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ABSTRACT
Objective To investigate the effects of DL-3- N- 
butylphthalide (NBP) via intranasal delivery after ischaemic 
stroke in mice.
Methods C57BL/6 mice were divided into three groups: 
sham, stroke with vehicle and stroke with NBP treatment. 
Ischaemic stroke was induced by permanent ligation 
of right middle cerebral artery with 7 min common 
carotid artery occlusion. NBP (100 mg/kg) or vehicle 
was intranasally administered at 1 hour after stroke and 
repeated once a day until sacrifice. Bromodeoxyuridine 
(BrdU) (50 mg/kg/day) was given from the third day 
until sacrifice. Sensorimotor function was tested during 
1–21 days after stroke. Local cerebral blood flow in the 
ischaemic and peri- infarct regions was measured using 
laser Doppler flowmetry before, during and 3 days after 
ischaemia. Expressions of vascular endothelial growth 
factor (VEGF) and endothelial nitric oxide synthase as well 
as regenerative marker BrdU in the peri- infarct region were 
analysed by western blotting and immunohistochemical 
methods.
Results Compared with the vehicle group, NBP treatment 
significantly increased the VEGF expression in the 
poststroke brain. Stroke mice that received NBP showed 
significantly less vascular damage after stroke and more 
new neurons and blood vessels in the peri- infarct region 
at 21 days after stroke. In the adhesive removal test, the 
sensorimotor function of stroke mice treated with NBP 
performed significantly better at 1, 3 and 7 days after 
stroke compared with vehicle controls.
Conclusion Daily intranasal NBP treatment provides 
protective and neurogenic/angiogenic effects in 
the poststroke brain, accompanied with functional 
improvements after a focal ischaemic stroke in mice.

INTRODUCTION
Stroke is one of the most common causes 
of death and disability.1 Ischaemic stroke 
accounts for 85% of all strokes, which is the 
second leading cause of death worldwide after 
coronary heart disease.2 Ischaemic stroke 
occurs when cerebral blood flow is blocked 
followed by tissue damage and infarct forma-
tion in the brain. Intravenous thrombolysis 
and mechanical thrombectomy are Food and 
Drug Administration- approved treatments 

with limited time window for acute cerebral 
ischaemia.3 There is currently no approved 
treatment involving regenerative therapeu-
tics for patients who had chronic stroke. 
Butyl phthalein was originally extracted from 
celery seeds. DL-3- N- butylphthalide (NBP) 
was synthesised and approved by the National 
Medical Products Administration in China 
since 2002 for clinical treatments of patients 
who had a stroke. Basic and clinical research 
demonstrated protective effects of NBP after 
cerebral ischaemia, via the mechanisms of 
suppressing oxidative stress injury, mitochon-
dria damage, neuronal apoptosis and neuroin-
flammation.4 More investigations have shown 
beneficial effects of NBP for ischaemic 
stroke,5–7 Alzheimer’s disease,8–10 Parkinson’s 
disease11–13 and spinal cord injury.14–16 NBP 
also reduces oxidative stress- related damage, 
inhibits platelet aggregation, regulates energy 
metabolic homeostasis, improves microcircu-
lation and reduces neurological deficits.17–23 
Using a focal ischaemic stroke model of mice, 
the current study tested the effect of chronic 
intranasal NBP delivery as a potential regen-
erative treatment for long- term recovery after 
ischaemic stroke.

MATERIALS AND METHODS
Animals
Male healthy C57BL/6 mice, 8–10 weeks old 
with a weight range of 25±5 g, were purchased 
from Jackson Laboratory and kept in the 
animal facility at Emory University. Animals 
were housed five per cage with free access to 
food and water. Room temperature ranged 
between 21°C and 24°C and had a relative 
humidity of 40%–70%.

Drug preparation
NBP was from Hebei Shiyao Group Enbipu 
Pharmaceutical. The drug was freshly 
prepared each time before administration 
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and was prepared by diluting in vegetable oil (Kroger, 
Ohio). Bromodeoxyuridine (BrdU) (0.5% stock solu-
tion) was prepared in 0.9% sterile saline.

