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Network neighbors of viral targets 
and differentially expressed genes 
in COVID‑19 are drug target 
candidates
Carme Zambrana1, Alexandros Xenos1, René Böttcher1, Noël Malod‑Dognin1,2 & 
Nataša Pržulj1,2,3*

The COVID-19 pandemic is raging. It revealed the importance of rapid scientific advancement towards 
understanding and treating new diseases. To address this challenge, we adapt an explainable artificial 
intelligence algorithm for data fusion and utilize it on new omics data on viral–host interactions, 
human protein interactions, and drugs to better understand SARS-CoV-2 infection mechanisms and 
predict new drug–target interactions for COVID-19. We discover that in the human interactome, the 
human proteins targeted by SARS-CoV-2 proteins and the genes that are differentially expressed 
after the infection have common neighbors central in the interactome that may be key to the 
disease mechanisms. We uncover 185 new drug–target interactions targeting 49 of these key genes 
and suggest re-purposing of 149 FDA-approved drugs, including drugs targeting VEGF and nitric 
oxide signaling, whose pathways coincide with the observed COVID-19 symptoms. Our integrative 
methodology is universal and can enable insight into this and other serious diseases.

The ongoing COVID-19 pandemic exposed the shortcomings of healthcare systems and devastated the 
economy1–3. A major issue is the lack of adequate medications. This has mostly been addressed by extrapolating 
drug targets from related viruses and assessing the efficacy of approved drugs4–7. Once an effective vaccine has 
been developed, immunizing most of the population will pose serious other challenges, including economic and 
logistic ones. Thus, treatment options for patients is a key issue that will remain relevant.

The COVID-19 disease is caused by a betacoronavirus termed severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2). This virus reproduces in the upper respiratory tract and is highly infectious due to 
asymptomatic carrier transmission8,9. As a (+)RNA virus, SARS-CoV-2 completely depends on infected host 
cells to replicate and thus, interactions with the host molecular network are crucial in avoiding the host immune 
response and reprogramming the cell to enforce its reproduction10. SARS-CoV-2 binds to a cellular receptor to 
enter a host cell, the exopeptidase angiotensin converting enzyme 2 (ACE2)11. Upon ACE2 binding, transmem-
brane protease, serine 2 (TMPRSS2), is required to prime the viral spike protein and allow the virus to enter 
the host cell via endocytosis12,13. Once a cell has been infected, the synthesized viral proteins can interact with a 
number of host factors to perform viral functions, likely by modulating cellular processes ranging from vesicle 
trafficking to regulating gene-expression and ubiquitination5. An inflammatory response to the SARS-CoV-2 
infection had been revealed by 1910 differentially expressed host genes (DEGs) in infected lung tissue14. Elevated 
glucose levels and glycolysis have been shown to promote SARS-CoV-2 replication and cytokine production in 
monocytes15. Thus, targeting metabolic pathways may provide new strategies to treat COVID-19 disease. While 
many studies focused on ACE2, TMPRSS2 and other direct viral interaction targets as candidates for treating 
SARS-CoV-212,16,17, few studies have investigated the positioning of the protein targets in the host molecular 
interactome and the possible impacts of such positioning18,19. Interestingly, the DEGs from Blanco-Melo et al.14 
show little overlap (1.78%) with human proteins that directly interact with the viral ones (described by Gordon 
et al.5). Thus, the underlying molecular mechanisms, from the proteins targeted by the virus to the ones altered 
once the infection is onset, is not fully understood.

Novel insights have been found by integrating several different molecular interaction network types, by using 
data fusion algorithms, such as finding cellular wiring patterns specific to disease (“rewired genes” in disease 
compared to control), that can also be used for predicting new cancer-related genes20,21. These data fusion 

OPEN

1Barcelona Supercomputing Center, Barcelona, Spain. 2Department of Computer Science, University College 
London, London WC1E 6BT, UK. 3ICREA, Pg. Lluís Companys 23, Barcelona, Spain. *email: natasha@bsc.es

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-98289-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18985  | https://doi.org/10.1038/s41598-021-98289-x

www.nature.com/scientificreports/

algorithms are based on Non-Negative Matrix Tri-Factorization (NMTF), which approximates a high-dimen-
sional data matrix that contains relations between two entities (e.g. between proteins and drugs) as a product of 
three low-dimensional, non-negative matrices (called factors)22. NMTF based methods were initially proposed 
for dimensionality reduction and co-clustering due to its relatedness to k-means clustering22–24. The clustering 
information is encoded in the low-dimensional matrix factors, named cluster indicator matrices. Moreover, 
NMTF is also an intermediate data integration method, by which several relational matrices can be decomposed 
simultaneously sharing a matrix factor across the decompositions, that directly integrates all datasets through the 
inference of a single joint model; it can also be used for predicting new entries in the input matrices due to the 
matrix completion property20,21,25,26. Unlike other artificial intelligence algorithms, this method is interpretable 
and its predicted values are traceable, which are essential properties when mining biological data. These inherent 
features of NMTF, interpretability, dimensionality reduction, co-clustering and prediction of new entries (via 
matrix completion), have thus far been used for predicting disease associations25, protein–protein interactions23 
and gene functions27, as well as for discovering disease-related genes28. Moreover, for cancer, this data fusion 
framework successfully uncovered patient subgroups with different prognostic survival outcomes, predicted 
novel cancer-related genes and proposed drugs for re-purposing21. Thus, to predict candidate target genes and the 
existing drugs that could be re-purposed for treating COVID-19, we adapt our versatile data fusion framework 
to fuse viral host interactions, human protein interactions, and drug data21. Among the predicted drug-target 
interactions (DTIs), we observed that one-third of the targeted genes directly connect the host proteins targeted 
by the viral proteins (we termed them viral interactors (VIs)) and the host differentially expressed genes (DEGs). 
Thus, we decided to further explore how the VIs and the DEGs are connected in the host interactome.

The host molecular interactome is usually modeled by using networks, where biological entities (genes, or 
equivalently in this study, proteins, as gene products) and the interactions between them are represented as 
network nodes and edges (links), respectively. Networks are widely applicable and are frequently used for repre-
senting: physical interactions of proteins via protein–protein interaction (PPI) networks; metabolic interactions 
(MI) that correspond to known metabolic pathways; or functional associations between genes, such as epistasis 
via genetic interaction (GI) networks. To obtain information about the organization of a network and the wiring 
patterns of its nodes, various network properties are being used, ranging from the basic node degree (the number 
of edges incident to the node; the higher the degree, the more “degree central” the node) to several other meas-
ures of network centrality29. Furthermore, local and global network topology can be assessed by using graphlets, 
small, connected, non-isomorphic, induced subgraphs of large networks, that provide a quantitative measure 
of the wiring pattern around a node in the network and thus have been used for various applications, including 
for node centrality and network distance measures30,31. In particular, Graphlet Degree Vectors (GDVs)30 capture 
the local wiring patterns for each node in a network. Studying the topology (structure) of molecular interaction 
networks revealed that genes (or proteins) with similar biological functions are either neighbors in the network 
that tend to form clusters, or are characterized by similar wiring patterns, independent of being neighbors in 
the network30,32. Thus, to investigate the interplay between the human proteins that are viral interactors (VI) and 
those human genes (or equivalently proteins) that are differentially expressed after the infection (DEGs), we study 
these two protein sets and their neighbors in the context of the human interactome. We use a holistic view of 
the human interactome by merging the PPI, GI and MI networks in the molecular interaction network (MIN). 
We find that the neighbors in the human MIN of these two sets have a large overlap (we term the genes in the 
overlap the “common neighbors”) containing central genes (with larger node degree in the MIN). Moreover, we 
find that they are enriched in viral processes, and hence, they might be involved in the COVID-19 mechanisms.

