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Abstract: Colorectal cancer (CRC) is one of the most daunting diseases due to its increasing worldwide
prevalence, which requires imperative development of minimally or non-invasive screening tests.
Urinary polyamines have been reported as potential markers to detect CRC, and an accurate pattern
recognition to differentiate CRC with early stage cases from healthy controls are needed. Here,
we utilized liquid chromatography triple quadrupole mass spectrometry to profile seven kinds of
polyamines, such as spermine and spermidine with their acetylated forms. Urinary samples from 201
CRCs and 31 non-CRCs revealed the N1,N12-diacetylspermine showing the highest area under the
receiver operating characteristic curve (AUC), 0.794 (the 95% confidence interval (CI): 0.704–0.885,
p < 0.0001), to differentiate CRC from the benign and healthy controls. Overall, 59 samples were
analyzed to evaluate the reproducibility of quantified concentrations, acquired by collecting three
times on three days each from each healthy control. We confirmed the stability of the observed
quantified values. A machine learning method using combinations of polyamines showed a higher
AUC value of 0.961 (95% CI: 0.937–0.984, p < 0.0001). Computational validations confirmed the
generalization ability of the models. Taken together, polyamines and a machine-learning method
showed potential as a screening tool of CRC.

Keywords: colorectal cancer; polyamine; urine; liquid chromatography-mass spectrometry;
machine learning

1. Introduction

Colorectal cancer (CRC) is the second and third most frequently diagnosed cancer among males
and females, respectively, both in the USA [1] and worldwide in 2012. In Japan, the incidence of CRC
has significantly increased, and this country is regarded as having one of the highest incidences [2–4].
Tumor markers—such as serum carcinoembryonic antigen (CEA), CA19-9, and CA15-3—have been
used to identify patients with CRC, but more accurate screening markers need to be developed.
The development of screening biomarkers with higher sensitivity and specificity are still necessary.
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The naturally-occurring polyamines, spermidine and spermine, and their precursors, diamine
and putrescine, are aliphatic polycations which are ubiquitously observed in mammalian cells.
Their essential role in the proliferation and differentiation of prokaryotic and normal eukaryotic
cells is well established [1]. Polyamines, such as spermidine and spermine, are produced in
almost all cells but are particularly highly produced in rapidly growing cells. Arginine, one of
the amino acids, is converted to ornithine by arginase (EC 3.5.3.1), and ornithine is catalyzed by
ornithine decarboxylase (ODC) (EC 4.1.1.17) to produce putrescine, which is a precursor metabolite
of polyamines. Spermidine and spermine are synthesized from putrescine and decarboxylated
S-adenosylmethionine [5]. These polyamine metabolites constitute loops through spermine/spermidine
N1-acetyltransferase (SSAT), N1-acetylpolyamine oxidase (APAO), and spermine oxidase (SMO).
These metabolize spermine to N1-acetylspermine, spermidine to N1-acetylspermidine, and spermine to
spermidine, respectively [5].

The enhanced activity of polyamine pathways in CRC is well known. For example, the first
rate limiting enzyme, ODC, is negatively regulated by the adenomatous polyposis coli (APC)
tumor-suppressor gene in colonic mucosal tissue [6]. The loss of APC function would activate ODC
enzyme, resulting in the activation of polyamine biosynthesis [7]. The schematic diagram of APC on
polyamine metabolisms was described (Figure 1). These metabolites were secreted from tumor tissue
and spread to surrounding tissues and blood vessels [5]. Therefore, a combination of polyamine or
metabolites have been used for the development of non- or low-invasive screening, such as blood,
urine, and fecal-based tests [8,9], to identify patients with CRC or polyps, a precursor of CRC. Elevated
concentrations of urinary N1,N12-acetylspermine of CRC has been consistently observed in various
studies [10,11]. However, all reports claimed the change of a single polyamine is not enough to
diagnose CRC, i.e., low specificity as a biomarker. Nowadays, we have various pattern recognition and
machine learning algorithms, and the use of these method has the potential to show better accuracy.
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Figure 1. Adenomatous polyposis coli (APC) regulation of polyamine synthesis in colorectal cancer 
(CRC). (a) Normal cell. Tumor suppressor wide-type APC suppresses transcription of protooncogene 
MYC and also acts to regulate the ornithine decarboxylase (ODC) antizyme (OAZ) which degrades 
ODC. (b) Cancer cell. Mutated or deleted APC induces a decrease in OAZ and reduction of MYC 
suppression, which results in the increase of the expression of ODC gene. Consequently, the 
polyamine synthesis is activated in cancer cells. Dashed arrows indicate less effect compared to the 
solid arrows. 