Mouse model of focal cerebral ischaemia of the sensorimotor 
cortex
A reproducible model of focal cerebral ischaemia 
targeting the right sensorimotor cortex in mice was estab-
lished according to a previous publication.5 Briefly, mice 
were anaesthetised by 2% isoflurane. The distal middle 
cerebral artery (MCA) of the right side was permanently 
ligated, and the common carotid artery (CCA) on both 
sides was transiently blocked for 7 min. The sham opera-
tion group had the same procedures as the stroke group 
except that distal MCA or CCA was not ligated. Body 
temperature was maintained at 37°C.

Drug administration
Mice were randomly divided into a sham- operated group 
(sham), a vegetable oil vehicle group (stroke+oil) and an 
intranasal NBP group (stroke+NBP). The same volume 
(25 μL) of the vegetable oil vehicle or NBP (100 mg/kg) 
diluted in oil was administered to both nasals starting 
1 hour after the stroke surgery to mimic acute on- site 
treatment conditions. After the first, daily intranasal 
administration of NBP was performed for a total of either 
3 or 21 days. The dosage of NBP was selected based on 
our previous study on ischaemic stroke.5 Animals were 
sacrificed 3 or 21 days after stroke.

Body weight monitoring
The body weight of the control and NBP groups was meas-
ured and recorded every day and compared after stroke. 
The weight of both the vehicle group and the NBP group 
was plotted as before, during and after the stroke. All data 
are recorded at a fixed time point of the day in a double- 
blinded manner.

Antibodies for protein expression analyses
Immunohistochemical staining and/or western blotting 
used specific antibodies against vascular endothelial 
growth factor (VEGF) (Santa Cruz Biotechnology, Cali-
fornia; Cat #Sc7269), endothelial nitric oxide synthase 
(eNOS) (Cell Signaling Technology, Massachusetts; Cat 
#32027), β-actin (Abcam, UK; Cat #ab49900), Glut-1 
(Abcam; Cat #ab40084), NeuN (MilliporeSigma, Massa-
chusetts; Cat #ABN78A4), BrdU (Abcam; Cat #ab6326), 
secondary antibody (Jackson ImmunoResearch Laborato-
ries, Pennsylvania), OCT (Sakura Finetek, Japan) and fish 
gelatin (Sigma, Massachusetts). The 3M surgical adhesive 
(Fisher Scientific, New Hampshire) was used in the adhe-
sive removal test.

Frozen microtome (Leica Microsystems, Germany) 
and fluorescence confocal microscope BX61 (Olympus, 
Japan) were used in brain sectioning and image 
experiments.

Western blot analysis
The cerebral cortical tissue of the infarcted region was 
dissected and placed into EP (Eppendorf tubes) tubes. 

Protein was extracted and the amount was quantified by 
bicinchoninic acid (BCA)method. A total of 40 μg protein 
for each sample was electrophoresed in a 10% sodium 
dodecyl sulfate (SDS)- PAGE gel, transferred to a Poly-
vinylidene fluoride (PVDF) membrane, and incubated 
with 5% Bovine Serum Albumin (BSA) solution in Tris- 
buffered saline (TBS) at room temperature for 1 hour 
and with primary antibodies in TBS at 4°C overnight. 
Secondary antibodies were added for 1 hour and washed 
in Tris- buffered saline, 0.1% Tween 20 (TBST) three 
times for 10 min each, for 5- bromo-4- chloro-3- indolyl 
phosphate (BCIP)- nitroblue tetrazolium (NBT)- based 
visualisation on a PVDF membrane.

Immunohistochemical staining
At the indicated times, mice were euthanised by carbon 
dioxide. Brains were immediately placed in dry ice, 
embedded in OCT embedding agent and stored at −80°C. 
A frozen microtome was then used to cut 10- micron section 
slices and stored at −80°C. Before the staining with primary 
antibodies, brain tissue sections were dried at room temper-
ature, fixed with 10% formalin solution, washed three times 
in PBS for 10 min each, treated with 0.2% Triton X-100 in 
PBS, washed another three times with PBS for 10 min each 
and incubated with 1% fish gel for 1 hour at room temper-
ature. Primary antibodies were diluted, mixed in PBS and 
incubated overnight at 4°C. The sections were washed 
three times with PBS for 10 min each and incubated with 
secondary antibodies in PBS at 37°C in the dark for 1 hour, 
washed another three times with PBS for 10 min each and 
mounted for fluorescence imaging. Terminal deoxynucleo-
tidyl transferase dUTP nick end labeling (TUNEL) staining 
of cell death was performed using a TUNEL assay kit (Invit-
rogen, Carlsbad, California, USA) according to the manu-
facturer’s protocol.

