial filtered EEG trials recorded from sites F3, Fz, F4, C3,
Cz, C4, P3, Pz, and P4. Time 0 s is defined as the movement
onset. BP1 is early BP, BP2 is late BP, MP is motor potential, and
MMP is movement-monitoring potential. For more information on
experiment protocol, see [23].

the onset of a voluntary movement [12, 13]. It has two
fundamental segments: the first part is a slow-rising negative
segment which develops about 1.5 s before the movement
onset, known as “early BP,” and is more distinguished
in the central-medial scalp, while the second part has a
steeper slope and happens around 400–500ms before the
movement onset and is called “late BP” which has maximum
amplitude over the primary motor cortex [10]. The start of
BP regarding themovement onset varies considerably among
different conditions of movement and among subjects [10].
More details on BP can be found in the comprehensive
book “TheBereitschaftspotential-Movement RelatedCortical
Potentials” [21].

2.1.2. Contingent Negative Variation. CNV is a slow negative
wave that originates in the interval (1–1.5 s) between a
“Warning” and a “Go” stimulus [11]. It shows expectancy
for an imminent signal and preparation for execution of
a response. In other words, CNV reveals preparation for
signaled movements and is an indicator for anticipation.
The earlier part of the CNV is generated in response to a
“Warning” cue and has maximum amplitude over the frontal
cortex reflecting phase of the movement, whereas the later or
terminal CNV, reflecting preparation for a motor response,
begins around 1.5 s before the “Go” cue and has maximum
amplitude over themotor cortex [3, 22].The later part of CNV
happens even if the subject responds at the time he anticipates
the “Go” stimulus [11].

2.2. Generator Sources of MRCP. Several studies reported
that the BP might be recorded from subcortical structures
such as basal ganglia and thalamus [10]. The work [24]
deduced that the early BP was produced by both sensorimo-
tor areas. The work [25] verified that both the ipsilateral and
contralateral supplementary motor areas (SMAs) generated
potentials consistent with the early BP.



Computational and Mathematical Methods in Medicine 3

In order to elucidate the exact area and timing of the
motor cortical activation in voluntary movement, dipole
source analysis incorporating multiple constraints was
applied for MRCP. The work [26] suggested that medial
frontocentral (MFC) and sensorimotor areas (SM1) were
probable generators of MRCP.The strength of the six dipoles,
seeded at the activated spots (three dipoles in left SM1,
two in right SM1, and one in MFC) revealed by fMRI, was
measured over time. Inside the bilateral SM1, activation of
the precentral gyrus happens bilaterally with comparable
strength from −1.2 s, taken after by that of the precentral
bank from −0.5 s with contralateral dominance through
movement execution [26]. Consequently, the postcentral
bank gets active just on the contralateral side at 0.1 s after
movement. Activation of the MFC shows timing similar
to bilateral precentral gyri. The strength and timing of
arousal in the ipsilateral precentral gyrus were like those
in the contralateral precentral gyrus and the MFC. But
the ipsilateral precentral bank demonstrated much lesser
strength than the contralateral precentral bank [26].

To a certain degree, automatic movements such as blink-
ing of eyelids, spontaneous eye movements, swallowing,
chewing, and respiration are also controlled by volitional
factors; therefore, BP is recorded when these movements
are reiterated at a self-paced rate [10]. Self-paced finger
movements were related with activation of the anterior
SMA, both contralateral sensorimotor cortex and the lateral
premotor cortices, but without substantial activation of the
ipsilateral sensorimotor cortex [27]. For externally triggered
movement, a premovement potential preceding the stimulus
was present [27]. Similarly, there were few distinctions in the
areas of activation between externally triggered activations
and self-paced activation. For a self-paced finger movement,
[28] reported SMA activation anteceded that of the motor
cortex by 800ms.

The dorsal premotor cortex (PMd) is believed to play
substantial role in cued movement preparation rather than
in self-initiated movements [29]. The terminal CNV is gen-
erated in the prefrontal cortex including PMd, while the
late BP is generated in the primary motor cortex, SMA, and
primary somatosensory cortex [29].This study discovered the
effects of variation of PMd on BP and CNV reflecting self-
initiated versus cued movement preparation by increasing
and decreasing the excitability of brain using 5Hz and
1Hz repetitive transcranial magnetic stimulations (rTMS),
respectively. They found that rTMS of the left PMd resulted
in variation of terminal CNV but not late BP while rTMS
of the SMA proper resulted in a modification of late BP
but not terminal CNV. This provided evidence that neuronal
activity of the left PMd in humans is favorably included in
the preparation of externally cued movements as compared
to self-initiatedmovements, contrastingwith an opposite role
of the SMA proper.

