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Abstract: The functioning of bioluminescent systems in most of the known marine organisms is
based on the oxidation reaction of the same substrate—coelenterazine (CTZ), catalyzed by luciferase.
Despite the diversity in structures and the functioning mechanisms, these enzymes can be united
into a common group called CTZ-dependent luciferases. Among these, there are two sharply
different types of the system organization—Ca2+-regulated photoproteins and luciferases themselves
that function in accordance with the classical enzyme–substrate kinetics. Along with deep and
comprehensive fundamental research on these systems, approaches and methods of their practical
use as highly sensitive reporters in analytics have been developed. The research aiming at the
creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led
to the development of new experimental analytical methods based on them. The commercial
availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important
when choosing them by first-time-users. The development of analytical methods based on these
bioluminescent systems is currently booming. The bioluminescent systems under consideration
were successfully applied in various biological research areas, which confirms them to be a powerful
analytical tool. In this review, we consider the main directions, results, and achievements in research
involving these luciferases.
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1. Introduction

It would not be an exaggeration to say that most of the currently known luminous organisms are
marine inhabitants. These are representatives of different taxa, with bioluminescent systems of various
degrees of complexity, with different mechanisms of bioluminescent reactions. Noteworthy here
is the fact that in most of these bioluminescent systems, the compounds with similar chemical
structures containing imidazopyrazinone skeleton act as a substrate (luciferin). As such, coelenterazine
(CTZ) is most deeply and frequently studied (Figure 1). The history of its discovery, information on
occurrence, properties and reactions are presented in the book by O. Shimomura—recently reedited [1].
Bioluminescence reaction arises when luciferin is oxidized by the molecular oxygen catalyzed
by a specific enzyme, luciferase (Luc). The CTZ-dependent luciferases are represented by two
strictly different types—luciferases and photoproteins—whose bioluminescence is dependent on Ca2+

(the so-called Ca2+-regulated photoproteins, PhP). The first ones catalyze CTZ oxidation in accord
with the classical enzyme–substrate interaction yielding coelenteramide (CTM, the decarboxylated
derivative of CTZ), CO2, and a quantum of blue light (Figure 1a). Luciferases of many organisms are
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well studied, their cDNAs were cloned, and the recombinant analogues as well as many genetically
modified variants with the new improved properties were obtained [2,3].

Figure 1. Variety of coelenterazine-dependent bioluminescent systems. (a–d) pathways of
coelenterazine oxidation with the release of blue light, found in diverse organisms.
Luc—luciferase; apoPhP—apophotoprotein; apoCBP—apo-coelenterazine binding protein; CTZ and
CTM—coelenterazine and coelenteramide. Explanations are given in the text.

The CTZ oxidation by polypeptide apophotoprotein (apoPhP) results in the formation of a stable
complex comprising a protein and 2-hydroperoxycoelenterazine, which is actually a Ca2+-regulated
photoprotein: bioluminescence occurs when calcium ions are bound (Figure 1b). The reaction
products are: the complex of apoPhP with CTM and three Ca2+, CO2, and a quantum of blue
light. So, in opposition to luciferases capable of making many turnovers, like the other enzymes,
photoproteins produce the flash-type light only once. This suggests a fundamentally linear relationship
between the protein amount and the light emitted. Being the in situ stable enzyme–substrate complexes,
photoproteins have become of great academic interest—many proteins of the wild type (WT) and
their mutant variants with altered bioluminescent properties were obtained, tertiary structures were
determined, and the reaction mechanism was studied (e.g., [4]).

Of interest is the CTZ-dependent bioluminescent system found in a soft coral Renilla.
Its particular feature is that coelenterazine in this animal is safety packed into the Ca2+-dependent
coelenterazine-binding protein (CBP) cavity (Figure 1c) [5]. Its oxidation catalyzed by Renilla luciferase
takes place when calcium ions are bound to the CBP [6]. In the in vitro experiments, the CBP was
found to be of higher bioluminescence efficiency as a substrate compared to the free CTZ, possibly due
to the formation of the CBP-luciferase complex [7].

As might be presumed, such a variety of bioluminescent systems in terms of organization
characteristics is associated with the need to localize the substrate in such a way as to ensure its
presence at the right time and in the right place. It is a general opinion that bioluminescence is a
vital adaptation selected for in evolution. As the membrane permeability of CTZ is rather high [8],
this substrate can be distributed throughout the whole organism. To keep the bioluminescence
system in a “ready for action” mode, in case (a) luciferase and CTZ are stored separately in special
secretory glands and are injected into the water, where they mix, forming a luminous cloud to
deceive or scare away a predator (for example, systems of copepods Metridia or Gaussia). In case (b),
luciferase and preoxydized luciferin are stable molecules of photoprotein ready to act under Ca2+

control, whose concentration rises by nerve stimulation (e.g., systems of coelenterates Aeqouria, Obelia,
Beroe, and others). In case (c), CTZ luciferin is stored inside the CBP complex and becomes available
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for oxidation also under the Ca2+ control (e.g., the system of soft coral Renilla). It should be noted that
owing to the stability of coelenterazine localized in CBP to spontaneous oxidation, this protein has
been proved to be useful at analytical application of this form of substrate [9–11].