Local cerebral blood flow measurement
Doppler cerebral blood flow metre (PeriFlux System 5000- 
PF5010 Laser Doppler Perfusion Monitoring (LDPM) 
unit, Sweden) was used to measure local cerebral blood 
flow (LCBF).24 The flow was recorded over the skull at the 
same location before, during and 3 days after ischaemia.

Animal behaviour test
The adhesive removal test was performed in double- blinded 
manner. Time is recorded when the mouse perceives the 
sticker attached onto the foot and removes it, as a measure 
of sensorimotor function.25 At 1, 3, 7, 14 and 21 days after 
stroke, functional recovery outcomes were measured.

Statistical methods
GraphPad Prism V.7.0 statistical software was used for 
the analyses. All data were presented in mean value or 
mean±SD for each group. Comparison between two groups 
was performed using Student’s t- test. Comparisons among 
the three groups were performed using one- way analysis of 
variance followed with Bonferroni correction. A threshold 
of p<0.05 was considered statistically significant.



76 Qu M, et al. Stroke & Vascular Neurology 2021;6:e000364. doi:10.1136/svn-2020-000364

Open access 

RESULTS
Effects of NBP on LCBF and regulatory gene expression in the 
peri-infarct region
Stroke animals were given daily intranasal treatment of 
NBP from 1 hour after stroke until sacrifice (figure 1). 
Compared with the vehicle group, the LCBF was simi-
larly reduced during ischaemic surgery and recovered at 
3 days after stroke (figure 2A,B). NBP treatment showed 
a trend of better LCBF recovery but the effect was not 
significant (figure 2B). The observation was consistent 
with our measurement on the eNOS level in the peri- 
infarct region, showing no significant differences among 
all groups, although the NBP group displayed a trend 
towards a higher level of eNOS (figure 2C,D). On the 
other hand, the NBP treatment significantly increased 
VEGF at 3 days after stroke, suggesting that NBP might 
have an impact on poststroke regeneration (figure 2C,D).

Effects of NBP on body weight and sensorimotor functional 
recovery after stroke
The body weight of mice gradually recovered after stroke. 
There was in general no statistical difference between the 
vehicle and the NBP- treated groups, although the NBP 
group tended to have less body weight loss during the 
early days after stroke (figure 3A). The adhesive removal 
test measured the sensorimotor function associated with 
the stroke- damaged right sensorimotor cortex. At 1, 3 
and 7 days after stroke, compared with the vehicle group, 
stroke mice that received intranasal NBP treatments 
performed significantly better in the removal of the adhe-
sive. A spontaneous recovery was observed at 14 days after 
stroke in all stroke groups (figure 3B).

Protective and regenerative effects of NBP in the poststroke 
brain
At different days after stroke, mice were sacrificed for 
the analysis of vascular damage and neurovasculature 
regeneration in the peri- infarct region. Three days after 
stroke, immunohistochemical staining reveals many Glut-
1- positive vascular cells that were also TUNEL- positive, 
suggesting damaged vessels in the poststroke brain 
(figure 4A). Stroke animals that received NBP treatment, 
however, displayed significantly less TUNEL- positive 

vessels, suggesting a vascular protective effect (figure 4A). 
At 21 days after stroke, immunostaining showed signifi-
cantly increased Glut-1 and BrdU double- positive cells in 
mice that received NBP treatments compared with stroke 
control mice (figure 4B,C). Meanwhile, there was also a 
marked increase in NeuN and BrdU double- positive cells 
with NBP treatment (figure 5A,B). These data demon-
strated that NBP provides neuroprotective and proregen-
erative effects in the poststroke brain.

DISCUSSION
Intranasal drug delivery is a non- invasive and efficient 
method that allows bypassing the blood–brain barrier 
and entry into the brain. It is believed that drugs 
applied to the nasal mucosa are able to enter the brain 
regions through the olfactory nerve pathway, olfactory 

Figure 1 Experimental paradigm. The timeline of the 
experimental study. Stroke mice were treated with NBP or 
vehicle for 3 days or until sacrifice. Mice were trained before 
stroke surgery and then were tested for behaviour on different 
days. BrdU, bromodeoxyuridine; i.na., intranasal; i.p., 
intraperitoneal; NBP, DL-3- N-butylphthalide.