The use of machine learning methods with metabolomics profiles in biofluid and tumor samples 
has been accumulated for diagnosis and screening purposes. For example, deep learning methods 
were used for estrogen receptor status in breast cancer tissue samples [12]. Orthogonal partial least 
squares discriminant analyses ranked the predictive metabolites and, subsequently, a decision tree 
was developed for discriminating bladder cancer using urinary metabolite profiles [13]. Particularly, 
partial least squares-discriminant analysis (PLS-DA) has been frequently used to select variables 
showing discriminant ability of given two-class problems, e.g., prediction of colon CRC progression 
using serum metabolites [14] and discrimination of CRC from non-CRC groups using metabolite 
profiles in serum [15] and urine samples [16]. These machine learning methods would contribute to 
enhance the discrimination ability by combining the predictive abilities of multiple metabolites. 
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Figure 1. Adenomatous polyposis coli (APC) regulation of polyamine synthesis in colorectal cancer
(CRC). (a) Normal cell. Tumor suppressor wide-type APC suppresses transcription of protooncogene
MYC and also acts to regulate the ornithine decarboxylase (ODC) antizyme (OAZ) which degrades
ODC. (b) Cancer cell. Mutated or deleted APC induces a decrease in OAZ and reduction of MYC
suppression, which results in the increase of the expression of ODC gene. Consequently, the polyamine
synthesis is activated in cancer cells. Dashed arrows indicate less effect compared to the solid arrows.

The use of machine learning methods with metabolomics profiles in biofluid and tumor samples
has been accumulated for diagnosis and screening purposes. For example, deep learning methods
were used for estrogen receptor status in breast cancer tissue samples [12]. Orthogonal partial least
squares discriminant analyses ranked the predictive metabolites and, subsequently, a decision tree was
developed for discriminating bladder cancer using urinary metabolite profiles [13]. Particularly, partial
least squares-discriminant analysis (PLS-DA) has been frequently used to select variables showing
discriminant ability of given two-class problems, e.g., prediction of colon CRC progression using
serum metabolites [14] and discrimination of CRC from non-CRC groups using metabolite profiles in
serum [15] and urine samples [16]. These machine learning methods would contribute to enhance the
discrimination ability by combining the predictive abilities of multiple metabolites. However, these
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methods are supervised and, therefore, various validations are key factors to prevent overfitting. Even
in rigorous validation, the use of biologically reasonable metabolites is also important to eliminate
optimistic prediction.

In this study, we utilized liquid chromatography-mass spectrometry (LC-MS) for simultaneous
quantification of urinary polyamines. The discrimination ability of CRC from benign and healthy
controls were assessed. There are many reports on the urinary metabolite profiles in various subjects.
Therefore, diurnal and day-to-day differences were investigated to assess the variation of observed
urinary metabolites and, subsequently, the discrimination abilities of single and multiple markers
were evaluated. To enhance the discrimination ability of these markers, a machine-learning method
was utilized.

2. Results

An overview of the observed data is summarized here. The subject information is summarized
in Table 1. The quantified polyamines and their discrimination ability are depicted in Figure 2.
The coefficient of variation (CoV) values of quantified polyamines in the urinary samples collected
from controls (C) are depicted in Figure 2a. The data included all collected samples and, therefore,
both diurnal and day-to-day variations were included. Of these, spermine showed the largest mean
CoV (0.70) and the others showed 0.25–0.42. For example, the difference of the mean concentration of
N1,N12-acetylspermine in malignant (M) (mean = 59.9 × 10−6 (no unit)) and C (mean = 7.93 × 10−6)
was 52.0 × 10−6, which was larger than 23-fold of the standard deviation (SD) of the concentrations of
C (Figure 2b). The difference of the mean concentration of N1,N8-acetylspermidine of M (57.9 × 10−6)
and C (31.0 × 10−6) was 26.9 × 10−6, which was larger than 3.3-fold of the SD of the concentrations
of C (Figure 2d). Among all polyamines, only N1,N12-acetylspermine and N1,N8-acetylspermidine
showed a high area under the receiver operating characteristic (ROC) curves (AUC), allowing for
discrimination of CRC from healthy controls; AUC = 0.794 (95% CI: 0.704–0.885, p < 0.0001) (Figure 2b,c)
and AUC = 0.664 (95% CI: 0.560–0.755, p = 0.0022), respectively. The N1,N12-acetylspermine showed
significantly elevated levels compared to both healthy controls and benign cases (Figure 2d,e).
The differences between M and C were enough, even though the diurnal and day-to-day variation
was considered.