Comparing the MRCP for a foot movement with hand
movement showed interesting differences across somemove-
ment components [30]. For the hand movement, the late BP
is highest over the contralateral central area (approximately
C1 or C2 of the International 10–20 System) and for the foot

movement, late BP is maximal at the midline (approximately
Cz) [30].

2.3. Recording MRCP. For the study of BP in individual
subjects against hand movements, it is vital to record EEG
frommultiple electrodes, includingC1 andC2, for identifying
the abrupt increase of the gradient [30]. The main recording
locations for MRCPs are C3, Cz, and C4 [31]. Different
studies used different number of electrodes and locations for
recording CNV, for example, C3, Cz, and C4 [32], Fz, Cz, Pz,
C3, and C4 [33], and only Oz [34].

The MRCP can easily be masked by activity in the higher
frequency bands because its amplitude typically lies between
5 and 30 𝜇V and only occurs at frequencies of around 0–
5Hz [31]. Several recordings of the same trials must be
taken and then averaged across these trials for meaningful
extraction of the MRCP from EEG traces [35]. The reason
behind this approach is that EEG data recorded from a single
trial contains both the MRCP waveform and spontaneous,
random noise [36]. By averaging, the background noise in
each trial will be cancelled out, leaving only the MRCP when
the data frommultiple trials is filtered to eliminate the higher
frequency activity and averaged together.

2.4. Factors Influencing BP. Components of MRCP can be
inspired by various factors such as preparatory state, level
of intention, movement selection, pace of movement repe-
tition, speed and precision of movement, praxis movement,
perceived effort, force exerted, discreteness and complexity
of movement, learning and skill acquisition, and pathological
injuries of various brain structures. The review by [10]
sums up several factors influencing BP. Recently, few studies
intended to analyze the effect of kinetics of movement such
as force and speed on MRCPs [37–40].

3. Prediction of Intention of Movement

In this section, we extracted information of the premovement
or preimageries from different studies. Some studies display
the usefulness of data obtained in the real-time BCIs. Studies
utilized different EEG data acquisition techniques including
different electrode montages and signal enhancement meth-
ods, since these are related to the results reported. Studies
mentioned in Tables 1 and 2 try to answer the question
whether or not the subject would like to move in the short
future. These studies verify that by using MRCPs with the
right EEG setting and signal processing techniques, major
information can be deduced about the movement yet to
come. This section briefly describes some classifiers, filters,
and performance metrics used in the studies mentioned in
Table 2.

3.1. Classification Algorithms. This section briefly describes
the classification algorithms used in studiesmentioned in this
paper. The classification algorithms include Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), Neu-
ral Networks (NN), Multilayer Perceptron (MLP), Bayesian
Classifier (BC), 𝑘 nearest neighbors (𝑘NN), andMahalanobis
Distance (MD). Some of these classification techniques have
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Table 1: Experiment protocols of studies reviewed.

Reference Number of
subjects

Number of
electrodes Movement type Self-paced or

cue-based Brain signals

(Yom-Tov and
Inbar, 2003) [43] 5 (healthy)

9, 4 out of 9
channels were

used

Executed finger
movement (button

press)
Self-paced MRPs

(Haw et al., 2006)
[60]

5 (not
mentioned) 1 Executed finger

movements Cue-based BP

(Bai et al., 2007)
[61] 12 (healthy) 122 Executed hand

movement Self-paced
MRCPs and ERD
(event-related

desynchronization)

(Boye et al., 2008)
[53]

1 (not
mentioned) 9

Executed and
imagined foot

movement (isometric
plantar-flexion), but
only imaginary task
was further analyzed

Cue-based MRCP

(Kato et al., 2011)
[34]

7 (not
mentioned) 1

Executed and
imagined finger

movements (button
press)

Cue-based CNV

(Niazi et al., 2011)
[42]

19 (healthy)
and 5 (stroke
patients)

10

Executed and
imagined foot

movement (ankle
dorsiflexion)

Self-paced BP

(Lew et al., 2012)
[63]

8 (healthy), 2
(control), and

2 (stroke
patients)

64, 34 out of 64
channels were

used

Executed arm
movements (reaching

task)
Self-paced BP

(Niazi et al., 2012)
[19] 16 (healthy) 10

Imagined foot
movements
(dorsiflexion)

Self-paced MRCP

(Niazi et al., 2013)
[65]