Figure 2 LCBF measurement and expression of eNOS 
and VEGF in the peri- infarct region. (A, B) The blood flow 
over the ischaemic and peri- infarct (penumbra) regions was 
measured before, during and 3 days after the stroke surgery. 
(C) Western blot band was shown. (D) At 3 days after stroke, 
NBP increased VEGF protein expression. n=3–5 per group. 
Mean±SD. *P<0.05 compared with stroke group. D3, day 3; 
eNOS, endothelial nitric oxide synthase; LCBF, local cerebral 
blood flow; NBP, DL-3- N- butylphthalide; VEGF, vascular 
endothelial growth factor.
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epithelium pathway and bloodstream, making it suitable 
for neurological treatments.26–28 We demonstrated that 
intranasal NBP treatment after brain injury improves 
neural regeneration.26 NBP increased the endogenous 
neural progenitor cell (NPC) migration to the ischaemic 
striatum and other injured brain regions.29 A mechanism 
study revealed that NBP increased the dentate gyrus NPC 
via regulation of PKA/BDNF/CREB and STAT3 signal-
ling pathways to promote hippocampal neurogenesis.30 
In a mouse model of Alzheimer’s disease, NBP activated 
BDNF/TrkB/CREB/Akt pathway and promoted neural 
regeneration.9

The current study reveals a vascular protective effect 
at 3 days after stroke by intranasally delivering NBP. 
Although this early protection did not translate to a 
significant increase in LCBF at the same time, it may 
be beneficial for LCBF and regeneration at later time 
points. Promoting neurovascular regeneration has been 
considered as an effective strategy for tissue repair after 
ischaemic stroke.31 32 VEGF is an angiogenic factor that 
stimulates blood vessel growth by inducing endothe-
lial cell proliferation, migration and neovascularisa-
tion.33 34 The observed VEGF increase is consistent with 
other reports that NBP increased expressions of VEGF 
and basic fibroblast growth factor.23 35 36 Endothelial 

eNOS plays an important role in vascular reconstruction 
and vasodilatation in stroke brains. In the present study, 
the acute eNOS levels after stroke were not significantly 
changed, which was consistent with the LCBF data. On the 
other hand, eNOS can promote endothelial cell prolifer-
ation and migration, smooth muscle cell differentiation, 
arteriogenesis, collateriogenesis, and angiogenesis.37 38 It 

Figure 3 Body weight in the stroke mice and behaviour 
recovery after ischaemic stroke in mice. (A) The body weight 
of experimental mice was measured at different days after 
stroke. Mean value was used. (B) At different days after 
ischaemic stroke, the time for the mice to remove the sticker 
was recorded. n=10 per group. Mean±SD. *P<0.05 compared 
with stroke group. NBP, DL-3- N- butylphthalide.

Figure 4 NBP effects on vascular damage and regeneration 
in the peri- infarct region of the poststroke brain. (A) Three 
days after stroke, TUNEL (green) and Glut-1 (red) staining 
revealed vascular damage in the peri- infarct region. Blue 
colour of Hoechst staining shows all cells. The bar graph 
quantified the counting of TUNEL and Glut-1 double- positive 
cells, which were much less in the stroke+NBP group. n=4 
per group. *P<0.05 versus stroke only controls. (B) At 21 days 
after stroke, Glut-1 (green) and BrdU (red) double staining 
was used to detect newly formed vessels. NBP treatment 
increased the colabelled Glut-1+/BrdU+ cells (arrows). (C) 
Quantified cell counting of Glut-1+/BrdU+ cells (per cent of 
total cells). n=4 per group. Mean±SD. *P<0.05 compared 
with stroke group. BrdU, bromodeoxyuridine; NBP, DL-
3- N-butylphthalide. DAPI, 4′,6- diamidino-2- phenylindole; 
TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end 
labeling.
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will be interesting to test whether NBP shows a chronic 
regulation on eNOS and the long- term changes in LCBF 
in the postischaemic brain.

The present investigation shows that repeated intra-
nasal administrations of NBP starting from the acute 
phase of ischaemia increase the expression of VEGF, 
promote neurovascular regeneration in the peri- infarct 
region and improve sensorimotor recovery after stroke. 
Further studies may explore long- term changes and regu-
latory factors such as eNOS in regenerative and func-
tional benefits of NBP treatments.39 40
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