To assess the discrimination ability of multiple polyamines, we developed a multiple logistic
regression (MLR) model incorporating multiple polyamines. A stepwise feature selection procedure
selected 6 and 2 as independent variables in the models to discriminate M from benign (B) + C and
B from C + M, respectively (Table 2). The former model showed AUC = 0.905 (95% CI: 0.834–0.975,
p < 0.0001), with a higher accuracy compared to N1,N12-acetylspermidine alone (Figure 3a,b). The latter
model showed AUC = 0.763 (95% CI: 0.650–0.875, p = 0.001).

We utilized alternative decision tree (ADTree)-based machine-learning methods to enhance the
discrimination ability of multiple polyamines. The boosting number (i.e., the number of nodes in a
tree) was optimized based on cross validation (CV). The AUC values showed peaks (i.e., increased and
subsequently decreased along with the boosting number), and the boosting number was determined at
this peak. An ADTree model to discriminate M from B + C showed AUC = 0.961 (95% CI: 0.937–0.984,
p < 0.0001) (Figure 3c,d). The model included 10 nodes optimized by CV procedures (Figure 3e).
In contrast, the ADTree model with 12 nodes to discriminate B from M + C showed lower AUC
values; the AUC was 0.763 (95% CI: 0650–0.875, p = 0.001). The bootstrap and CV analyses of
the former model resulted in a median AUC = 0.989 (95% CI: 0.988–0.990) and AUC = 0.957
(95% CI: 0.955–0.958), respectively.

The discrimination abilities of tumor markers, N1,N12-acetylspermidine, and MLR and ADTree
models for each stage are summarized in Table 3. Optimal cut offs were determined by ROC curves
for N1,N12-acetylspermidine and MLR and ADTree models. All data showed significant differences
based on the stage. The ADTree resulted in no false positives while MLR produced four false positives
for all B and C subjects using the optimal cut-off calculated from ROC curves.
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Figure 2. The producibility and discrimination abilities of polyamines. (a) The coefficient of variation 
(CoV) of healthy control subjects. Horizontal bars indicated means and 95% confidential intervals. 
Overall, 20 samples were used. Horizontal bars indicated the mean and 95% confidential interval. (b) 
N1,N12-acetylspermine concentration divided by creatinine one and (c) the ROC curve to discriminate 
M (n = 201) from B + C (n = 31). (d) N1,N8-acetylspermidine divided by creatinine one and (e) the ROC 
curve to discriminate M (n = 201) from B + C (n = 31). Horizontal bars indicated the mean and SD (b,d). 
Red, green, and blue indicated the data of M, B, and C, respectively. p-values were calculated using 
the Kruskal-Wallis test with Dunn’s post-test * p < 0.05 and **** p < 0.0001. 

 
(a) (b) 

 
(c) (d) 

Figure 2. The producibility and discrimination abilities of polyamines. (a) The coefficient of variation
(CoV) of healthy control subjects. Horizontal bars indicated means and 95% confidential intervals.
Overall, 20 samples were used. Horizontal bars indicated the mean and 95% confidential interval. (b)
N1,N12-acetylspermine concentration divided by creatinine one and (c) the ROC curve to discriminate
M (n = 201) from B + C (n = 31). (d) N1,N8-acetylspermidine divided by creatinine one and (e) the ROC
curve to discriminate M (n = 201) from B + C (n = 31). Horizontal bars indicated the mean and SD (b,d).
Red, green, and blue indicated the data of M, B, and C, respectively. p-values were calculated using the
Kruskal-Wallis test with Dunn’s post-test * p < 0.05 and **** p < 0.0001.
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Figure 3. Discrimination abilities of mathematical models. (a) Distribution of predicted probabilities of
malignancy (M) calculated by multiple logistic regression (MLR) and (b) its ROC curve. (c) Distribution
of predicted probability of the ADTree model and (d) its ROC curve. (e) The ADTree model to
discriminate M (n = 201) from B + C (n = 31). Total scores <0 and >0 indicated the higher and lower
probability of M. All values of the thresholds in this tree should be ×10−6 to calculate the probability
of M. p-values of (a) and (c) were calculated using the Kruskal–Wallis test with Dunn’s post-test.
**** p < 0.0001.