We find new drug–target interactions that open new ways for potential COVID-19 treatments. Firstly, we 
predict candidate target genes and the existing drugs that could be re-purposed for treating COVID-19 by dis-
rupting the disease mechanisms. Moreover, we observe that one third of the targeted genes directly connect the 
viral interactors (VIs) and the host differentially expressed genes (DEGs). Secondly, we uncover that in the human 
interactome VIs and DEGs, while mostly disjoint, are indirectly connected by their neighbors (common neighbor 
genes). Furthermore, we find that the common neighbor genes might be key to the infection mechanisms used 
by the virus since they are enriched in various viral processes. Finally, we investigate the biological mechanisms 
that the predicted candidate target genes are involved in and their relevance for treating COVID-19. We discover 
that the targeted genes participate in two molecular pathways, nitric oxide and VEGF signaling, whose functions 
strongly correlate with several observed COVID-19 symptoms.

Results
We adapt our data fusion framework based on graph-regularized non-negative matrix tri-factorization (GNMTF) 
to fuse two heterogeneous networks, viral-host interactions (VHIs) and previously known drug-target interac-
tions (DTIs), containing three different data types: SARS-CoV-2 proteins, human genes and drugs (either FDA-
approved and experimental). To add information of the relation of the human genes, we use a holistic view of 
the human interactome by merging the PPI, GI and MI networks in the molecular interaction network (MIN). 
To add the relation among drugs, we used the Drug Chemical Similarity (DCS) network (Fig. 1; for more details 
on the data that we used see “Datasets, pre-processing and matrix construction” section and on our framework 
see “Data fusion framework tailored to SARS-CoV-2” section in “Methods” section).

To have a holistic view of the relationships between genes, we created the MIN network by merging PPI, GI 
and MI networks. In particular, we add the MI network, since it has been demonstrated that metabolic processes, 
such as glycolysis, promote SARS-CoV-2 replication, and hence, targeting metabolic pathways might be key 
for treating COVID-1915 (for more details, see section “Datasets, pre-processing and matrix construction” in 
“Methods” section). Note that we validate that the topology (structure) of the PPI network dominates the MIN 
by comparing commonly used network properties and the wiring patterns of the constituent networks and the 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18985  | https://doi.org/10.1038/s41598-021-98289-x

www.nature.com/scientificreports/

MIN (for more details, see “Comparison of the molecular interaction network and its constituent networks” 
section in Supplementary Materials).

The data fusion framework predicts novel DTIs for SARS‑CoV‑2.  Before using our framework to 
predict novel DTIs for COVID-19, we first validate that it captures the functional relationships between genes 
(as captured by Gene Ontology (GO) annotations) and between the drugs (as captured by DrugBank “Drug Cat-
egory” (DC) annotations). We assess the capability of the framework to predict new DTIs by using tenfold cross-
validation and we also validate 32.64% of the newly predicted DTIs through external databases. Finally, we find 
that one third of the targeted proteins from the predicted DTIs directly connect the host proteins that interact 
with the viral proteins and the host proteins coded by the differentially expressed genes in COVID-19 infection.

To assess that the framework captures the functional relationships between genes (as captured by Gene Ontol-
ogy (GO) annotations) and between the drugs (as captured by DrugBank “Drug Category” (DC) annotations), 
we perform an enrichment analysis on the gene and drug clusters obtained by the framework (for more details, 
see “Extracting clusters of genes and drugs” section in “Methods” section). The enrichments of both the gene 
and the drug clusters are statistically significant and more than 80% of the clusters show enrichments (for more 
details, see “The data fusion framework preserves the biological relations between genes and drugs” section in 
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Figure 1.   Illustration of the data and framework. (a) Schematic illustration of datasets used in this study. 
Three data types are represented: SARS-CoV-2 proteins (in orange), human genes (in green) and drugs (in 
blue). Two relational datasets connect different types of data: virus-host protein–protein interactions (VHIs) 
and drug-target interactions (DTIs). Network structural knowledge from these data types is contained in the 
molecular interaction network (MIN) and the drug chemical similarity (DCS) network. (b) Graph-regularized 
non-negative matrix tri-factorization (GNMTF) used for fusing the VHIs, DTIs, MIN and DCS networks. The 
matrix factor G2 is shared across decompositions to simultaneously decompose the VHI and DTI networks. 
Network structure (topology) information from the MIN and DCS networks are incorporated into the data 
fusion by using two regularization terms (illustrated by arcs with arrows). The parameters k1 , k2 and k3 indicate 
the numbers of clusters of viral proteins, human genes and drugs, respectively.
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Supplementary Materials). Hence, the joint decomposition of VHIs and DTIs successfully extracts functional 
information about genes and drugs, respectively.

To predict new DTIs, we used the matrix completion property to reconstruct the DTI matrix. Each entry of 
the reconstructed matrix contains an association score, sA , corresponding to a drug–gene pair. This score can be 
interpreted as a relative measure of confidence for each drug–gene association (for more details, see “Prediction 
of new drug–target interactions for drug re-purposing” section in “Methods” section). Then, we assess if score sA 
can be used to separate DTIs from non-interacting gene-drug pairs performing precision-recall (PR) and receiver 
operating characteristic (ROC) curves analysis using all the input DTIs as ground truth. As illustrated in Fig. 2a,b, 
the corresponding scores are PR-AUC = 0.696 and ROC-AUC = 0.997 (for more details, see “Prediction of new 
drug–target interactions for drug re-purposing” section in “Methods” section). In addition, we showed that sA 
score can predict unseen DTIs by using 10-fold cross-validation, resulting in PR-AUC=0.332± 0.014 and ROC-
AUC=0.847± 0.014 over the validation set (mean and standard deviation with respect to the 10 folds; for more 
details, see “The data fusion framework can predict unseen DTIs” section in Supplementary Materials). Finally, 
to predict new DTIs, we define an optimal threshold based on sA using F1-score and then, we consider a false 
positive as predicted DTIs. The best F1-score ( F1 = 0.729 ) is associated with a threshold of sA = 0.296 , yield-
ing 814 newly predicted DTIs with 565 (FDA-approved and experimental) drugs targeting 172 genes (Fig. 2c, 
Supplementary Table S2). Moreover, we showed that the framework uncovers additional DTIs when using the 
MIN compared to using the PPI network. In particular, 93.8% of the 533 DTIs predicted using the PPI network 
are also predicted using the MIN, but using the MIN the framework also uncovers 38.6% (314) additional DTIs 
that could not be predicted when using the PPI network (for more details, see “The holistic view of the human 
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Figure 2.   Prediction of new DTIs. (a) Precision-Recall (PR) and (b) Receiver Operating Characteristic (ROC) 
curves for assessing the ability of the framework to capture the known drug–target interactions accurately. AUC​ 
area under the curve. (c) Distribution of the association scores of the reconstructed matrix, for the input DTIs 
(orange) and the new drug–gene pairs obtained by the matrix completion property of GNMTF (blue). New 
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interactome uncovers additional DTIs” section in Supplementary Materials). Due to the urgent need for finding 
a treatment for COVID-19, we focus on those DTIs that include only FDA-approved drugs, yielding 573 newly 
predicted DTIs with 369 drugs targeting 143 genes. We find that 187 out of the 573 predicted DTI (32.64%) were 
present in four external databases, namely Drug Central, Comparative Toxicogenomics Database, PharmaGKB 
and Therapeutic Targets Database (Supplementary Table S2). The DTIs present in the four external databases were 
not used as input into our fusion framework, and hence we can use them to validate the newly predicted DTIs.