20 (healthy)
and 5 (stroke
patients)

10

Executed and
imagined foot
movements
(dorsiflexion)

Self-paced MRCP

(Ahmadian et al.,
2013) [64] 3 (healthy) 128 channels Finger movement

(button press) Self-paced BP

(Jochumsen et al.,
2013) [39] 12 (healthy) 10

Executed foot
movement (isometric

dorsiflexion)
Cue-based MRCP

(Jiang et al., 2015)
[66] 9 (healthy) 9

Executed foot
movements
(stepping)

Self-paced MRCP

(Xu et al., 2014)
[20] 9 (healthy) 9

Executed and imagery
foot movements
(dorsiflexion)

Self-paced MRCP

been reviewed in detail by [41]. The details of Matched Filter
technique can be found in [42] and for Locality Preserving
Projection (LPP) in [20].

3.1.1. Support Vector Machine. The Support Vector Machine
(SVM) is a pattern recognition algorithm that has been
successfully applied towide variety of classification problems.
It learns to distinguish among various classes of objects by
some complex data transformations and then separate the
data based on the defined labels for classes. For example,

the data for a two-class problem consist of objects labeled
corresponding to two classes, for example, +1 (data belong
to class 1) or −1 (data belong to class two). The system then
automatically identifies the input points and uses them to
represent the solution [43].

3.1.2. Linear Discriminant Analysis. The purpose of Linear
Discriminant Analysis (LDA) (also called Fisher’s LDA) is
to use hyperplanes to isolate the data into different classes
[44]. The segregating hyperplane is acquired by seeking the
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projection that decreases the interclass variance and increases
the distance between the two classes’ means. To solve a two-
class problem the isolation of the input data vector into either
class depends on presence of the data vector on which side of
the hyperplane [44].

3.1.3. Neural Networks. Neural Networks (NN) can be
thought as circuits of immensely interconnected units with
flexible interconnection weights, which allow us to yield
nonlinear decision boundaries. They can be classified by
architecture, algorithm for calibrating the weights, and the
kind of units utilized as a part of the circuit [45]. Most widely
used NN is the MLP.

3.1.4. Multilayer Perceptron. Multilayer Perceptron (MLP) is
composed of several layers of neurons: an input layer, perhaps
one or many hidden layers, and an output layer [45]. Each
input layer is connected with the output of the previous layer,
while the neurons of the output layer deduce the class of the
input feature vector. MLP can approximate any continuous
function when it is composed of enough neurons and layers.
It can also classify any number of classes, which makes MLP
very flexible classifiers and adaptive to a variety of problems
[46].

3.1.5. Bayesian Classifiers. Bayesian Classifier (BC) depends
on Bayes’ theorem and can anticipate class membership
probabilities, for example, the likelihood that a given sample
fits into a specific class. In order to classify a feature vector,
it learns the way of computing the probability of each class.
BC assumes that estimation of a specific feature does not
rely on value of any other feature, which provided the class
variable. Being a generative classifier, it produces nonlinear
decision boundaries and performs more efficient rejection of
uncertain samples as compared to discriminative classifiers
[44].

3.1.6. k Nearest Neighbors. The objective of this method is
to allocate to an unseen point the dominant class amongst
its 𝑘 nearest neighbors within the training set. 𝑘NN can
approximate any function with enough training samples and
a sufficiently high value of 𝑘, which allows it to yield nonlinear
decision boundaries [47].

3.1.7. Mahalanobis Distance. Mahalanobis Distance assigns a
feature vector to a class according to its nearest neighbor(s)
from a class prototype. It assumes a Gaussian distribution
𝑁(𝜇𝑐,𝑀𝑐) for each prototype of the class 𝑐. Then a feature
vector 𝑥 is allocated to the class that links to the nearest
prototype [48]:

𝑑

𝑐

(𝑥) =

√

(𝑥 − 𝜇

𝑐

)𝑀

−1

𝑐

(𝑥 − 𝜇

𝑐

)

𝑇

.

(1)

3.2. Spatial Filters. A spatial filter amalgamates data from two
or more locations (electrodes). Spatial filtering techniques
comprise common spatial patterns (CSP), common aver-
age referencing (CAR), surface Laplacian (SL), independent
component analysis (ICA), and principle component analysis

(PCA). This section briefly describes some spatial filters; for
more details please refer to [49].