The correlation among urinary polyamines in M, B, and C were described using scatter plots in
Figure 4 and listed at Table 4. The correlation among the models’ predictions and tumor markers in M
was listed in Table 5.

Table 1. Subject characteristics.

Group n 1 Age 1 Sex (F/M) 2 Risk or Location 3 Stage T N M

C 17 42.1 ± 2.8 4/13
B 14 65.0 ± 3.1 3/11 L 9

H 5
M 201 68.7 ± 0.8 87/114 C 127 0 1 113 194

R 74 Tis 2 49 7
1 27 27
2 28 12
3 109

4a 18
4b 16

p-Value <0.0001 0.0912 <0.0001
1 The Mann-Whitney test was used for the p-value. 2 χ2 test was used for the p-value. F and M indicated
females and male, respectively. 3 L and H indicated high and low risk, respectively. C and R indicated colon and
rectum, respectively.



Int. J. Mol. Sci. 2018, 19, 756 6 of 14

Table 2. Multiple logistic regression (MLR) model to discriminate M from B + C and B from M + C.

M from B + C B from M + C

Variables Coefficients 95% CI p-Value Coefficients 95% CI p-Value

(Intercept) 0.546 −0.357 1.45 0.24 −1.75 −2.78 −0.735 0.00080
N1,N12-diacetylspermine 7.88 × 104 2.29 × 104 1.35 × 105 0.0057
N1,N8-diacetylspermidine 6.73 × 104 1.25 × 104 1.22 × 105 0.016 −6.14 × 104 −1.12 × 105 −2.21 × 104 0.0075

N1-acetylspermidine −9.06 × 103 −1.25 × 104 −5.59 × 103 <0.0001 4.70 × 103 1.88 × 103 7.98 × 103 0.0022
N1-acetylspermine −3.09 × 105 −5.71 × 105 −4.63 × 104 0.021

Spermidine 5.50 × 104 1.68 × 103 1.08 × 105 0.043
Spermine −5.49 × 103 −9.00 × 103 −1.98 × 103 0.0022

Table 3. Tumor markers and prediction models to discriminate M from C + B.

Marker or Model
Stage 1 0 1 2 3a 3b 4

N 6 43 62 43 32 15

CEA
Av. ± SD 10.0 ± 21.7 3.29 ± 3.02 19.7 ± 51.9 6.68 ± 12.0 10.9 ± 13.1 8.92 × 102 ± 2.55 × 103

>5.0 ng/mL 3 5 (83) 37 (86) 62 (100) 43 (100) 32 (100) 15 (100)

CE19-9
Av. ± SD 13.7 ± 20.7 15.4 ± 30.5 25.7 ± 75.1 19.5 ± 26.0 88.9 ± 1.70 × 102 2.67 ± 103 ± 7.12 × 103

>37 U/mL 3 1 (16.7) 2 (4.7) 8 (12.9) 6 (14.0) 13 (40.6) 8 (53.3)

MM 2 Av. ± SD 2.50 × 10−5 ± 3.30 × 10−5 2.30 × 10−5 ± 4.50 × 10−5 3.80 × 10−5 ± 4.60 × 10−5 3.00 × 10−5 ± 3.70 × 10−5 5.40 × 10−5 ± 9.20 × 10−5 3.69 × 10−4 ± 6.05 × 10−4

>9.0 × 10 3 4 (66.7) 41 (95.3) 62 (100) 42 (97.7) 31 (96.9) 14 (93.3)

MLR
Av. ± SD 0.854 ± 0.114 0.850 ± 0.214 0.950 ± 0.0618 0.938 ± 0.115 0.939 ± 0.114 0.983 ± 0.0316

>0.81 3 6 (100) 42 (97.7) 58 (93.5) 43 (100) 24 (75) 9 (60)

ADTree
Av. ± SD 0.878 ± 0.0922 0.714 ± 0.291 0.865 ± 0.144 0.809 ± 0.234 0.756 ± 0.244 0.949 ± 0.0371
>0.722 3 5 (83.3) 34 (79.1) 53 (85.5) 41 (95.3) 21 (65.6) 8 (53.3)

1 Av. and SD indicates average and standard deviation, respectively. 2 MM indicates metabolite maker; N1,N12-diacetylspermine. 3 The number of the subjects who showed higher than
threshold levels, and parenthesized numbers show the percentage of the number of the subjects. The thresholds for MM, MLR, and ADTree had no units.
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Table 4. Correlation of urinary polyamine concentrations 1.