Interestingly, among the 143 genes targeted in the predicted DTIs obtained by our data fusion only one is a 
host protein targeted by the viral proteins; it is HDAC2 targeted by cannabidiol. To explore the other 142 genes 
and their possible relations with SARS-CoV-2 infection, we study their connection to the host proteins that 
interact with the viral proteins (we termed them viral interactors (VIs)) in the context of the MIN. We find that 
58 drug targeted genes obtained by the data fusion are direct neighbors of the VIs and the remaining 84 genes 
are at distance 2 or 3 in the MIN from the VIs (79 are at distance 2 and 5 are at distance 3). In addition, to further 
explore the relation of the genes targeted by COVID-19 proteins after the infection, we study the connection of 
the drug targeted genes obtained by our data fusion with the differentially expressed genes (DEGs) in COVID-19 
infection described by Blanco-Melo et al.14 in the context of MIN. We find that 10 out of the 143 drug targeted 
genes obtained by our data fusion are DEGs, 100 out of the 143 genes are neighbors of the DEGs and the rest 
(33 out of the 143) are at distance 2 from the DEGs in COVID-19 infection. Furthermore, we find that 49 out of 
the 143 genes are at the same time neighbors of the VIs and DEGs. These genes that connect the VIs and DEGs 
might be key targets for disrupting the disease mechanisms.

In summary, we successfully predict new DTIs between the human targets and existing drugs that could 
be re-purposed. Moreover, we assess through external databases one third of the predicted DTIs. Lastly, when 
focusing on the targeted proteins in the predicted DTIs, we find that one third of the targeted proteins directly 
connect the host proteins that interact with the viral proteins and the host proteins coded by the differentially 
expressed genes in COVID-19 infection (i.e. they are neighbors of both), hence indicating that our predicted 
DTIs may hit the human interactome at the points that can disrupt the viral mechanisms going from the binding 
of the SARS-CoV-2 viral protein to the host protein towards the differentially expressed host gene in COVID-19 
infection (detailed below).

Topological analysis of the human interactome reveals key genes for explaining the molecular 
mechanisms of SARS‑CoV‑2.  After finding that, in the MIN, one third of the human targets in the pre-
dicted DTIs directly connect the human proteins that interact with the viral proteins (viral interactors, VIs) and 
those corresponding to differentially expressed genes (DEGs) in COVID-19 infection, we further explore all the 
genes that connect the VIs and the DEGs in the human interactome (we termed them common neighbors), in 
particular in the above described MIN. Our reasoning is that neighboring genes can act as links between the sig-
nal inputs, VIs, and the observed outputs, such as dysregulated genes, and may thereby be involved in the disease 
mechanisms. In particular, we show that the common neighbor genes are central in the MIN, we assess the simi-
larity in biological functions between the common neighbor and VIs genes by comparing their wiring patters 
and we demonstrate that the biological functions of the common neighbor genes are related to viral processes.

We use the 332 host genes reported by Gordon et al.5 as the set corresponding of viral interactors (we term 
this gene set the “VI”). For the DEG set, we use the 1,910 DEGs identified by Blanco-Melo et al.14 in lung tissue 
samples from 2 infected patients (see “Datasets, pre-processing and matrix construction” section in “Meth-
ods” section). Furthermore, since previous studies showed that disease genes tend to form densely connected 
communities33 in the MIN, we identify direct network neighbors of both of the above described gene sets (we 
term these two new gene sets the “VI neighbors” and “DEG neighbors”). As shown in Fig. 3a, these two sets have 
52.30% of overlap (statistically significant with p-value < 1e−16 (the exact p-value is not provided due to the fact 
that p-values in Python are float64 objects (i.e. 16 decimals are reported) and very small p-values are rendered to 
0), using hypergeometric test; for more details, see “Analysis of the molecular interaction network and its wiring 
patterns” section in “Methods” section) and hence, we also explore this overlap as a separated gene set (termed the 
“common neighbors”). Thus, VI and DEG genes, while mostly disjoint, are largely ( 52.30% ) indirectly connected 
by their neighbors. To fully explore the entire set of neighbors in the MIN network of proteins participating in 
VIs and the protein products of DEGs in COVID-19 disease, we study separately those VI neighbor and DEG 
neighbor genes that overlap and those that do not overlap, and within those that do not overlap, we term the 
neighbors of only VIs the “VI-unique neighbors” and the neighbors of only DEGs the “DEG-unique neighbors”. 
The rest of the genes in the MIN that are not present in any of these five gene sets (VI, DEGs, VI-unique neigh-
bors, DEG-unique neighbors, common neighbors) are term “background genes”.

To establish whether a SARS-CoV-2 infection affects proteins that are central in the MIN, we analyze the 
above described gene sets by the following commonly used network properties: four centrality measures (degree, 
eigenvector, betweenness and closeness centralities) and the clustering coefficient (for more details, see “Analysis 
of the molecular interaction network and its wiring patterns” in “Methods” section). As shown in Fig. 3b, VI and 
DEG genes show significantly higher degree centralities (p < 0.0001) compared to the background genes, indicat-
ing their importance in the MIN. In addition, genes in both of these sets have a higher clustering coefficient than 
the background genes, indicating their higher tendency to form clusters (Table 1). Notably, the common neighbor 
gene set exceeds both VI and DEG genes in all of these measures except for closeness centrality. Thus, common 
neighbor genes are likely to participate in many functions, since they are central in the MIN. The VI-unique and 
DEG-unique neighbor genes have lower centralities compared to the VI, DEG and common neighbor genes, 
which confirms the relevance of the common neighbors followed by the VI-unique and DEG-unique neighbor 
genes. Therefore, common neighbor genes are highly connected and central genes that, in particular, connect 
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the proteins targeted by the virus to the ones deregulated after the infection, and hence, they might be key for 
understanding the underlying molecular mechanism of COVID-19.