ICA is a method intended to find a linear illustration of
non-Gaussian data in the form of statistically independent
constituent components [50]. Measured signals comprising a
linear mixture of statistically independent source signals can
be dissolved into their vital Independent Components (ICs),
hence deducing the original source signals using ICA [50, 51].
ICA finds the weighting of the channels from the data like
PCA and CSP [4], while CAR and SL amalgamate channels
linearly to produce a set of weights that does not depend on
the underlying data [4]. SL highlights the radial component
of the neural activity placed directly below each recording
electrode from sources, whereas ICA is capable of detecting
both radial and tangential sources and consequently may be
beneficial over SL [4, 52].The details regarding CSP and CAR
can be found in [49].

3.3. Performance Measures. The performance of studies is
computed using sensitivity, specificity, and detection error.
Sensitivity (also known as true positive rate (TPR)) quantifies
the fraction of actual positives (movements) which are
precisely recognized. Specificity (also called the true negative
rate (TNR)) assesses the fraction of negatives (no motion or
noise) which are exactly detected. Sensitivity and specificity
are calculated using the following equations, respectively,
where TP and TN represent number of true positives and
number of true negatives, respectively [53]:

Sensitivity = TP
TP + FN

,
(2)

Specificity = TN
TN + FP

.
(3)

4. Studies for Predicting
the Intention of Movement

For the development of self-paced closed loop BCIs, the
robust detection ofmotor intention is a vital and critical issue.
In the past decades, sensory motor rhythms have been used
for detection of motor intention in studies comprising BCIs
to control visual feedback [54] or trigger external devices
[55] without investigating latency. In the initial studies, the
acceptable delay in control has not been considered in detail
for BCI control applications. In other fields, for example,
multifunction prostheses control by myoelectric signals, a
200ms delay is considered acceptable [56–58]. To induce
plasticity in BCI-based neurorehabilitation applications, it
was demonstrated that the required delay was in the same
range as for control, that is, in the order of a few hundred
milliseconds [59]. Therefore, a reliable detection with mini-
mal latency and high accuracy would play a vital role in an
effective BCI rehabilitation tool [7].

4.1. Techniques Utilized and Performance. In recent years,
slow cortical potentials captured the attention in the reha-
bilitation field. Several studies have been reported, which
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concentrated their attention intended for communication
purposes.

Yom-Tov and Inbar [43] developed an algorithm com-
bining Matched Filter, a nonlinear transformation, and a
classifier to detect MRCP using small number of EEG chan-
nels. The algorithm was compared with Mason-Birch low-
frequency asynchronous detector (LFASD) and optimum
detector by both offline evaluation and theoretical analysis.
The algorithm used by this study showed 25% improvement
and the detector worked at a rate of 25 decisions s−1 as
compared to 16 decisions s−1 in the LFASD. But the detector
may not be useful in every application and failed to operate
correctly, partly due to interference of MRPs from other
limbs of the body and possibly due to imagined movements.
These verdicts indicate that correctly identified features have
amajor role not only in discardingMRCPs due tomovements
that are not part of the BCI system, but also in determining
the limbmoved (or imaginedmovement) by the user. During
sessions, training the subject to reduce body movement can
probably attain better results.

To detect movement planning, [60] employed a user-
specific template matching structure as part of a method. In
this study, the emphasis was more on movement detection
than the prediction. Performing actual fingermovement with
cues, one electrode recorded BP waveform which was then
used to build the template. However, inconsistency in per-
formance between subjects was evident in this study which
needsmore investigation or perhaps a differentmethodology.

From single trial EEG, [61] showed that effectual com-
binations of computational methods can deliver possible
classification of human movement intention using large
number of electrodes.The combinations of temporal filtering
using power spectral density estimation and discrete wavelet
transform, spatial filtering using ICA and surface Laplacian
derivation, and classificationmethods using LMD,QMD,BC,
and SVM provided higher performance than those of other
combinations. Evaluation is recommended in order to check
whether performance can be enhanced after training with
feedback or not.

The validity of OSF on imagination of isometric plantar-
flexion was confirmed in a study conducted by [53]. Features
were extracted with PCA and classification was performed
using 𝑘NN and SVM. In this study, the TPRs were high (80–
90%) but the method was verified on segmented data instead
of ongoing EEG traces with one subject only.

Kato et al. [34] designed a BCImaster switch by detecting
the CNV related potentials and performed both offline and
online studies. In order to ameliorate the single-trial discrimi-
nation of user intentions to switch, CNVwas employed due to
its high SNR. Using only one electrode and performing four
cued button press tasks, they also applied SVM to improve
the single-trial detection of CNV-related potentials. Their
online system did not discern between “intend to switch” and
“do not intend to switch.” This was maybe because of using
default parameters of SVM in LIBSVM for the distinction of
CNV-related potentials [34, 62].