There is another kind of photoprotein utilizing CTZ derivative as a substrate with a bioluminescent
system significantly different from that of Ca2+-regulated photoproteins (Figure 1d). It was found
in glowing squids Watasenia scintillans and Symplectoteuthis oualaniensis (symplectin) and bivalve
mollusk Pholas dactylus (pholasin). To date, the structure and functioning of the system are still
poorly understood [12]. It is now classified as a reactive oxygen species (ROS)-sensitive photoproteins
comprising a glycoapoprotein (shown for apo-pholasin only) with covalently bound (through sulfhydryl
group of one of the cysteine residues) dehydrocoelenterazine (see Figure 2) for the light-emitting
source. Nevertheless, poor knowledge about this bioluminescent system organization did not prevent
the development of pholasin application as an indicator of ROS in various fields of research.

Figure 2. Chemical structures of coelenterazine and its analogues, mentioned in the review.
Imidazopyrazinone core is shown in a circle.

All natural CTZ-dependent luciferases emit blue light with maxima at 460–480 nm, apparently
from the fact that the emitter is the same coelenteramide (or its close derivatives) in an excited
state [1]. However, bioluminescence systems of many coelenterates contain the re-emitted molecule,
whose fluorescence is shifted to the longer wavelength part of the spectrum with a maximum at 510 nm.
The green fluorescent protein (GFP) was discovered in 1961 in the jellyfish Aequorea aequorea [13] and
then in other organisms (e.g., Clytia and Renilla). It was shown that the protein contains a chromophore
inside the cylinder-shaped molecule, which is spontaneously formed from three amino acids (Ser65,
Tyr66, and Gly67) [14,15]. So, light energy produced by CTZ-dependent luciferases is transferred to
GFP resulting in the emission of green light. This process involves the mechanism of fluorescence
(bioluminescence) resonance energy transfer (FRET/BRET) which underlies many modern research
methods. After the cDNA of Aequorea GFP was cloned, and especially when it was successfully
expressed in living organisms, its usefulness as an in vivo marker became apparent. The obvious
importance of GFP for biomedical research activated the development of its recombinant forms with
the improved properties (brighter, in different colors, etc.). Currently, the number of publications about
this protein and its application is enormous. For a short account on the GFP chemistry, one can refer to
the book by Shimomura [1].

The chemical structure of coelenterazine of natural type was determined, and its molecule was
chemically synthesized in the mid-1960s–1970s [16]. The fundamental interest in the phenomenon of
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bioluminescence, its mechanism and the desire to change its characteristics resulted in the development
of new synthetic variants of coelenterazine-like molecules. Some of these studies were aimed at
searching those showing the improved bioluminescent signal. As of now, there are hundreds of CTZ
variants which were synthesized and tested for applicability as the luciferase substrates. Of special
interest were the CTZ variants providing alternative bioluminescence spectra and kinetics, being at
the same time more stable under storage [17–20]. All coelenterazine analogues retain the molecule
skeleton and differ in the structures of radicals R1-R3 (Figure 2). Therefore, the quantity of potentially
useful synthetic CTZ variants is to be rather big, especially if it concerns the other luciferases. Many of
CTZ variants demonstrate good perspectives for practical applications and are commercially available.
The structures of some of them discussed hereafter are presented in Figure 2.

All CTZ-dependent luciferases known today, with a rare exception, are small, single-chain proteins,
providing bright bioluminescence; their recombinant variants are easily available, and many of them
are commercial products. These factors account for significant interest in their use as highly sensitive
reporters in analytical systems for both in vitro and in vivo applications. Currently, there is a whole
arsenal of luciferases as well as CTZ derivatives. These bioluminescent systems were successfully
applied in various biological research areas, which confirms them to be a powerful analytical tool. It is
impossible to cover a huge number of publications on this topic. In this review, we consider the main
directions, results, and achievements in research involving these luciferases over the past 10–15 years.

2. Analytical Application of Ca2+-Regulated Photoproteins

The Ca2+-regulated photoproteins are single-chain globular proteins (MW of about
21 kDa) with a tightly but non-covalently bound molecule of pre-oxidized coelenterazine
derivative—2-hydroperoxycoelenterazine in the protein internal cavity [21,22]. By virtue of this,
their light emission is independent of the presence of molecular oxygen in the reaction mixture,
this being one more feature of the Ca2+-regulated photoproteins that distinguishes them from other
bioluminescent enzymes. Of all the known photoproteins, only aequorin from Aeqourea victoria and
obelin from Obelia longissima, the most deeply studied ones, are used as reporters in analytics.

Bioluminescence reaction of this type of photoproteins is initiated by the binding of calcium ions
to the EF-hand Ca2+-binding loops on the surface of a protein molecule, causing small conformational
changes within the internal cavity of the protein. This disturbs the network of hydrogen bonds of the
active center of the molecule and triggers the reaction of 2-hydroperoxycoelenterazine decarboxylation,
yielding a mole of CO2 and the protein-bound product, coelenteramide, in an excited state. Its relaxation
to the ground state is accompanied by light emission with λmax at 465–495 nm [23].

Cloning of cDNAs encoding several photoproteins and their expression in bacterial cells,
as well as effective activation of the recombinant apophotoproteins with a synthetic coelenterazine
(under calcium-free conditions in the presence of O2) opened the way to obtaining almost unlimited
amounts of the recombinant proteins as well as to producing different mutated and chimeric
photoproteins. Many photoprotein mutants with altered characteristics such as higher thermostability
and bioluminescence activity, different emission color, faster or slower bioluminescence kinetics,
and modified calcium affinity [3,4,24,25], as well as chimeric photoproteins genetically fused with
different polypeptides, were produced. The diversity of photoprotein variants and synthetic
coelenterazine analogues allow the development of novel bioluminescent assays or to improve
characteristics of the already existing ones.