Polyamine 2 7 1 2 3 4 5

1
0.763

(<0.0001)

2
0.447 0.675

(<0.0001) (<0.0001)

3
0.423 0.505 0.437

(<0.0001) (<0.0001) (<0.0001)

4
0.539 0.794 0.824 0.450

(<0.0001) (<0.0001) (<0.0001) (<0.0001)

5
0.455 0.620 0.586 0.465 0.785

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001)

6
0.056 0.137 0.105 0.425 0.141 0.463

(0.396) (0.038) (0.11) (<0.0001) (0.033) (<0.0001)
1 Spearman’s rho and p-value (parenthesized value). 2 Numbers indicated. 1: N1,N8-Diacetylspermidine,
2: N1-Acetylspermidine, 3: N1-Acetylspermine, 4: N8-Acetylspermidine, 5: Spermidine, 6: Spermine, and 7:
N1,N12-Diacetylspermine.

Table 5. Correlation among models’ predictions and tumor markers 1.

Polyamine 2 CEA CA19-9 ADTree

CA19-9
0.424

(<0.0001)

ADTree 2 0.120 0.0872
(0.0908) (0.2184)

MLR 2 0.255 0.206 0.165
(0.0003) (0.0034) (0.0194)

1 Spearman’s rho and p-value (parenthesized value). 2 Predicted values of models to discriminate M from B and C.
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3. Discussion

Urinary polyamines have been reported as potential biomarkers for screening CRC. However,
there are concerns regarding the instability of these profiles caused by diurnal and day-to-day variation.
Thus, we analyzed multiple urinary samples collected from identical individuals to confirm the large
difference of polyamine concentrations between M and C, even in these variations. Subsequently, we
evaluated the discrimination abilities of individual polyamines. These abilities of combinations of
polyamines were also assessed using the MLR model, i.e., conventional multivariable analysis, and
ADTree, one of the machine-learning techniques.

Highly positive correlations were observed among quantified metabolites in the samples corrected
from M, B, and C (Figure 4 and Table 4). For example, N1-Acetylspermine showed significant
correlations (p < 0.0001 by Spearman’s rho test) with all the other polyamines. Meanwhile, spermine
showed significant correlations with only N1,N12-acetylspermidine and was independent from
other polyamines.

Among quantified metabolites, N1,N12-acetylspermidine showed the highest AUC to discriminate
CRC from the other groups, which was consistent with other reports [17]. The discrimination ability
of N1,N8-acetylspermidine, although its accuracy was lower than N1,N12-acetylspermidine, was
also observed in our data, which was also consistent with other research [17]. The elevation of
polyamines, including putrescine, spermine, and spermidine and their acetylated forms, in CRC tissue
and low-invasively available biofluids, such as blood and urine, while the individual metabolite alone
showed little value for CRC diagnosis, indicates low specificity [6,18,19]. Therefore, we evaluated the
discrimination ability of their combination.

Both mathematical models, MLR and Adtree, showed better accuracy than single metabolites
alone. The accuracy of ADTree was higher than that of MLR using our data. Among various reports
not limited to cancer-specific biomarker topics, various machine-learning techniques were evaluated
and it was concluded that ADTree showed higher accuracy compared to the other machine-learning
methods [20–22] and MLR [23,24]. However, even using such methods, models to discriminate B from
M + C were difficult to use, yielding worse AUC values compared to models discriminating M from
B + C. In fact, the polyamines were elevated the most in M, whereas no B-specific elevations were
observed, which makes it difficult to establish an accurate model for B. Additionally, our data included
both high-risk and low-risk adenoma in B groups. The discrimination model should be developed to
discriminate one of these adenoma groups and the others. However, the number of patients of B in
this study were few. For rigorous assessment of the clinical utility of our markers, more patients with
both polyp groups should be involved.