To assess whether the genes participating in the aforementioned sets have similar biological functions in 
the MIN network, we compare their wiring patters, by using their Graphlet Degree Vectors (GDVs)30 (for more 
details, see  “Analysis of the molecular interaction network and its wiring patterns” in “Methods” section). Previ-
ous molecular networks analyses revealed that genes with similar biological functions tend to group together and 
have similar wiring patterns in molecular networks34. As shown in Fig. 3c, GDV of the common neighbor genes 
is different from the GDVs of the rest of the gene sets, except for the GDV of the VI. We verify this by computing 
the Mann-Whitney U test (with a significance level of 0.05) for each pair of orbits (Supplementary Table S4). 
Only five orbit counts are not statistically significantly different between the common neighbor genes and the 
VIs. Namely the orbits 1, 4, 5, 8 and 9 (Fig. 3c orbits marked with a circle; Supplementary Table S4 marked in 
bold). Thus, the common neighbor genes have different wiring patterns compared to the other gene sets, and 
only show some similarities with the wiring patterns of VIs genes. This indicates that the common neighbors 
might have similar biological functions that could be related to SARS-CoV-2 infection.

To investigate whether the biological functions of the common neighbor genes in the MIN are related to 
COVID-19, we perform a functional enrichment analysis across multiple functional annotation databases: Gene 
Ontology (GO), KEGG, REACTOME and CORUM (for more details, see “Enrichment analysis of gene and drug 
clusters” in “Methods” section). Among the significantly enriched terms, many are related to viral infection 
processes (for the full list of enriched terms, see Supplementary Table S5). As shown in Fig. 3d, the enriched GO 
terms related to viral infection processes have a large intersection size (i.e., the number of common neighbor 
genes that are annotated with the corresponding GO term). In particular the general viral process term annotates 
almost 500 common neighbor genes. We perform the same enrichment analysis for the rest of the gene sets and 
find that VI-unique neighbor, DEG-unique neighbor and background genes are not enriched in viral processes 
(see Supplementary Tables S6–S8). These results indicate that the common neighbor genes participate in SARS-
CoV-2 infection and hence, they might be potential drug targets to treat COVID-19.

Based on these results, we conclude that SARS-CoV-2 proteins mainly interact with central human proteins, 
or influence the expression of host proteins that are central in the MIN. Moreover, we find that the neighbors 
of these two gene sets (common neighbor genes of the VIs and the DEGs) are also central in the MIN. Interest-
ingly, the common neighbor genes are enriched in viral related processes, while the VI-unique neighbor, DEG-
unique neighbor and background genes are not. Thus, these common neighbor genes (listed Supplementary 
Table S9) are likely to be involved in COVID-19 disease and they might be key for explaining the mechanisms 
that go from the host proteins targeted by the viral proteins to the differentially expressed genes resulting from 
the COVID-19 infection.

Predicted DTIs involving FDA‑approved drugs targeting common neighbor genes disrupt bio‑
logical mechanisms relevant for COVID‑19.  After discovering that the common neighbor genes (those 
that directly connect the host proteins that interact with the viral proteins and the proteins corresponding to 
differentially expressed genes in COVID-19 infection) are likely to be important in SARS-CoV-2 infection, we 
focus on the predicted DTIs that target these common neighbor genes; we term these DTIs “common neighbor 
DTIs”. The common neighbor DTIs contain 185 DTIs targeting 49 common neighbor genes with 149 drugs (see 
Supplementary Table S10). First, we investigate how many of the 149 drugs targeting the common neighbors are 
currently studied in COVID-19 context. Then, to investigate which biological mechanisms are targeted by the 
common neighbor DTIs, we perform a functional enrichment analysis of the 49 genes targeted in these DTIs. 
Finally, we manually check the enriched pathways and discuss their relevance in the context of COVID-19.

We check whether any of these 149 drugs targeting common neighbor genes have been investigated for 
treating COVID-19; we use the CORona Drug InTEractions (CORDITE) database (https://​cordi​te.​mathe​matik.​
uni-​marbu​rg.​de). Also, we ask whether they are part of interventional clinical trials currently being conducted 
(retrieved from https://​clini​caltr​ials.​gov). As shown in Supplementary Table S10, 17.44% and 11.40% of the drugs 

Table 1.   Network properties of molecular interaction network (MIN), focusing on the following gene sets: 
viral interactors (VI), differentially expressed genes after infection (DEG), overlap of the direct network 
neighbors in the MIN of these two sets (common neighbors), neighbors of the VI and DEG gene set that were 
not in the common neighbor genes set (VI-unique neighbors and DEG-unique neighbors), and the rest of the 
genes in the MIN (background genes). The common neighbor gene set exceeds the other genes sets in all of 
the measures except for closeness centrality, in which VI gene set has the highest value (the highest value for 
each measure is highlighted in bold).

Average degree Eigenvector centrality Clustering coefficient Betweeness centrality Closeness centrality

VI 65.67 0.006282 0.137887 0.000194 0.359875

DEG 48.77 0.004282 0.14323 0.000168 0.340381

Common neighbors 78.02 0.006764 0.186346 0.00027 0.358132

VI-unique neighbors 10.04 0.00095 0.156097 0.000009 0.318445

DEG-unique neigh-
bors 19.01 0.001446 0.152142 0.000028 0.326536

Background 3.57 0.000291 0.096368 0.000003 0.293636

https://cordite.mathematik.uni-marburg.de
https://cordite.mathematik.uni-marburg.de
https://clinicaltrials.gov
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involved in the common neighbor DTIs are listed in CORDITE and subject to at least one active clinical trial on 
COVID-19, respectively. These results demonstrate the relevance of the predicted DTIs.

We perform an enrichment analysis across multiple functional annotation databases: Gene Ontology (GO), 
KEGG, REACTOME and CORUM (for more details, see  “Enrichment analysis of gene and drug clusters” sec-
tion in “Methods” section). As illustrated in Fig. 4a, the 49 genes involved in the common neighbor DTIs are 
enriched in several GO terms in all three GO domains (i.e. Biological Process, Cellular Component, Molecular 
Function). Namely, they are terms related to: G protein-coupled receptors; tyrosine kinase-mediated activation 
of MAPK signaling, in particular VEGF and ERK1/2; cAMP/cGMP signaling; lipid metabolism and blood 
circulation; ion channel activity and response to amine ligand-binding, particularly serotonin and dopamine. 
Likewise, when testing for the enrichment of KEGG and REACTOME pathway terms, we find enrichments of 
cellular response pathways (PI3K-AKT, Ras, MAPK, cAMP, VEGF) and terms linked with amine ligand-binding 
receptors, cytokine and nitric oxide (NO) signaling (the complete list of enriched terms can be found in Sup-
plementary Table S11).