2.1. Ca2+-Regulated Photoproteins as Indicators of Intracellular Ca2+

The traditional application of Ca2+-regulated photoproteins is conditioned by their high specificity
and sensitivity to calcium ions in a physiological concentration range (Figure 3) where they are used
as a valuable probe for studying Ca2+ signaling [26]. Intracellular calcium ion signaling regulates
numerous basic cellular processes including muscle contraction, release of mediators, synaptic plasticity,
neuronal signal transmission, gene expression, proliferation, apoptosis, etc. Generally, calcium is often
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regarded as an agent affecting intracellular processes by changing its concentration—i.e., the level of
free calcium, varying from 50 nM to about 10 µM at the peaks of a number of physiological signals [27].
Moreover, intracellular calcium signals regulate processes that operate over a wide time range,
from neurotransmitter release at the microsecond scale to gene transcription, which lasts for minutes
and hours. Thus, the time course, the amplitude, and, most notably, the local action site in well-defined
cellular subcompartments are essential features of intracellular calcium signaling pathways.

Figure 3. Ca2+ concentration—effect curves for recombinant photoproteins. L—light intensity at the
particular Ca2+ concentration; Lint—total light intensity at saturating Ca2+ concentration.

Aequorin has been widely used as a gene-encoded Ca2+ indicator (GECI) in cells since it was cloned
in 1985 and has been shown to be an effective tool to monitor intracellular [Ca2+] (concentration of
Ca2 +) [28]. The emission of photoproteins is characterized by a high signal-to-noise ratio and a wide
dynamic range. Bioluminescent recordings of calcium signals do not require external illumination,
thus avoiding problems such as phototoxicity, photobleaching, autofluorescence, and undesirable
stimulation of photobiological processes. Photoproteins have very low buffering capacity and are not
toxic. Moreover, they can be modified to introduce specific targeting sequences providing selective
routing of the photoprotein to a cell region of interest where local calcium transients need to be measured.
Native-type aequorin is exclusively cytosolic, but the recombinant aequorin chimeras were constructed
for targeting different intracellular compartments (nuclei, mitochondria, subplasma-membrane cytosol,
endoplasmic/sarcoplasmic reticulum, Golgi apparatus, secretory vesicles, peroxisomes) [29,30].

The major efforts of researchers over the past 15 years have focused on expanding the arsenal
of different photoprotein probes to cover specific requirements for visualization and quantitative
estimation of the intracellular calcium signals. The main points here concerned: probe stability during
in vivo measurements; the possibility to measure both low and high [Ca2+] in single cells, in cytoplasm,
and within defined intracellular compartments; to also measure both fast and slow [Ca2+] fluxes; as well
as the design of differently colored probes for multiplexing and red-colored probes for in vivo imaging.

Although recombinant photoproteins from various organisms are closely related, they differ
in properties as intracellular calcium indicators with regard to Ca2+ concentration detection limit,
Mg2+ sensitivity, and the rate of luminescence rise [31,32]. As a Ca2+-indicator, aequorin is more suitable
at [Ca2+] ranging from 10−7.5 to 10−4.5 M, while obelin—at [Ca2+] between 10−6.5 and 10−3.5 M [31].
Clytin is the least sensitive to [Ca2+] (KD = 500 nM) [31]; berovin responds to changes in calcium
concentration starting below 10−8 M and reaches saturation at approximately 10−4 M [33]. Sensitivity to
calcium of mnemiopsin isoform 2 is lower compared to berovin and hydromedusan photoproteins
and extends from 10−6 to 10–4.5 M [34]. However, photoproteins of a wild type cannot be used as
a probe for cellular organelles where [Ca2+] is much higher—e.g., in the lumen of endoplasmic or
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sarcoplasmic reticulum (about 300–500 µM) or in mitochondria that can reach values of up to 100 µM.
Numerous studies on photoprotein EF-hand motif have shown that calcium affinity of the protein can
be changed. Different approaches have been used to perform modifications: specific point mutations
of the Ca2+-binding sites, random mutagenesis and functional screening, replacement of the consensus
sequence of the first Ca2+-binding site with a loop sequence belonging to other EF-hand Ca2+-binding
proteins [4,25], or/and the usage of coelenterazine synthetic analogues [31]. The aequorin variant with a
reduced Ca2+ affinity was produced and proved to be eminently suitable for measuring Ca2+ within cell
compartments with high calcium concentration (endoplasmic reticulum, mitochondria, etc.) [35,36].