The detection of movement intention from single trial
MRCPs of movement imagination and movement execution

was performed by [42].The task performed by the subject was
always the same (ankle dorsiflexion). They performed offline
detection due to instrumentation limitation and provided the
feasibility of the approach in stroke patients, along with the
extensive analysis in healthy subjects. The accuracy of the
detection of movement intention was measured by applying
a similar spatial filtering technique. In this study, a portion of
the negative phase (2 s) of the MRCP was used as a template.
In order to improve SNR of MRCP, OSF was used (TPR of
82.5±7.81%). OSF outperformed large Laplacian spatial filter
(TPR of 68.7 ± 14.9%) and CSP (TPR = 55.4 ± 14.01%).

Lew et al. [63] explained that it is possible to predict
the movement 500ms before its occurrence. For the training
phase, the signal prior tomovement onset by 500mswas used
in comparison with 500ms before the auditory cue. While a
shifting windowwas implemented for the test phase and LDA
was employed, their results showed maximum average TPR
of 81% for left hand while 79% for right of stroke and control
subjects. While for healthy subjects average TPR was 76± 7%
with latency of−167±68ms.This offline study employed large
number of electrodes with small sample size of patients.

Ahmadian et al. [64] showed the superiority of CBSE
based algorithm in detection of brain potential compared
with BSS based algorithm using LDA. Subjects performed
cued button preprocessing. CBSE based algorithm took 0.26 s
while BSS based algorithm took 51.90 s. All 128 channels
EEG data was employed in the analysis. It was suggested that
false detection rate can be reduced if BSS-based algorithm
uses extracted sources which are mistaken with the shape
of BP from other regions of brain. On the other hand, this
amendment would increase the computation time.

Motor intention could be detected fromMRCP using the
Matched Filter, with small latency and satisfactory accuracy.
The same task was performed in [19, 20, 42, 65]. Niazi et al.
performed analysis on both healthy and stroke patients [42,
65]. He investigated the possibility of eluding the individual
training phase in the detection of movement intention. The
detection accuracy with the average template for the motor
imagery data was 65 ± 22% [65] and with the individual
template was 60 ± 13% [65].

Jochumsen et al. [39] detected movement intentions
and extracted distinct levels of speed and force of the
intended movements. The temporal features were classified
with an optimized SVM. This study evaluated performance
when detection was combined with classification.The system
correctly detected 81% of the movements. At the point of
detection, system classified 75 ± 9% and 80 ± 10% when
altering the force and speed, respectively. After combination
of detector and classifier, the system detected and correctly
classified 64 ± 13% and 67 ± 13% of movements. Incorrectly
detected and classified movements were about 21 ± 7% and
16 ± 9% while latency was 317 ± 73ms before the movement
onset. The authors included only healthy subjects and the
signals were processed offline. The performance of system
will decline if user is a patient due to severity of motor
impairment, mood, and amount of training.

Xu et al. [20] performed analysis on healthy subjects
only. In this study, LPP-LDA showed higher accuracy and
shorter latency thanMatched Filter, having limitation that the
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classifier would not work when training trials were less than
15. The proposed algorithm had similar FPR for imagination
and execution across all subjects. TPR for execution and
imagery was greater than 80% and 70% in this study, making
it significantly better than thosewithMatched Filter approach
[19, 42, 65]. Also detection latency (315 ± 165ms) was
significantly shorter than that with Matched Filter (460 ±
123ms) [19, 42, 65].

To further improve the results, [66] applied ICA and the
LSF to improve the signal-to-noise ratio of MRCP. Following
these preprocessing steps, Matched Filter was applied to
perform single-trial detection of gait initiation. TPR was
76.9 ± 8.97%, and the false positive rate FPR was 2.93 ± 1.09
perminute. On a single trial basis, these results demonstrated
the possibility of detecting the intention of gait initiation from
EEG signals.

In a recent study by [67], six healthy persons and eight
stroke patients performed upper limb self-paced reaching
movements. This study used a classifier that combined the
information acquired from analysis of the BP and ERD
cortical processes. System validation was performed with the
combined classifier (ERD and BP patterns) and equivalent
classifiers (using either BP or ERD). The results obtained
for healthy subjects were similar to [20]. However, the
average latencies (healthy: −89.9 ± 349.2ms and patients:
35.9 ± 352.3ms) were less than [20] (315 ± 165ms). These
dissimilarities might be due to differences in the way sub-
jects executed the task in each experiment such as changes
between upper limb and lower limb cortical patterns, speed of
movements among others, and length of the resting intervals
between movements. The observed alterations could also be
because of the combined use of the ERD and BP features
anticipated here, which facilitates reduction in FPR and, as
a result, enables the preference of more anticipative detection
thresholds [67].