The correlation among models’ predictions and tumor markers in the samples corrected from M
(Table 5) showed highly positive correlations in the MLR model and both CEA (p = 0.0003) and CA19-9
(p = 0.0034) at statistically significant levels. Meanwhile, the ADTree model showed independent
prediction compared to the CEA (p = 0.091) and CA19-9 (p = 0.21), which indicate that the combination
of ADTree prediction and these tumor markers has potential to enhance the accuracy to discriminate
CRC from the other groups. The ADTree model showed independence. However, these tumor markers
were not measured in B and C in this study. The utility of combination of multiple screening tools
should be evaluated.

The number of positive subjects in different stages showed different trends between tumor
markers and developed models. For example, CEA showed positive values for all subjects with stage
2 or more advanced stages, while only 83% of the cases showed positive results in stage 0. Meanwhile,
subjects with relatively early stages 0, 1, and 2 were detected 100%, 97.7%, and 93.5% by the ADTree
model, respectively. Therefore, tumor markers and mathematical models based on polyamines are
complementary and their combined use is one possible clinical application.

There are several limitations that need to be acknowledged in this study. The bootstrap
analyses indicated the small difference between upper and lower 95% CI, which indicated the high
generalization ability of the developed models. However, the sample sizes, especially the number
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of controls and polyps. were small. This affected the diurnal and day-to-day variations assessed
only by control subjects. The difference of several parameters, such as age, among the given groups
was the largest limitation and, therefore, rigorous validation using a large cohort data is necessary
to confirm the generalization ability of the developed models. Specificity is also an important issue
for screening for CRC. Elevations of urinary polyamines were reported for patients with not only
CRC but also other diseases, such as breast cancer [10,17]. Partially elevated urinary polyamines
for non-malignant gastrointestinal diseases would reduce the specificity for CRC diagnosis by using
the individual polyamine concentration alone [6]. The current datasets did not include the patients
with other cancers. Furthermore, comparison with larger cohorts, including patients with diabetes
and other metabolic disorders, was also necessary to assess the specificity of the developed model.
The combination of polyamines and other metabolites with highly sophisticated pattern recognition
algorithms would enhance the specificity [9]. Taken together, more rigorous validation is necessary to
confirm the generalization abilities of the developed models.

We utilized machine learning methods to evaluate the potential of combinations of multiple
markers. MLR was also utilized here as a predictor for an identical purpose. In general, MLR suffers
from the multicollinearity, e.g., the overfitting to the given problem by using variables showing highly
positive correlation. Therefore, the use of only minimum independent variables is preferable to retain
the predictor’s abilities, which limits the prediction accuracy of MLR. The common machine learning
method, i.e., artificial neural networks, has similar problems. Therefore, even in the use of machine
learning, feature selection is required to select variables considering the subsequent predictors. Here,
we selected ADTree [25], boosted conventional decision trees, which we previously utilized and which
are more robust against such problems [23,24,26]. However, the higher risk of overfitting should be
carefully estimated for the use of machine learning. Another problem for the use of machine learning
is interpretability of the developed model. MLR clearly defines the adjusted odds ratio of each selected
variable, while most of the machine learning methods utilizes the variable in a black box way. Here, we
employed interpretable methods while the prediction accuracy would be limited. Elevation of urinary
N1,N12-acetylspermidine in CRC was frequently reported [10,11] while the change of other polyamines
depends on the data [27]. Thus, the validation using a large cohort to confirm the predictive ability of
each polyamine using a statistical way and the selection of appropriate variables are still necessary.

4. Materials and Methods

4.1. Study Design

This study was conducted according to the Declaration of Helsinki principles. The study protocol
was approved by the Ethics Committee of Tokyo Medical University (No. 2346). Written informed
consent was obtained from each subject before participating in the study. Patients with CRC included
those who underwent chemotherapy. Patients with chronic metabolic diseases, such as diabetes, were
also included.

The resected specimens were pathologically classified according to the 7th edition of the Union
for International Cancer Control TNM Classification of Malignant Tumors [28]. The serum CEA and
CA19-9 levels were measured using radioimmunoassay methods (Abbott, Chiba, Japan). The limit
of detection of CEA was 0.5 ng/mL and that of CA19-9 was 2 U/mL. A high CEA level was defined
as a level exceeding 5 ng/mL, and a high CA19-9 level was defined as a level exceeding 37 U/mL,
according to the guidelines defined by the manufacturer of the test kit [29].