Several studies have been devoted to modifying the emission spectrum of photoproteins for
making them applicable for in vivo imaging in deep tissue and for multiplexing screening. It is well
known that animal tissue absorbs and scatters less light in the 600–900 nm range. Many aequorin and
obelin variants with a broadened emission spectrum and various decay kinetics have been obtained
by site-directed mutagenesis of the coelenterazine-binding cavity or by random mutagenesis [4,25].
The incorporation of non-natural amino acids into cystein-free aequorin in combination with various
coelenterazine analogues allowed the production of aequorin emitting in the yellow region of
the spectrum (maximum at 526 nm) with long decay kinetics (half-life up to one minute) [37].
Another approach to obtain red-emitting photoproteins is to fuse them with fluorescent proteins or
chemically attach them to fluorophores which act as BRET acceptors. For instance, aequorin has been
conjugated to quantum-dot particles (CdSe/ZnS), resulting in the limited energy transfer with the
presence of an emission peak around 540 nm [38]. The largest emission shift has been produced by
fusing photoproteins with different variants of GFP (yellow, red, orange, etc.) (see, for review, [39]).
The fusion of aequorin with a tandem dimer tdTomato generated “redquorin” characterized by high
BRET efficiency, a major emission peak at 582 nm, and a sensitivity high enough to detect spontaneous
Ca2+ oscillations in single cells [40]. Aequorins, fused with GFP and RFP (red fluorescent protein [41])
and targeted to different subcellular locations have been successfully used to simultaneously and
independently record the changes in Ca2+ concentrations in different subcellular compartments of the
same cells—cytosol, mitochondria, endoplasmic reticulum (ER), and nucleus [42,43]. Of note is that
in these studies, the mutant aequorin with a low affinity for Ca2+, as well as an artificial variant of
coelenterazine, f-CTZ (Figure 2), were used for [Ca2+] measurements in ER.

In the last 10 years, aequorin has been widely used as a Ca2+ indicator in a great variety of
research: for studying the neural basis for Drosophila behavior [44–49]; exploring brain activity and
visualizing Ca2+ signaling events that occur at the early stages of zebrafish development [44,50–54];
elucidating the Ca2+ response to biotic or abiotic stress in different plants [55–62] and yeast [63]; as well
as for protozoa studies [64].

The extension of the arsenal of photoprotein probes has allowed to overcome some limitations
concerning the application of photoproteins as probes for imaging Ca2+ fluxes in cell populations
and in intact organisms as well as the measuring of [Ca2+] in single cells, in the cytoplasm, and other
cell compartments.

2.2. Ca2+-Regulated Photoproteins as Effective Reporters for In Vitro Binding Assay

At saturating concentration of Ca2+, the photoprotein-induced signal reaches its maximum,
and overlaps several logs of concentration with a linear relationship between photoprotein amount
and bioluminescence. A high quantum yield of the reaction, a virtual absence of the background
bioluminescent signal, and a high sensitivity of modern photometers make the photoprotein detection
down to attomole level possible [65]. Aequorin and obelin have been tested as reporters in various
binding assays (Figure 4), such as ELISA-type, homogeneous, DNA-hybridization assay, or whole-cell
sensing systems and have always shown a very low detection limit. Photoproteins have been shown to
be inherently endowed with distinct advantages over absorbance, fluorescent, or radioactive reporters
for use as labels in bioassays in vitro [66,67].
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Figure 4. General scheme for bioluminescent solid-phase binding assay. Label is a chemically
synthesized conjugate or genetically fused recognition element with a reporter molecule (PhP).

The detection of multiple biomarkers is a model trend that has proved to be effective in precise
medicine for diagnosis and management of the disease. Mutated variants of aequorin and obelin as well
as “semi-synthetic” aequorins (aequorins with introduced synthetic coelenterazine analogues) displaying
altered bioluminescent properties (emission maxima and kinetics) expanded the analytical applications of
photoproteins and made them amenable to simultaneous multianalyte detection in a single well.

With site-directed mutagenesis of the amino acids in the obelin active site applied, two stable
and active obelin mutants of different color and bioluminescence reaction rates, suitable for multiplex
analysis, were produced. The signals of the mutants obtained were shown to be effectively separated
by using wideband optic filters and temporal resolution [68,69].

Obviously, this approach is especially suitable when the diagnosis is determined by the balance
between a pair of hormones—e.g., gonadotrope hormones, luteinizing (hLH), and follicle-stimulating
(hFSH) ones [69]—or when the hormone is present in two different forms—e.g., total and non-active
immunoglobulin-bound (macro) prolactins [70]. The method is performed in high-throughput format
and helps to overcome shortcomings of separate detection. Another type of analysis requiring the
detection of two targets is the single nucleotide polymorphisms (SNP) genotyping, when two allele
variants have to be elicited simultaneously. Based on the colored obelin reporters, the microassay
of products of the primer extension reaction during the SNP identification was also developed [69].
The method was successfully applied to identify: four SNPs associated with the risk of hemostasis
disorders [71] and three SNPs in gene of melanocortin-1 receptor (MC1R), associated with melanoma
and non-melanoma skin cancer risk [72,73]. All results were in complete agreement with those obtained
with the use of conventional RT-PCR techniques or Sanger sequences, but bioluminescent analysis is
faster and cheaper.

“Semi-synthetic” aequorin variants with altered emission profiles and decay kinetics have
been developed through a combination of site-specific mutations and application of synthetic
coelenterazine analogues [74]. In the study, two aequorin mutant proteins were genetically conjugated
to three pro-inflammatory cytokines (tumor necrosis factor alpha (TNFα), interleukins IL6 and IL8).
These fusion proteins were combined with f-, i-, and cp-coelenterazine, correspondingly (Figure 2).
Fast bioluminescent signals from TNFα and IL8 were separated using bandpass filters with transmission
peaks at 420 and 520 nm and measured within the first 6 s. The only signal left was emitted from
the IL6 and it was integrated during the next 19 s. The validity of the assay was demonstrated by
employing samples of artificial human serum, and the results were in agreement with those obtained
by commercially available individual tests for each of the three cytokines.