A complexity confronted in this paper involves the
absence of similar studies in terms of purpose of detector, sig-
nal acquisition, limbmovement, and number of electrodes. It
should be noted that movements executed in different studies
were not similar leading to variances in signal morphology
and SNR. Ideally studies should be compared within the
same context, that is, with similar protocol, users, and similar
extraction of features.

Although thementioned studies have delivered a valuable
insight into the prediction of MRCPs using different signal
acquisition techniques, the framework of research is not
without its impediments. One limitation relevant to most
of the studies mentioned is the absence of clear ecological
validity in the research, that is, “the extent to which an
experimental situation mimics a real world situation” [31].
Presence of an ecological validity in a study means that
the expertise used in the laboratory situation could be as
equivalent as possible to the real skill the research is exploring
and preferably identical.

4.2. Guidelines to Choose a Classifier. EEG signals are notably
nonstationary so training sets acquired from different ses-
sions are probable to be quite different. Consequently, a low
variance (sensitivity to training set) can be a solution to tackle

with the variability issue in some studies. Unstable classifiers
tend to have a low bias (deviation between the estimated
mapping and the superlative mapping) and a high variance,
while stable classifiers have a high bias and a low variance [41].
This might be an explanation of why some simple classifiers
like SVM, Matched Filter, and so forth sometimes surpass
more than complex ones. Simple classifiers are generally
slower than other classifiers but fast enough for real-time
applications. Here the question is whether it is worthy to get
higher performance at the expense of computational cost. In
order to attain minimal classification error, both the variance
and the bias must be small. Unfortunately, natural variance-
bias tradeoff is always present [41].

The classifier will probably give bad performance if the
number of training data is lesser matched to the size of the
feature vectors. Usage of at least five to ten times training
samples per class as the dimensionality is recommended [68,
69]. Generally the training set is small and dimensionality is
high so; unluckily this cannot be useful in all BCI systems.
One of the reasons might be the long duration of the tasks,
which on the other hand is hectic for subjects. Consequently
this “curse” is a key concern in BCI design.

Furthermore, combinations of classifiers also seem to be
very efficient in some studies [20, 70, 71]. Normally exper-
iments are performed in a controlled manner minimizing
noise and other artifacts while presence of noise in real life
scenario is quite obvious. One possible solution might be to
increase the generalization abilities of the classifier.

5. Future Work

MRCP has been employed as a control signal in BCI
technology. It is mainly beneficial for neuromodulation
applications in which the delay between the intention of
action and the feedback from the system is crucial to induce
plasticity [19]. BCIs have primarily been used for control
and communication purposes [4]; however, in recent years
its prospective in neurorehabilitation has been studied such
as functional electrical stimulation [6]. BCIs are extensively
used in research and major concern is its long-term effects or
long-term changeability of EEG signals to evaluate retention
of the plasticity over time [7]. So there is a need to design
studies over longer duration to evaluate the performance and
accuracy of the BCI system for healthy subjects and patients.
As signal processing in BCIs continues to progress, the next
perspective is to integrate additional information regarding
neurophysiology, disease behaviors and its advancement, and
signal dynamics into the existing or future approaches.

6. Conclusion

EEG data collected prior to imminent movement which
associates withmotor preparation and planning period of the
brain present substantial prediction potentials. Illustrating
the intention to move through MRCP can be employed in
rehabilitation protocols. Depending on the purpose of the
BCI system, a higher TPR could be achieved increasing the
number of false positives, while some studies tend to give a
priority to a lowFPR rather than highTPRs [43]. In summary,
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this paper reviews the proficiency of EEG in predicting the
next motor task and primarily targeted at providing the
examples of the progress in this field.
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[25] A. Ikeda, H. O. Lüders, R. C. Burgess, and H. Shibasaki,
“Movement-related potentials recorded from supplementary
motor area and primary motor area: role of supplementary
motor area in voluntary movements,” Brain, vol. 115, no. 4, pp.
1017–1043, 1992.

[26] K. Toma, T. Matsuoka, I. Immisch et al., “Generators of
movement-related cortical potentials: fMRI-constrained EEG
dipole source analysis,” NeuroImage, vol. 17, no. 1, pp. 161–173,
2002.