Upon closer inspection, many of these pathways are either directly or indirectly tied to NO and VEGF signal-
ing, which are also connected to each other (see Fig. 4b). For instance, KDR (VEGFR-2) is required for VEGF-A 
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Figure 3.   Common Neighbors are key genes in the molecular interaction network (MIN). (a) Venn Diagram 
showing the overlap between VI neighbor and DEG neighbor gene sets. (b) Comparison of the average degrees 
(given on the vertical axis) for the different gene sets (given on the horizontal axis) based on their degrees in 
the MIN. All pair-wise comparisons between these are statistically significant with p < 0.0001, using two-sided 
Mann–Whitney–Wilcoxon test. (c) GDV signatures for the VI, DEG, VI-unique neighbors, DEG-unique 
neighbors, common neighbors and background gene sets. All pair-wise comparisons between the counts (on the 
vertical axis) of the orbits (denoted by 0 to 14 on on the horizontal axis) of common neighbors and the rest of 
the gene sets are statistically significant with p < 0.05, using two-sided Mann-Whitney-Wilcoxon test, except for 
the orbits marked with a black circle between common neighbors and VI gene set. (d) Enrichment analysis of 
the common neighbor genes in the MIN. The bar plot is showing the enrichments related to viral processes. The 
complete list can be found in Supplementary Table S5. The intersection size (on horizontal axis) is the number 
of common neighbors genes that are annotated with the corresponding GO term (on the vertical axis). The 
adjusted p-value, “p.adjust”, is obtained by the Set Counts and Sizes correction method. This method considers 
the dependency of multiple tests by taking into account the overlap of functional terms (on colorbar).
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mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule NO by macrophages 
(NOS2) and endothelial cells (NOS3)35. Increased NO also directly affects inflammatory signaling by regulating 
cytokine (IL-6, IL-8) and PGE(2) production36,37 as well as PTGS2 (COX-2) activation38. It is recognized as a 
key regulator of both VEGF synthesis and platelet aggregation39,40. Lastly, NO is also tied to hypoxia signaling 
by direct interaction with key components such as HIF-1-alpha, which in turn regulates VEGF signaling41,42.

Notably, striking similarities between these NO and VEGF signaling-related functions and COVID-19 symp-
toms can be observed. Vascular complications are common in COVID-19 patients43. In particular, recent studies 
on COVID-19 patients have reported an increased in VEGF levels and platelet activity, as well as extensive blood 
clotting and endothelial injury as a sign of direct infection of endothelial cells44–47. Moreover, cytokine storms 
and IL-6 have been related to severe disease COVID-1948,49, with macrophages being potential key players50. 
Finally, neurological symptoms have also been recognized in COVID-19 patients, and hypoxic injury is one of 
the possible explanations for the observed tissue damage51,52.

NO signaling might be central in understanding the disease, since the anatomic sites of COVID-19 symp-
toms, lung, heart, circulatory system and brain, also correlate with the expression patterns found for the three 
known human NO synthases: NOS1 (neural NOS; expressed in peripheral neurons), NOS2 (endothelial NOS; 
expressed in endothelial cells, cardiac myocytes, cardiac conduction tissue) and NOS3 (cytokine-inducible NOS; 
expressed in endothelial cells, myocytes, macrophages)53. Therefore, we propose to further investigate the well 
tolerated drugs that modulate NO signaling and its related pathways. A potential candidate from our list of com-
mon neighbor DTIs is triflusal, which is known to interact with NFKB, NOS2, PDE10A as well as PTGS1, and 
for which we predict PTGS2 and NOS3 as additional target genes. Triflusal is a trifluoromethylated analogue of 
acetylsalicylic acid, which is not yet under investigation as COVID-19 treatment, unlike acetylsalicylic acid. Of 
note, both triflusal and acetylsalicylic acid act as anticoagulants and a recent study associated anticoagulation 
with lower mortality and intubation rates for hospitalized COVID-19 patients, providing further evidence for 
the validity of our findings54.

Related to VEGF-signaling, we suggest as a putative target gene KDR (VEGFR-2), which appears in the 
common neighbor DTIs targeted by tyrosine kinase inhibitors, such as Imatinib, Dasatinib, Pexidartinib. These 
drugs are cancer related drugs with high level toxicity, thus they must be reserved for critically ill cases. Finally, 
another group of candidate genes from the common neighbor DTIs worth mentioning are phosphodiesterases. 
Phosphodiesterases are responsible for regulating cAMP/cGMP signaling and hence, they have an interplay with 
both NO and VEGF55–57. Our framework predicted that phosphodiesterases (e.g. PDE4D), could be inhibited by 
xanthine derivatives such as theophylline.

Legend

Gene/Protein

Receptor

Signalling Molecule

Pathway

Lipid

Binds

Activates/Expresses
Produces
Regulates

Inflammatory
signalling

Cytokine 
(IL-6, IL-8)

PGE(2)

PTGS2
 (COX-2)

VEGF-A

NOS2 NOS3

VEGFR-2 
(KDR)

NO

Platelet 
aggregation 
signalling

VEGF 
signalling

VEGF

Hypoxia 
signalling

HIF-1-α

Nitric oxide stimulates guanylate cyclase
Cytokine Signaling in Immune system

Amine ligand−binding receptors
VEGF signaling pathway
cAMP signaling pathway
MAPK signaling pathway

Ras signaling pathway
PI3K−Akt signaling pathway
nitric−oxide synthase activity

response to dopamine
cellular response to dopamine

dopamine metabolic process
serotonin binding

serotonin receptor activity
ion channel complex

blood circulation
positive regulation of lipid metabolic process

cAMP binding
cAMP−mediated signaling

regulation of cAMP−mediated signaling
negative regulation of cAMP−mediated signaling

cAMP metabolic process
cAMP catabolic process

positive regulation of ERK1 and ERK2 cascade
regulation of ERK1 and ERK2 cascade

ERK1 and ERK2 cascade
positive regulation of cell proliferation by VEGF−activated platelet derived growth factor receptor signaling pathway

VEGF−activated platelet−derived growth factor receptor signaling pathway
positive regulation of MAPK cascade

regulation of MAPK cascade
MAPK cascade

G protein−coupled serotonin receptor activity
G protein−coupled amine receptor activity

phospholipase C−activating G protein−coupled receptor signaling pathway
adenylate cyclase−inhibiting G protein−coupled receptor signaling pathway

adenylate cyclase−modulating G protein−coupled receptor signaling pathway
G protein−coupled serotonin receptor signaling pathway

G protein−coupled receptor signaling pathway

0 5 10 15
Intersection size

0.04

0.03

0.02

0.01

p.adjust

(b)(a)

G protein-coupled receptor

VEGF

MAPK

ERK1/2

cAMP

serotonin

dopamine

cellular response pathways
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receptors; MAPK cascade; VEGF and ERK1/2; cAMP/cGMP signaling; lipid metabolism and blood circulation; 
ion channel activity and response to amine ligand-binding, particularly serotonin and dopamine; cellular 
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In summary, by focusing on predicted drug-target interactions involving genes located in the common neigh-
borhood of SARS-CoV-2 VIs and DEGs, we propose a list of 185 DTIs (common neighbor DTIs). For the drugs 
targeting the common neighbor DTIs, we validate that some of them have been investigated in COVID-19 
related studies, or are currently in clinical trials for COVID-19 treatment. For the targeted genes in the common 
neighbor DTIs, we identify functional enrichments related to cardiovascular integrity, stress signaling and inflam-
mation, all of which can be linked to NO and VEGF signaling. Moreover, both the molecular functions of NO 
signaling and the expression patterns of NO synthases correlate with reported COVID-19 symptoms, making it 
a principal target for further study and potentially drug intervention. Finally, our predicted DTIs provide a list 
of FDA-approved drugs that may be used to target genes related to both the VEGF and NO signaling pathways.