The specificity of the binding assay is ensured by the combination of a reporter and biospecific
molecule with affinity to a certain target (immunoglobulin, oligonucleotide, hapten, etc.). The molecules
of the kind (biospecific bioluminescent labels) are usually obtained by chemical conjugation using
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different commercial reagents. To simplify and direct the synthesis, increase the conjugation yield,
and to save the bioluminescence activity of photoproteins, several aequorin and obelin mutants
carrying unique cysteine residues accessible for chemical modification were produced [75,76].

One of the modern trends in binding analysis is the use of DNA/RNA aptamers as the recognition
and binding elements that can successfully compete with monoclonal antibodies. Aptamers are short
single-stranded oligonucleotides with a unique spatial structure that enables them to bind target
molecules with high affinity and specificity. They offer several unique advantages: a possibility of
chemical synthesis with minimal batch-to-batch variation, long shelf life, stability, and a large variety
of available chemical modifications. Moreover, aptamers can be selected for any target, including toxic
and non-immunogenic ones. Due to these useful features, aptamers are becoming increasingly popular
as biospecific elements in a number of biomedical analytical systems (see, for review, [77]).

Several bioluminescence aptamer-based analytical systems have been developed and tested on
a large number of clinical samples. Obelin chemically conjugated with specific DNA aptamers was
applied as a label in sandwich-type solid-phase analysis of lung tumor elements in clinical plasma.
The developed assay demonstrated good sensitivity of 91.5% and specificity of 75% (p < 0.001) [78].
Analogous conjugate with (2′-F-Py) modified RNA aptamer to the multiple sclerosis (MS) related
autoantibodies was used for detection of autoantibodies to myelin basic protein in sera samples from
MS-diagnosed patients (91) and non-MS donors (81). A statistical analysis of the results showed a
63.7% sensitivity and a 94.2% specificity of the assay developed [79,80]. It is worth noting that the
diagnosis and monitoring of MS requires sophisticated equipment and highly qualified personnel, and
therefore, the development of an analytical approach is extremely relevant.

Using obelin as a reporter—a convenient technique—was developed for fast and easy monitoring
of the DNA library enrichment and evaluating the affinity and specificity of the individual aptamers
during the SELEX procedure [81]. The approach was applied for the selection and development of
2′-F-Py RNA aptamers to general and glycated hemoglobins—biomarkers of diabetes mellitus [82] and
DNA aptamers to the cardiac troponin I—a specific biomarker for acute myocardial infarction [81].

In studies [83], the authors selected 2′-F-Py RNA aptamer to obelin and later used it for engineering
structure-switching bi-modular aptamer constructs [84]. One aptamer module of the construct
(antihemoglobin RNA aptamer) binds the analyte (hemoglobin) that causes structural reorganization
of the second module making it able to bind the obelin molecule. The complex which is finally formed
on the surface was detected by obelin bioluminescence. The proposed approach allows integrating the
obelin reporter into the bioanalytical system without any chemical conjugation or engineering of the
fused protein and might be further adjusted to the detection of other proteins simply by exchanging
biospecific module.

Another way to connect the photoprotein molecule with biospecific polypeptide is to create
a hybrid protein by fusing their gene. The approach has some benefits compared with chemical
conjugation such as rapid bacterial production of homogeneous hybrids and easy purification using
auxiliary affinity tags etc.

The fusion protein streptavidin to aequorin (STA-AQ) [85] and minimum-sized core streptavidin
to obelin (SAV-OL) [86] were highly purified from the inclusion bodies in Escherichia coli (E. coli) cells
and applied to a bioluminescent sandwich immunoassay. The obtained hybrids demonstrated several
advantages over similar chemical conjugates: the easiest way of preparation; maximum retention
of properties of the initial protein; and as a result, the higher sensitivity of the assay. The hybrid
STA-AQ was tested in model immunoassay of α-fetoprotein, which is a serological marker of liver
cancer. The SAV-OL was applied as a reporter for detecting several targets such as cardiac markers
(troponin I, troponin T, myoglobin, creatine kinase MB) and nucleic acids. The hybrids containing
immunoglobulin-binding polypeptide ZZ with aequorin or that with obelin were obtained recently [87,88].
The aequorin-containing construction included two auxiliary polypeptides: signal peptide sequence
of the outer membrane protein A (OmpA) and hexahistidine tag, providing the hybrid translocation
into periplasmic space of the host E. coli cells and fast purification by metal-affinity chromatography.
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The obelin-containing hybrid was much simpler without any auxiliary polypeptides and was purified
from the inclusion bodies in a manner similar to wild-type obelin [89]. It has been shown to be a highly
sensitive label in various assays: detection of antibodies, assessment of their affinity, interaction with
recombinant proteins, monitoring of SELEX, and affinity assessment of DNA (RNA) aptamers [88].

The described types of fusion proteins are universal probes: hybrids STA-AQ and SAV-OL are
probes to any biotin-containing molecule, hybrids ZZ-AQ and ZZ-OL are the probes to IgG due to
protein A affinity to Fc fragments. Of note is that photoproteins can be extended with a polypeptide
from N-terminus only, the extension of the C-end terminus induces photoprotein instability [90]. This is
a significant limitation in designing the photoprotein hybrids.