[27] M. Jahanshahi, I. H. Jenkins, R. G. Brown, C. D. Marsden, R. E.
Passingham, and D. J. Brooks, “Self-initiated versus externally
triggered movements I. An investigation using measurement of
regional cerebral blood flow with PET and movement-related
potentials in normal and Parkinson’s disease subjects,” Brain,
vol. 118, no. 4, pp. 913–933, 1995.



12 Computational and Mathematical Methods in Medicine

[28] D. Wildgruber, M. Erb, U. Klose, and W. Grodd, “Sequential
activation of supplementary motor area and primary motor
cortex during self-paced finger movement in human evaluated
by functional MRI,”Neuroscience Letters, vol. 227, no. 3, pp. 161–
164, 1997.

[29] M.-K. Lu, N. Arai, C.-H. Tsai, and U. Ziemann, “Movement
related cortical potentials of cued versus self-initiated move-
ments: double dissociated modulation by dorsal premotor
cortex versus supplementary motor area rTMS,” Human Brain
Mapping, vol. 33, no. 4, pp. 824–839, 2012.

[30] H. Shibasaki, G. Barrett, E. Halliday, and A. M. Halliday,
“Components of the movement-related cortical potential and
their scalp topography,” Electroencephalography and Clinical
Neurophysiology, vol. 49, no. 3-4, pp. 213–226, 1980.

[31] D. J. Wright, P. S. Holmes, and D. Smith, “Using the movement-
related cortical potential to study motor skill learning,” Journal
of Motor Behavior, vol. 43, no. 3, pp. 193–201, 2011.

[32] S. K. Jankelowitz and J. G. Colebatch, “Movement-related
potentials associated with self-paced, cued and imagined arm
movements,”Experimental Brain Research, vol. 147, no. 1, pp. 98–
107, 2002.

[33] T. Nonaka, M. Yoshida, T. Yamaguchi et al., “Contingent
negative variations associated with command swallowing in
humans,” Clinical Neurophysiology, vol. 120, no. 10, pp. 1845–
1851, 2009.

[34] Y. X. Kato, T. Yonemura, K. Samejima, T. Maeda, and H. Ando,
“Development of a BCI master switch based on single-trial
detection of contingent negative variation related potentials,” in
Proceedings of the 33rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBS ’11),
pp. 4629–4632, IEEE, Boston, Mass, USA, September 2011.

[35] N. Birbaumer, T. Elbert, A. G. M. Canavan, and B. Rockstroh,
“Slow potentials of the cerebral cortex and behavior,” Physiolog-
ical Reviews, vol. 70, no. 1, pp. 1–41, 1990.

[36] S. J. Luck, An Introduction to The Event-Related Potential
Technique, MIT Press, 2014.

[37] D. Farina, O. F. do Nascimento, M.-F. Lucas, and C. Doncarli,
“Optimization of wavelets for classification of movement-
related cortical potentials generated by variation of force-related
parameters,” Journal of Neuroscience Methods, vol. 162, no. 1-2,
pp. 357–363, 2007.

[38] Y. Gu, O. F. Do Nascimento, M.-F. Lucas, and D. Farina, “Iden-
tification of task parameters from movement-related cortical
potentials,”Medical & Biological Engineering & Computing, vol.
47, no. 12, pp. 1257–1264, 2009.

[39] M. Jochumsen, I. K. Niazi, N. Mrachacz-Kersting, D. Farina,
and K. Dremstrup, “Detection and classification of movement-
related cortical potentials associated with task force and speed,”
Journal of Neural Engineering, vol. 10, no. 5, Article ID 056015,
2013.

[40] Y. Fu, B. Xu, L. Pei, and H. Li, “Time domain features for
relationship between speed and slow potentials activity during
periodic movement and motor imagery at fast and slow for
BCRI,” Procedia Environmental Sciences, vol. 8, pp. 498–505,
2011.

[41] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi,
“A review of classification algorithms for EEG-based brain-
computer interfaces,” Journal of Neural Engineering, vol. 4, no.
2, 2007.

[42] I. K. Niazi, N. Jiang, O. Tiberghien, J. F. Nielsen, K. Dremstrup,
and D. Farina, “Detection of movement intention from single-
trial movement-related cortical potentials,” Journal of Neural
Engineering, vol. 8, no. 6, Article ID 066009, 2011.