We collected 2 mL samples from the cubital vein after the diagnosis of colorectal cancer or
as part of a routine investigation in healthy subjects. The tumor markers were measured with an
electrochemiluminescent assay using Roche Diagnostic reagent kits and a Cobas 6000 automatic
analyzer (Roche Diagnostics, Mannheim, Germany). In parallel, we performed enzyme immunoassays
(EIA) and electrochemiluminescent assays (Roche Diagnostics, Mannheim, Germany) in 20 patients.
The reference values were set to 5 ng/mL for CEA and 37 U/mL for CA19-9 [30].
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4.2. Collection and Treatment of Urinary Samples

Urinary samples were collected at 7:00–8:00, 11:00–12:00, and 17:00–18:00 from identical healthy
control subjects. They provided these urinary samples on three consecutive days. The urinary samples
from CRC and benign cases were collected at one time between 9:00 and 16:00.

Urinary samples were collected in a 50 mL Falcon tube and stored at −80 ◦C prior to
the metabolomic analyses. The urinary samples were divided into polyamines and creatinine
concentrations. The urine (10 µL) was mixed with methanol (90 µL) containing 149.6 mM
ammonium hydroxide (1% (v/v) ammonia solution) and 0.9 µM internal standards (d8-spermine,
d8-spermidine, d6-N1-acetylspermidine, 1.6-diaminohexsne, d6-N1,N8-diacetylspermidine, and
d6-N1,N12-diacetylspermine). After centrifugation at 20,400× g for 10 min at 4 ◦C, the whole
supernatant was transferred to another tube and vacuum dried at 40 ◦C. The sample was reconstituted
with 90% methanol (10 µL) and water (30 µL) and then vortexed and centrifuged at 20,400× g for
5 min at 4 ◦C. For the quantification of creatinine, a portion of the supernatant was diluted 5000 times
by water. Diluted and undiluted samples of 1 µL were each injected into the LC/MS.

Individual metabolite concentrations quantified using the standard compounds were divided
by the absolute concentration of urinary creatinine which was quantified by the methods described
elsewhere [31].

4.3. LC Condition

The LC system used was Agilent Technologies 1290 Infinity (Agilent Technologies, Santa
Clara, CA, USA) consisting of a HiP sampler, a quaternary pump, and a column compartment.
Chromatographic separation was performed using an ACQUITY BEH C18 column (2.1 i.d. × 50 mm,
1.7 mm; Waters, Milford, MA, USA) at 40 ◦C. The mobile phase consisting of solvent A (0.1% formic
acid and 1.5 mM heptafluorobutyric acid in water) and solvent B (1.5 mM HFBA in methanol) were
delivered at a flow rate of 0.4 mL/min. The gradient elution is listed in Appendix A. The run time for
an LC-MS analysis was 5 min, and the time for equilibration with 99% solvent A was set to be 5 min.

4.4. MS/MS Condition

MS detection was conducted on Agilent Technologies 6460 triple quadruple. The samples were
analyzed using positive ion mode. Instrument parameters were set as follows: drying gas temperature
at 275 ◦C, drying gas flow at 13 L/min, nebulizer at 55 psig, and Vcap at 3500. The specific MRM
transition, fragmentor voltage, and collusion energy (CE) were optimized for each compound analyzed
(Appendix B). Agilent MassHunter Qualitative Analysis and Quantitative QqQ Analysis software were
used for data processing, including the MassHunter Optimizer and the Dynamic Multiple Reaction
Monitoring Mode (DMRM) software features.

4.5. Data Analysis

All absolute concentrations (µmol/L) of polyamines were divided by that of creatinine (µmol/L),
and, thus, subsequent analyses were conducted using the normalized values (no units).

We developed two mathematical models: model-M to discriminate malignant (M) from begin (B)
and controls (C) and model-B to discriminate polyps from CRC and controls. Here, we utilized an
ADTree, an improved form of the conventional if-then type decision tree [25]. This tree has been proven
to be the most accurate among various popular classification methods, such as C4.5 and CART [32].
Previously we used this method and confirmed the higher accuracy [23,24].

To develop each model, the following procedures were conducted.

4.5.1. Resampling

Each patient was randomly selected to generate virtual datasets under bias-controlled conditions,
i.e., we used almost the same number of positive (M) and negative (P and C) subjects in the generated
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datasets for model M, and almost the same number of positive (P) and negative (M + C) subjects for
model P. Resampling procedures were conducted with five different random values.