Nevertheless, methods, materials, and approaches developed in the field allow the production of
unique multifunctional proteins with new useful properties applicable in different areas. For example,
a genetic engineering approach was used to construct bioluminescent molecular switch created by
the insertion of specific proteins into the aequorin structure [91–93]. The hybrids developed in these
studies included an aequorin molecule split into two parts (1–47 and 48–189 amino acid fragments)
that were linked by either glucose-binding protein (GBP), cyclic AMP (cAMP) binding receptor
protein (CRP), or a sulfate-binding protein (SBP). Target binding to the corresponding specific protein
allosterically transduces AEQ, turning the switch “on” (in the case of GBP or SBP sensors) or “off” (in the
case of cAMP) and generating or quenching bioluminescence emission. The developed molecular
bioluminescent switches were validated by performing targets detection in clinical and environmental
samples demonstrating selectivity and reproducibility with appropriate detection limits.

2.3. Analysis Based on the Aequorin Bioluminescence Inhibition

Another type of the analyte detection assay is based on the inhibition of aequorin bioluminescence
activity upon its interaction with a small molecule.

In the study [94], aequorin bioluminescence inhibition assay for quantification of
hydroxylated polychlorinated biphenyls (OH-PCBs), toxic and persistent environmental contaminants,
was developed. The OH-PCBs, as the authors suppose, become bound to the hydrophobic CTZ-binding
cavity of aequorin due to similarity with the structure of CTZ causing a dose-dependent decrease in
aequorin bioluminescence. The proposed assay was applied for determination of various OH-PCBs
in biological and environmental samples without their preliminary treatment. Rahmani H. et al.
developed aequorin-based inhibition assay for direct detection of dopamine in raw samples of blood
serum or urine with a detection limit of 53 nM [95]. The same research group proposed to use a aequorin
bioluminescence system for superoxide anion detection [96]. The assay was based on decarboxylation
of coelenterazine to coelenteramide by superoxide anion. The high superoxide anion concentration
results in the increase in effective concentration of coelenterazine capable of charging the aequorin
molecule. So, the bioluminescent signal of aequorin is inversely proportional to superoxide anion
concentration with a linearity range between 4 and 40,000 pM and a detection limit of 1.2 pM.

One of the advantages of bioluminescence inhibition assay is the lack of aequorin modification
step as it is both recognition and signal generating molecule. However, the researcher always must
be sure that the sample does not contain other molecules, which, alongside with the target one,
inhibit aequorin bioluminescence.

3. Photoprotein Pholasin and Its Analytical Application

Photoprotein pholasin is isolated from the luminous seawater mollusk Pholas dactylus. In 2000,
apo-pholasin (34.6 kDa) was cloned and expressed in E. coli cells [97], although the main source of
this photoprotein is the cultivation of P. dactylus in the farm of Knight Scientific Ltd. (Plymouth, UK)
(see its application example, [98]). The luminescence reaction of pholasin is triggered by reactive
oxygen species such as superoxide anion and hydroxyl free radical so it is now widely used as an
indicator of the superoxide anion radical (SAR) and other reactive oxygen species (ROS) in various
fields of research.
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One of the recent pholasin applications is the quantification of leucocyte ROS production in
response to various stimuli. Bryan and colleagues used the pholasin-based ROS assay to assess leukocyte
respiratory burst response to biomaterials. They identified the role of a number of fabrication variables
involved in the generation of tissue-based biomaterials in the down-stream leukocyte activation. A high
degrees of leukocyte activation leads to poor material/patient compliance, accelerated degeneration,
and graft rejection. The developed technique may be the way to guide host-material integration
directed by the associated native tissue response to neutrophil ROS release and has the potential to be
used as a routine component of presurgical evaluation to maximize foreign body compliance [99].

The same authors used pholasin to estimate the leukocyte ROS response for revealing differences
in host reaction to several synthetic materials used in hernia repair [100]. Additionally, they utilized
pholasin-based analysis to quantify leucocyte ROS production depending on the condition of the stem
cell selection process [101].

Another pholasin application relates to studying the oxidative stress and inflammation during the
disease course. Shah et al. used pholasin to evaluate superoxide anion (O2

-) production in platelets of
patients with heart failure [102]. Farthing et al. developed rapid and simple pholasin-based assay of
inosine and hypoxanthine in human plasma, as potential biomarkers of acute cardiac ischemia [103].
The method has demonstrated the ability to distinguish between the healthy individuals, cases of
non-traumatic chest pain, or potential acute cardiac ischemia. In study [104], the authors used pholasin
for the measurement of whole blood antioxidant capacity at inflammatory processes, in particular in
patients with rheumatoid arthritis and Parkinson’s disease. They found that the approach provides the
information clarifying the role of oxidative stress in the development of the diseases.

4. CTZ-Dependent Luciferase Analytical Application

As noted above, CTZ-dependent luciferases catalyze oxidation of the substrate yielding its
decarboxylated derivative (CTM) and a quantum of blue light. They are relatively small proteins
with molecular masses ranging from 36 (luciferase from coelenterate Renilla (RLuc) [105]) to 16.5 kDa
(one of the luciferase isoforms from copepod Metridia longa [106]). Luciferases, as opposed to
Ca2+-regulated photoproteins, are not stable under chemical modifications and during the synthesis of
biospecific conjugates can lose up to 60% of the initial bioluminescent activity (e.g., [107]). To overcome
the problem, several original approaches were developed. So, the bioorthogonal conjugation or
photoconjugation methods of obtaining luciferase-antibody conjugates that would provide a high
conjugate yield, control over conjugation site and stoichiometry, and retention of the luciferase activity
were elaborated [108,109]. However, the analytical application of luciferases in most cases is based on
the bioluminescence of their derivatives extended with biospecific polypeptides obtained by genetic
fusing. The Renilla luciferases, as the earliest studied ones, have been actively used as reporters,
especially since 2006, when a variant RLuc8 with a significantly increased stability and bioluminescence
yield was obtained using mutagenesis [110].