Discussion
In this work, we adapt our GNMTF-based data fusion framework to predicted candidate target genes and 
existing drugs that could be re-purposed for treating COVID-19. Moreover, we investigate within the human 
interactome the interplay between the human proteins that are directly targeted by the SARS-CoV-2 proteins and 
those genes that are differentially expressed after COVID-19 infection. Our study reveals that the host proteins 
targeted by viral proteins and the differentially expressed genes are indirectly connected by their neighbors (we 
termed common neighbor genes). Furthermore, we find that the common neighbors are enriched in various viral 
processes and hence, might be key to the infection mechanisms used by the virus. By focusing on the predicted 
drug–target interactions involving FDA-approved drugs and targeting the common neighbor genes, we utilize 
our integrative framework to predict novel drug-target interactions for genes related to the disease-affected 
pathways. In particular, we find NO and VEGF signaling as potential molecular pathways whose functions are 
very similar with several observed COVID-19 symptoms.

In this study, we focus on viral-host protein interactions, specifically on the dataset provided by Gordon 
et al.5, the one available at the time of data collection for our study. Recently, other datasets have been published 
containing new viral-host protein interactions (e.g., Li et al.58 and Stukalov et al.59) and viral RNA-host protein 
interactions (e.g. Schmidt et al.60 and Flynnet al.61). Our data fusion framework is general and can be easily 
adapted to add these new types of interactions (viral RNA-host protein interactions) by extending the viral 
data type to also include viral RNA. Moreover, we want to highlight that we took a holistic approach and do not 
restrict the data to any tissue (e.g., lung tissue), since it has been shown that COVID-19 is a systemic disease with 
symptoms in multiple organs (e.g., lung, heart, kidneys and brain)62. Thus, our holistic approach allowed us to 
find drugs targeting NO signaling, which functions in different aforementioned tissues.

The framework we adapt in this study differs from other network-based computational studies for drug re-
purposing applied to COVID-19 (such as Morselli Gysi et al.19; Sadegh et al.18) in the following: we do not only 
predict drugs to be re-purposed but also new candidate target genes. In particular, Morselli Gysi et al.19 ranked 
candidate drugs by aggregating the predictions of three different network-based methods: proximity, diffusion 
and AI network, based on their efficacy for COVID-19. The approach of Sadegh et al.18 is based on a group of seed 
nodes, which can be viral proteins and/or human genes, and then creating a subnetwork containing the seeds 
(using Steiner Tree algorithm), as well as ranking the drugs targeting the seeds using a centrality measure (degree, 
closeness, betweenness, or TrustRank). In contrast, the framework we adapt in this study is based on the fusion of 
several data sources, including chemical similarity of the drugs. Furthermore, the molecular interaction network 
that we generated for the host offers a more complete representation of the cell, as it includes information from 
several systems-level molecular interaction networks (protein–protein, genetic and metabolic interactions)21, 
whereas Morselli Gysi et al.19 and Sadegh et al.18 based its host molecular interactome only on the PPI network. 
We numerically compared our study to Morselli Gysi et al. by computing the overlap between the 149 drugs 
involved in our “common neighbor DTIs” list and the two lists they provided: top 100 drugs computationally 
predicted and 77 drugs experimentally validated (note that the overlap between these two sets of drugs provided 
by Morselli Gysi et al. is 9 drugs ( 5.36%)). Thus, out of 149 drugs in our “common neighbor DTIs” list, 5 are in 
the computationally predicted list ( 3.36% of overlap as a percentage of our 149 predicted drugs) and 10 are in 
the experimentally validated list ( 6.71% of overlap as a percentage of our 149 predicted drugs). To numerically 
compare our results to Sadegh et al., we used the list of 8 approved drugs provided by their platform when it is 
run with its default parameters, since they do not provide any list of drugs in the main manuscript, they only 
provide a few use cases. Out of the 149 drugs in our “common neighbor DTIs” list, 4 are in their list of the 8 
approved drugs ( 1.77% of overlap as a percentage of our 149 predicted drugs), which account for half of their 
drugs. Thus, although the three studies are based on completely different methodologies and different data, as 
explained above, we find that some drugs that we predicted as putative for repurposing are also suggested in the 
other studies, which supports our results, especially the overlap with the wet lab validated drugs.

The presented data fusion framework exhibits robust performance, as exemplified by its capability to identify 
previously predicted DTIs involving drugs under current clinical investigation. Beyond its application in this 
work, the framework is highly versatile and has been successfully applied to identify of cancer driver genes, 
patient stratification and drug re-purposing21. To exploit further this flexibility in the context of viral infections, 
the framework could be extended to search for the existing drugs with broad-spectrum antiviral activities by 
including information about host proteins targeted by more than one virus63,64. A recent example of such re-
purposing is Remdesivir, developed initially against the hepatitis C virus and currently investigated as potential 
COVID-19 treatment7. Besides being economically more efficient, broad spectrum antivirals are by definition 
likely to act on commonly exploited host pathways that tend to be indispensable for viral replication. Thus, 
targeting such pathways will pose a higher evolutionary hurdle for the formation of viral resistance, which may 
circumvent the problems faced when designing highly virus-specific drugs65.
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Methods
Datasets, pre‑processing and matrix construction.  We obtained the protein–protein interaction 
(PPI), genetic interaction (GI) and virus-host interaction (VHI) networks from the BioGRID database (version 
3.5.183)66. VHIs were based on the dataset reported by Gordon et al.5, with n1 = 26 viral proteins interacting 
with 332 host genes. We constructed the human PPI network with all physical interactions between human 
proteins reported by at least one of the following experiments: Two-hybrid, Affinity Capture-Luminescence, 
Affinity Capture-Western, Affinity Capture-MS; this resulted in 16,431 proteins (nodes) connected by 272,232 
interactions (edges). We constructed the GI network with all the genetic interactions reported in BioGRID; this 
resulted in 3302 genes connected by 8333 interactions. We merged these two networks with the metabolic inter-
action (MI) network from the KEGG database (accessed in May 2020)67,68. We constructed the MI network by 
connecting all the genes that participate in the same metabolic pathway. In particular, we retrieved as metabolic 
pathways all the pathways in KEGG that contain at least one of the following keywords: metabolism, metabolic, 
glycolysis, TCA, oxidative phosphorylation, fatty acid, pentose, degradation or biosynthesis; this resulted in 
1530 genes connected by 56,564 interactions. The resulting network from merging the PPI, GI and MI networks 
comprised 336, 159 interactions among n2 = 16, 872 genes. We termed this network the Molecular Interaction 
Network (MIN) (see Supplementary Fig. S1A,B for the overlap of genes and interactions of the three networks). 
Due to the small number of the host proteins interacting with the viral proteins (332 out of the 16, 872), the 
relational matrix, Rn1×n2

12  , containing VHIs is highly sparse. Following our previous data fusion framework21, we 
applied a pre-processing step based on network propagation to smoothen this matrix. The procedure consisted 
of iteratively updating the Rn1×n2

12  using the following update rule: Rt+1
12 = αRt

12A2 + (1− α)R0
12 where A2 is 

the normalized adjacency matrix of the MIN network computed as A2 = A2D
−1
2  , R0

12 is the initial R12 and α 
is a tuning parameter that controls the distance of diffusion through the MIN network. We used α = 0.6 and 
|Rt+1

12 − Rt
12| < 10−6 as convergence criterion to obtain the final network-smoothed matrix, Rn1×n2

12 .
We obtained the data related to the drugs from the DrugBank database (version 5.1.3)69. Drug-Target Inter-

actions (DTIs) between the retrieved n3 = 8279 drugs (FDA-approved and experimental) and the n2 = 16, 872 
genes in our MIN were captured by the relation matrix Rn2×n3

23  . This matrix is quite sparse as the known DTIs 
involve only 4, 420 drugs targeting 2, 241 genes. We used the Simplified Molecular-Input Line-Entry System 
(SMILES) information of these n3 drugs to create the Drug Chemical Similarity (DCS) network. First, we con-
verted this simplified notation of the chemical structure to a binary vector in which each coordinate represents 
a particular substructure from the set of all known sub-structures. Then, we computed the chemical similarity 
between two drugs based on the similarity between their vectors using Tanimoto similarity coefficient70. Once 
the similarity between all drug pairs is computed, we created a network containing the top 5% most similar drug 
pairs, which resulted in 1, 727, 436 links.