4.5.2. Parameter Optimization

To optimize the boosting number (e.g., the number of nodes in an ADTree model), k-fold CV
was conducted, where (1) the datasets were randomly separated into a k-1:1 ratio for training and
validation, (2) a model was developed using training data and the prediction of the validation data,
and (3) this procedure was repeated k times and the AUC value was calculated based on the prediction
of validation datasets. Here, the boosting number was changed from 1 to 15 and cross validation
procedures were repeatedly conducted using k = 2.

4.5.3. Validation

The optimized mode was used to predict positive or negative values for each subject in original
datasets. Overall, bootstrapping analyses were conducted 200 times to evaluate the variation of the
predicted accuracy using multiple virtual datasets yielded by randomly selecting subjects, allowing
for redundant selection. In addition, the 10-fold CV was also conducted 200 times with various
random values.

4.6. Statistical Analysis

The discrimination ability of polyamines evaluated from the data observed in the samples
collected at the morning on the first day was used for M. This is because multiple samples were
collected from the patients with M.

The multiple logistic regression model was developed with backward stepwise variable selection.
Variables with p > 0.05 were eliminated from the model. The accuracy of each model was assessed by
the area under the receiver operating characteristic (ROC) curve (AUC). The Kruskal-Wallis test with
Dunn’s multiple comparison was used to evaluate the difference among multiple groups. Weka data
mining software (ver.3.6.13, The University of Waikato), JMP (ver. 13.2.0, SAS Institute Inc., Cary, NC,
USA) and GraphPad (ver. 5.0.2 Graphpad Software, San Diego, CA, USA) were used for all analyses.

5. Conclusions

This study aimed to discriminate CRC from the other conditions by using urinary metabolites
quantified by LC-QqQMS to profile the seven kinds of polyamines. Among all polyamines,
N1,N12-diacetylspermine showed the highest differentiation ability. The area under the receiver
operating characteristic curve (AUC) was 0.794 (95% CI: 0.704–0.885, p < 0.0001) to differentiate
M from B + C. In enhancing the discrimination ability of CRC from polyps and healthy controls
using combinations of polyamines, ADTree showed high AUC values, i.e., 0.961 (95% CI: 0.937–0.984,
p < 0.0001). The methods demonstrated in this study showed the potential of CRC as a screening tool.
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Abbreviations

CRC colorectal cancer
AUC area under the receiver operating characteristic curve
CI confidence interval
CEA serum carcinoembryonic antigen
ODC ornithine decarboxylase
SSAT spermine/spermidine N1-acetyltransferase
APAO N1-acetylpolyamine oxidase
SMO spermine oxidase
APC adenomatous polyposis coli
LC-MS liquid chromatography-mass spectrometry
CoV coefficient of variation
MLR multiple logistic regression
C controls
B benign
M malignant
SD standard deviation
ROC receiver operating characteristic
ADTree alternative decision tree
CV cross validation

Appendix A

Table A1. Liquid chromatography conditions for polyamine analysis.

Time (min) Mobile Phase A (%) Mobile Phase A (%)

0 99 1
0.6 99 1
0.8 58 42
1.8 58 42
2.3 50 50
3 50 50

Appendix B

Table A2. MRM scans for polyamines.

Compound Q1 1 (m/z) Q3 2 (m/z) Flag (v) CE (v) CAV (v) RT (min)

1,6-diaminohexane 117.1 100.1 70 9 4 2.658
spermidine-d8 154.2 32.1 95 41 4 3.426

N1-acetylspermidine-d6 194.2 106.0 100 17 4 2.924
spermine-d8 211.3 120.1 100 21 4 3.958

N1,N8-diacetylspermidine-d6 236.2 103.1 125 17 4 2.779
N1,N12-diacetylspermine-d6 293.3 103.1 120 25 4 3.263

spermidine 146.2 72.1 95 13 4 3.426
N1-acetylspermidine 188.2 100.0 105 17 4 2.928
N8-acetylspermidine 188.2 114.0 115 17 4 3.064

spermine 203.2 112.0 100 17 4 3.958
N1,N8-diacetylspermidine 230.2 100.0 120 17 4 2.779

N1-acetylspermine 245.2 100.0 110 21 4 3.637
N1,N12-diacetylspermine 287.2 100.0 125 25 4 3.263

1 Preursor; 2 Product.
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