As a sensory component of hybrids, various biospecific polypeptides were applied—antibodies
or their fragments [111–114], antigens [115–118], polypeptides with special binding ability [119–122],
GFP and its color variants [123–129], etc. Based on the phenomenon of assembling split luciferase
derivatives, a whole spectrum of homogeneous methods has been developed [125–129] and applied
for studying protein–protein/ligand interaction [130–133], protein activity [134,135], and protein
folding [136,137].

The bioluminescence resonance energy transfer (BRET) assay (Figure 5) involving the use of
RLuc has become popular since the late 1990s for measurements of protein–protein interactions and
conformational rearrangements in live cells [138–140], for non-invasive bioimaging [141], and as
probes for biosensing [123,142]. The sensitivity of BRET assays has recently been improved by
introducing new BRET components: RLuc2 and RLuc8 with improved quantum yields, stability,
and brightness [143] as well as a great variety of acceptors (GFP2, YFP, Venus, mOrange, TagRFP,
TurboFP, semiconductor quantum dots or carbon-dots) [144–146]. However, the main application
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of RLuc is luciferase genetic reporter assay that has become an invaluable and routine tool for
molecular biology research, including identification and characterization of protein functional
variants [147,148], investigations of gene expression [148–150], transcription factors [151–155],
receptor activity [156], miRNA expression [157–159], monitoring mRNA splicing events in
cells [160,161], virus investigations [162–164], drug discovery [165,166], and identification and
evaluation of virus inhibitors [167,168]. Moreover, RLuc is widely used for bioluminescence imaging
of different processes in vivo [169–171] and guiding drug delivery to cells [172,173].

Figure 5. General principle of the BRET-based analytical systems.

The luciferases of marine copepods Metridia and Gaussia, although their properties are still poorly
studied, are attracting attention as promising reporters because of their small size, unique thermal
stability, and genetically encoded secretion system. This makes them ideal reporters for in vivo
applications by providing capability of monitoring cellular events via measuring bioluminescence in
culture media without cell lysis (see recent comprehensive review, [174]).

Of special interest is the artificial luciferase developed recently and named anoLuc due to its
small size of 19 kDa. It derived from the luciferase of deep-sea shrimp Oplophorus gracilirostris.
Native luciferase consists of two heterodimeric polypeptides: a small subunit of 19 kDa (OLuc-19),
which is responsible for bioluminescence activity but unstable in the absence of the 35 kDa subunit.
Structural optimization of the OLuc-19 after 3-round random mutagenesis yielded a stable enzyme
with 16 amino acids replacement. It produces glow-type luminescence with a specific activity
almost 81,000-fold greater than that of the initial OLuc-19, and 5-fold of that of RLuc (under the
same reaction condition) [17]. A new developed coelenterazine variant, reported in the same
paper—furimazine (Figure 2)—enhances the bioluminescence level by almost 25 times compared
to coelenterazine and provides long-term signal (t1/2 = 2.5 h) with a spectrum maximum at 460 nm.
The commercial availability of NanoLuc, its cleaved variants capable of assembling with the restoration
of bioluminescence, and furimazine have promoted a wide range of their applications as a versatile
and flexible analytical tool. The review by England and coworkers of 2016 (only 4 years after the first
publication on NanoLuc) highlighted five main areas of successful use of the system, namely, the study
of protein–protein and protein–ligand interactions, the study of gene regulation and cell signaling,
protein stability monitoring, and use as BRET-based biosensors and bioluminescence imaging [175].
The system has been becoming increasingly popular, and here, we focus on some recent publications
describing fundamentally new research. In general, analytical systems based on NanoLuc reporters
are used in the same research areas as RLuc ones, but they successfully compete with them due to the
significantly lower molecular weight and commercial availability of various variants of this enzyme
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provided by Promega Co along with manuals. The prefix Nano is often added to the names of such
systems (NanoBRET, NanoBiT, etc.).

4.1. NanoBit-Based Technologies

The NanoBiT approach is based on splitting NanoLuc into two separate subunits—large BiT
(LgBiT, 18 kDa) and small BiT (SmBiT, 1.3 kDa). These subunits interact very weakly (KD = 190 µM),
so their assembly to form an active luminescent complex occurs only upon interaction of the separate
binding partner proteins to which they are fused. In addition, the NanoBiT system includes subunit
11-amino-acid, HiBiT, with the essentially higher affinity to LgBiT (KD = 700 pM). The protein of
interest is genetically fused with HiBiT, and its expression is monitored by bioluminescence upon
complementation with LgBiT in the presence of furimazine. So, while the SmBiT and LgBiT pair is
applicable for detecting protein–protein interactions, the HiBiT acts as a detection tag for LgBiT.