Data fusion framework tailored to SARS‑CoV‑2.  We considered three different data types in our anal-
yses: SARS-CoV-2 proteins, human genes and drugs and two relation types among them. SARS-CoV-2 proteins 
and human genes are related to each other by VHIs, which are captured in a smoothed high-dimensional rela-
tion matrix, Rn1×n2

12  , with n1 viral proteins and n2 human genes (for more details, see “Datasets, pre-processing 
and matrix construction” section); DTIs indicate relationships between human genes and drugs and are cap-
tured in a sparse high-dimensional binary relation matrix, Rn2×n3

23  , for n2 human genes and n3 drugs, where its 
entries represent whether the product of a gene is targeted by a drug (1) or not (0). In addition to the relations 
among different data types, the relations between genes were captured by the MIN (for more details, see “Data-
sets, pre-processing and matrix construction” section), containing the known PPIs, GIs and MIs among them, 
whereas drugs relations were captured based on the similarity of their chemical structures, creating a DCS net-
work. Both of these networks were represented by their Laplacian matrix, L, computed as: L = D − A , where A 
is the adjacency matrix and D is the diagonal degree matrix (i.e., whose entries on the diagonal are row sums of 
A and all other entries in D are zeros). Thus, Ln2×n2

2  and Ln3×n3
3  represent the MIN and DCS Laplacians, respec-

tively. Figure 1a shows a schematic illustration of the datasets used in this study.
Following our previous data fusion methodology21, we used Graph-regularized non-negative matrix tri-

factorization (GNMTF) to simultaneously decompose each of the two relation matrices into a product of three 
non-negative low-dimensional matrices while preserving the network structure of the MIN and DCS. The two 
decompositions, R12 ≈ G1H12G

⊤
2

 and R23 ≈ G2H23G
⊤
3

 , share the matrix factor G2 fusing the data via simulta-
neously decomposing the VHI and DTI networks. The network structure of the MIN and DCS is preserved by 
adding two regularization terms ( tr(G⊤

2 L2G2) and tr(G⊤
3 L3G3) , respectively), so that G2 favors grouping together 

genes that interact in the MIN and that G3 favors grouping together drugs that are chemically similar in the DCS 
network. Figure 1b shows an illustration of the GNMTF. Briefly, the low dimensional matrices can be obtained 
by solving the optimization problem shown in Eq. (1):

where || · ||F denotes the Frobenius norm and tr denotes the trace of a matrix. The objective function, J, is heu-
ristically minimized with an iterative method, starting from an initial solution and using multiplicative update 
rules to converge towards a locally optimal solution71. The final decomposition (used for predicting novel DTIs) 
was obtained by using the Singular Value Decomposition (SVD) as an initial solution and |Jn+1−Jn|

|Jn|
< 10

−5 as 
the convergence criterion.

(1)min
Gi≥0

(1≤i≤3)

J = min
Gi≥0

(1≤i≤3)

(
||R12 − G1H12G

⊤
2 ||

2
F + ||R23 − G2H23G

⊤
3 ||

2
F + tr(G⊤

2 L2G2)+ tr(G⊤
3 L3G3)

)
,
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Choosing the number of clusters.  The number of clusters, k1 , k2 and k3 , are key parameters of the 
GNMTF. However, there is no gold standard procedure to find a suitable values of these k’s. We used the proce-
dure inspired by Brunet et al.72, consisting of choosing the parameter based on its cluster stability measured by 
the dispersion coefficient. In particular, the hard clustering procedure was applied to the corresponding matrix 
factor Gi , obtaining a clustering encoded in a connectivity matrix Ci , which is defined as a binary matrix where 
its rows and columns are the clustered entities (viral proteins, human genes or drugs) and 1 means that both 
entities belong to the same cluster. By applying this procedure with Random Acol initialization, we computed 
the average of the obtained Ci’s, Ci  , and measured the stability of these clusterings according to the disper-
sion coefficient: ρki =

1

n2

∑n
l=1

∑n
j=1

4(Clj −
1

2
)2 . The idea is to choose the value of k1 , k2 and k3 such that the 

obtained clusters are the most stable, i.e. for which the mean of ρk1 , ρk2 , ρk3 , meanρk1 ,ρk2 ,ρk3 =
ρk1+ρk2+ρk3

3
 , is at 

its maximum.
The stability of the obtained clusters depends on the size of the cluster, smaller clusters will be more stable, 

but without much biological meaning, with the extreme case being when we obtain as many clusters as there are 
molecules. Thus, we decided to focus the grid search around the rule of thumb, kRTi =

√
ni
2

 , which is a heuristic 
to determine a fair number of clusters given the number of points ni that we need to cluster73. According to this 
heuristic, the number of clusters for each dataset is kRT1 ≈ 3 , kRT2 ≈ 90 , and kRT3 ≈ 60 , corresponding to n1 = 26 
viral proteins, n2 = 16, 872 human genes and n3 = 8, 279 drugs. Therefore, we performed a grid search for the 
following values: k1 ∈ {3, 5} , k2 ∈ {60, 80, 100, 120} and k3 ∈ {40, 60, 80} . The most stable clustering was achieved 
by k1 = 3 , k2 = 120 and k3 = 80 ( meanρk1 ,ρk2 ,ρk3 = 0.661 ), which are the values that we used for the presented 
results (Supplementary Fig. S4).

Extracting clusters of genes and drugs.  The matrix factors Gn2×k2
2  and Gn3×k3

3  , from GNMTF decom-
position, are the cluster indicators of genes and drugs, respectively; based on their entries, n2 genes are assigned 
to k2 clusters and n3 drugs are assigned to k3 clusters, respectively. In particular, the hard clustering procedure of 
Brunet et al.72, was used to cluster the genes of the matrix factor Gn2×k2

2  . The columns of Gn2×k2
2  correspond to the 

k2 clusters and each gene is assigned to the cluster that has the largest entry in the gene’s row. The clusters can be 
represented by a binary connectivity matrix, Cn2×n2

2  , where its rows and columns are the genes and 1 means that 
both genes belong to the same cluster. Similarly, we clustered the drugs of the matrix factor Gn3×k3

3  obtaining a 
connectivity matrix Cn3×n3

3  representing the clusters of drugs.