[43] E. Yom-Tov and G. F. Inbar, “Detection of movement-related
potentials from the electro-encephalogram for possible use in
a brain-computer interface,”Medical and Biological Engineering
and Computing, vol. 41, no. 1, pp. 85–93, 2003.

[44] K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, 2013.

[45] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, Oxford, UK, 1995.

[46] L. Breiman, “Arcing classifier (with discussion and a rejoinder
by the author),” The Annals of Statistics, vol. 26, pp. 801–849,
1998.

[47] B. Blankertz, G. Curio, andK.-R.Muller, “Classifying single trial
EEG: towards brain computer interfacing,” in Proceedings of the
Advances in Neural Information Processing Systems (NIPS ’02),
vol. 1, pp. 157–164, September 2002.

[48] F. Cincotti, A. Scipione, A. Timperi et al., “Comparison of
different feature classifiers for brain computer interfaces,” in
Proceedings of the 1st International IEEE EMBS Conference on
Neural Engineering, pp. 645–647, Capri Island, Italy, March
2003.

[49] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R.
Müller, “Optimizing spatial filters for robust EEG single-trial
analysis,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 41–
56, 2008.

[50] A. Hyvärinen and E. Oja, “Independent component analysis:
algorithms and applications,” Neural Networks, vol. 13, no. 4-5,
pp. 411–430, 2000.

[51] S. Wang and C. J. James, “Extracting rhythmic brain activity for
brain-computer interfacing through constrained independent
component analysis,” Computational Intelligence and Neuro-
science, vol. 2007, Article ID 41468, 9 pages, 2007.

[52] S. Makeig, S. Debener, J. Onton, and A. Delorme, “Mining
event-related brain dynamics,” Trends in Cognitive Sciences, vol.
8, no. 5, pp. 204–210, 2004.

[53] A. T. Boye, U. Q. Kristiansen, M. Billinger, O. F. D. Nascimento,
and D. Farina, “Identification of movement-related cortical
potentials with optimized spatial filtering and principal com-
ponent analysis,” Biomedical Signal Processing and Control, vol.
3, no. 4, pp. 300–304, 2008.

[54] A. Ramos-Murguialday, D. Broetz, M. Rea et al., “Brain-
machine interface in chronic stroke rehabilitation: a controlled
study,” Annals of Neurology, vol. 74, no. 1, pp. 100–108, 2013.

[55] A. Biasiucci, R. Leep, A. Al-Khodairy, A. Buhlmann, and J.
D. R. Millán, “Motor recovery after stroke by means of BCI-
guided functional electrical stimulation,” in Proceedings of the
5th International Brain-Computer Interface Meeting, Asilomar,
Calif, USA, June 2013.

[56] J. E. Paciga, P. D. Richard, and R. N. Scott, “Error rate in
five-state myoelectric control systems,” Medical and Biological
Engineering and Computing, vol. 18, no. 3, pp. 287–290, 1980.

[57] R. T. Lauer, P. H. Peckham, K. L. Kilgore, and W. J. Heetderks,
“Applications of cortical signals to neuroprosthetic control: a
critical review,” IEEE Transactions on Rehabilitation Engineer-
ing, vol. 8, no. 2, pp. 205–208, 2000.

[58] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,”
Nature, vol. 453, no. 7198, pp. 1098–1101, 2008.



Computational and Mathematical Methods in Medicine 13

[59] N. Mrachacz-Kersting, S. R. Kristensen, I. K. Niazi, and D.
Farina, “Precise temporal association between cortical poten-
tials evoked by motor imagination and afference induces corti-
cal plasticity,”The Journal of Physiology, vol. 590, no. 7, pp. 1669–
1682, 2012.

[60] C. Haw, D. Lowne, and S. Roberts, “User specific template
matching for event detection using single channel EEG,” in
Proceedings of the 3rd International Brain-Computer Interface
Workshop and Training Course, p. 44, Graz University of
Technology, Graz, Austria, September 2006.

[61] O. Bai, P. Lin, S. Vorbach, J. Li, S. Furlani, and M. Hallett,
“Exploration of computational methods for classification of
movement intention during human voluntary movement from
single trial EEG,” Clinical Neurophysiology, vol. 118, no. 12, pp.
2637–2655, 2007.

[62] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, article 27, 2011.

[63] E. Lew, R. Chavarriaga, S. Silvoni, and J.D. R.Millán, “Detection
of self-paced reaching movement intention from EEG signals,”
Frontiers in Neuroengineering, vol. 5, 2012.

[64] P. Ahmadian, S. Sanei, L. Ascari, L. González-Villanueva, and
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