Enrichment analysis of gene and drug clusters.  To compute the functional enrichments of the 
common neighbor genes, either for the whole list of genes, or for the 49 common neighbor genes that were 
predicted to be targeted by FDA-approved drugs, we used the gprofiler Python package v.1.0.0 (parameters: 
organism=“hsapiens” source=c(“GO”,“KEGG”,“REAC”,“CORUM”))74. The p-value are corrected by the Set 
Counts and Sizes correction method74. This method considers the dependency of multiple tests by taking into 
account the overlap of functional term. We used this software for its capability to perform the enrichment analy-
sis across multiple functional annotation databases.

To assess the quality of the obtained clusters of genes and drugs, we computed the enrichment of biological 
annotations in the clusters. For each gene (or equivalently, protein, as a gene product) in the network, we used 
the most specific experimentally validated Biological Process (BP), Cellular Component (CC) and Molecular 
Function (MF) annotations present in the Gene Ontology (GO)75, while for each drug we used the “Drug 
Categories”(DC) from DrugBank69. The probability that an annotation is enriched in a cluster was computed by 
using a hypergeometric test, i.e., sampling without replacement strategy shown in Eq. (2):

where N is the number of annotated genes (drugs) in the cluster, X is the number of genes (drugs) in the cluster 
that are annotated with the given annotation, M is the number of annotated genes (drugs) in the network and 
K is the number of genes (drugs) in the network that are annotated with the annotation in question. Annota-
tions with a Benjamini–Hochberg adjusted p-value76 of p ≤ 0.05 were considered to be statistically significantly 
enriched. We measured the quality of the clustering by computing three percentages: out of the total number of 
clusters of genes (drugs), the percentage that have GO terms (Drug Categories) enrichments; in all clusters of 
genes (drugs) taken together, the percentage of all leaf GO terms (Drug Categories) in them that are enriched 
in at least one cluster; and in all clusters of genes (drugs) taken together, the percentage of all genes (drugs) in 
them out of all human genes (drugs) in the network that have at least one of their annotations enriched in their 
clusters. To assess if an observed enrichment is greater than or equal to an enrichment by chance, we randomly 
shuffled (permutated) the values in the drug and gene matrix factors respectively and we used the permuta-
tion test: p = r+1

n+1
 , where r is the number of permutations that have an enrichment greater than or equal to the 

observed enrichment and n = 100 is the number of permutations that we used. We consider an enrichment to 
be statistically significant if the corresponding p-value is lower than or equal to 0.05.

Prediction of new drug–target interactions for drug re‑purposing.  To capture new drug-target 
interactions, we exploited the matrix completion property of the GNMTF framework. This property consists of 
reconstructing the drug–target relational matrix from the obtained low-dimensional factors as R̂23 = G2H23G

⊤
3

 . 
Each entry of the reconstructed matrix contains an association score, sA , corresponding to a drug–gene pair. This 
score can be interpreted as a relative measure of confidence for each drug–gene association. To assess that the 

(2)p = 1−

X−i∑

i=0

(Ki )(
M−K
N−i )

(MN)
,
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score sA can be used to separate DTIs from non-interacting pairs performing precision-recall (PR) and receiver 
operating characteristic (ROC) curves analysis using all the input DTIs as ground truth. Then, to validate that 
that sA score can predict unseen DTIs by using tenfold cross-validation, we perform a tenfold cross-validation 
with stratified folds (i.e., ensuring the folds preserve the percentage of samples for each class). We used as ground 
truth the input DTIs (i.e., those DTIs present in DrugBank). Finally, to predict new DTIs, we define an optimal 
threshold based on sA score using F1-score and, then, we consider the false positive as predicted DTIs.

Analysis of the molecular interaction network and its wiring patterns.  To compute whether the 
overlap between the viral interactors (VIs) neighbor gene set and the differentially expressed genes (DEGs) 
neighbor gene set is significant, we performed a Hypergeometric Test (see Eq. (2)) where N is the number of 
genes that are the neighbors of VI genes, X is the number of genes that are both the neighbors of DEGs and the 
neighbors of VIs, M is the total number of genes in the network and K is the number of genes that are the neigh-
bors of DEGs. Thus, p is the probability that the number of genes in the overlap is obtained by chance.

We analyzed the MIN using the following network properties: four centrality measures (degree, eigenvector, 
betweenness and closeness centrality) and the clustering coefficient (for more details, see Pržulj et al.29). The 
degree of a node is defined as the number of edges connected to the node and indicates the number of inter-
actions in which the node is involved. The eigenvector centrality of a node is based on the importance of its 
neighbors, which is computed using the spectrum of the network and thus, identifies nodes connected to many 
highly connected nodes. The betweenness centrality of a node is the ratio of the number of shortest paths from 
all vertices to all others that pass through the node over all shortest paths and thus, nodes with high betweenness 
centrality are bottlenecks in the network, meaning that these nodes are more crucial in linking dense regions of 
the network. The closeness centrality quantifies how close a node is to all other nodes by computing the average 
of the lengths of the shortest paths from the node to all other nodes in the network. The clustering coefficient 
is the fraction of triangles that touch the node over all possible triangles in its neighborhood of the node and it 
captures whether the neighbors of a given node tend to cluster. We used these statistics to compare the relevant 
sets of genes for COVID-19 (VI, DEG, VI-unique neighbors, DEG-unique neighbors, common neighbors and 
background genes) and tested for statistically significant ( p < 0.05 ) differences in the network statistics of these 
node sets by using a two-sided Mann–Whitney–Wilcoxon test.

The most sensitive measures capturing the local wiring patterns around nodes in networks are based on 
graphlets. Graphlets are defined as connected, non-isomorphic, induced subgraphs of large networks31. Different 
topological positions within graphlets are characterized by different symmetry groups of nodes, called automor-
phism orbits77. Orbits are used to generalize the notion of the node degree: the graphlet degrees of a node are the 
numbers of times a node is found at each orbit position. Yaveroǧlu et al.32 proved the existence of redundancies 
and dependencies between these orbits and proposed a set of 11 non-redundant orbits for 2- to 4-node graphlets 
(Supplementary Fig. S5). Thus, the wiring patterns of each node in the network can be represented by using 
the 11-dimensional vector, called Graphlet Degree Vector (GDV), or Graphlet Degree Vector Signature, which 
captures the 11 non-redundant graphlet degrees of a node30. To compare the wiring patterns of the different sets 
of nodes (VIs, DEGs, common and unique neighbors), we therefore calculated the GDV signature for each set 
of nodes and compared the average signatures of the different sets.

Data availibility
Data reported in the paper are publicly available at https://​gitlab.​bsc.​es/​czamb​ran/​sweet-​spot-​for-​thera​peutic-​
inter​venti​on-​for-​covid-​19.

Code availibility
All the scripts used to generate the networks, integrate the data, perform the experiments, and analyze the data are 
coded in Python (v3.6.5) and require NumPy, Pandas, SciPy, SKLearn, NetworkX, MatplotLib, Matplotlib-venn, 
Statannot, Statsmodels, Gprofiler-official, and Rdkit libraries. The bar plots displaying results of enrichments 
analysis performed by Gprofiler were obtained using the enrichplot library from R.
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