The system is successfully applied for protein–protein and protein–ligand (receptor) interaction
research, extremely important in molecular biology (Figure 6). The most traditional version of the
analysis is based on the use of radioactive tracers, which is technologically difficult and dangerous. In the
paper of Soave et al., camelid single-domain antibody fragment (nanobody) VUN400, which recognizes
the second extracellular loop of the human CXCR4 chemokine receptor, was used as a probe to
monitor specific CXCR4 conformations. VUN400 was fused with HiBiT tag (VUN400-HiBiT) which
complements LgBiT protein, forming a functional NanoLuc luciferase. Complemented luminescence
was used to detect VUN400-HiBiT binding to CXCR4 receptors expressed in living HEK293 cells. [176].
A similar approach used the NanoBiT complementation for a high-throughput method to monitor the
loss of adenosine A1 receptor (A1ARs) from the cell surface in living cells. In this study, the A1ARs
was tagged on the N-terminus with HiBiT tag [177].

Figure 6. General principle of the assay based on the split luciferase complementation effect.

The NanoBiT system was applied to detect both strong and weak protein interactions such as
those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K)
effectors, respectively, and was also shown to be effective for studying poorly soluble protein domains
such as the RAS-binding domain of PI3K. [178].

Ubiquitination is a reversible post-translational modification of a protein that regulates many
cellular processes (transcriptional signaling, protein degradation, protein transfer, and oncogenesis).
To evaluate the ubiquitination processes, Boulch et al. fused SmBiT to ubiquitin and LgBiT to several
ubiquitination substrates. The connection of ubiquitin to the substrate proteins of interest leads to
reconstitution of NanoBiT reporter, and the corresponding luminescence signals are recorded with a
microtiter plate reader. This approach is applicable to study ubiquitination in tissue culture systems or
genetically amenable model organisms [179].
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The Hippo signaling pathway regulates a variety of biological functions, and its dysregulation
triggers the development of different cancer types. The Hippo pathway negatively regulates the activity
of the transcriptional coactivators YAP and TAZ. TEAD is the main transcription factor that mediates
YAP/TAZ oncogenic functions. It has been proposed that the disruption of the YAP/TAZ–TEAD
interaction would be a way to restrain the transcriptional outputs of YAP/TAZ for cancer treatment.
Using a NanoBiT system, a number of fuses containing NanoLuc fragments and YAP/TAZ or TEAD
in different consequences were obtained and expressed in HEK293T cells. The combination of
SmBiT–YAP/TAZ and LgBiT–TEAD demonstrated the highest sensitivity and dynamic range of
analysis. The obtained YAP–TEAD and TAZ–TEAD biosensors were then successfully used in
high-throughput small molecule drug screening [180].

The application of NanoBiT technology in binding assay in vitro is described in Section 4.3.

4.2. NanoBRET-Based Technologies

NanoLuc as the energy donor in BRET assay, termed nanoBRET [181], offers great application
potential due to its obvious advantages over other BRET luciferases. First of all, the high quantum yield
of NanoLuc and the possibility to combine BRET assay with NanoLuc-derived split luciferase reporter
system (NanoBiT, described above) ensures the development of BRET assay with increased sensitivity.
It allows the monitoring of protein–protein interactions at lower and more physiologically-relevant
levels [182] and analysis of interactions with low selectivity or affinity which have previously been
challenging [183,184]. The NanoLuc bioluminescence spectrum (λmax = ~460 nm) is about 20% narrower
compared with that of RLuc, enabling improved spectral separation of donor and acceptor emissions and
the use of various fluorophores as acceptors. The numerous studies have demonstrated nanoBRET to
utilize a broad range of fluorophores—from different fluorescent proteins (CyOFP, red-shifted CyOFP1,
mNeonGreen, mScarlet, mCitrine, TurboFP635, mOrange, TagRFP, etc.) [185–190] to fluorescent dyes
(TAMRA, BODIPY, 4-nitro-7-aminobenzofurazan (NBD), Alexa FluorTM, etc.) [191–195]. This greatly
expands characteristics of the nanoBRET spectrum and also makes the development of microscopic
nanoBRET imaging possible [195]. Fluorescent dyes in this case are conjugated to HaloTag protein
(HaloTag system, see [196]). Small size of NanoLuc and its capacity to fold appropriately in extracellular
environments has provided reason for its use in receptor–ligand binding studies where NanoLuc is
fused to the extracellular N-terminus of the receptor without impairing localization at the plasma
membrane [197]. Moreover, when used as a fusion reporter, NanoLuc is theoretically less likely to
cause function-altering steric hindrance. This allows it to be used in BRET assays where the possibility
of changing the function of a fusion structure can be a concern [198]. Comprehensive reviews on
NanoBRET methodology and applications have been published recently [197,198]. NanoBRET is
successfully used for studying protein–protein interactions [184,199], or investigations on receptor
activation [190,199,200], oligomerization [201], conformational states [186], proximities [189,202],
and receptor–ligand interactions [200,201,203]. NanoBRET technology has been also applied for
in vivo imaging. For example, Min and colleagues generated a ratiometric BRET sensor of ATP for
in vivo imaging of metabolic status [188]. Ong et al. developed a pH-sensitive nanoBRET sensor
and demonstrated its diagnostic value for pH variations across the tumor microenvironment [204].
Taylor et al. showed NanoBRET in combination with firefly luciferase to unambiguously discriminate
two cell populations in vivo with high sensitivity in the same imaging session [205]. To obtain red
spectral emission, optimal for in vivo imaging with applicable BRET efficiency, appropriate acceptors
were selected [195,206] and various synthetic coelenterazine analogues were utilized [207–209].
Additionally, based on nanoBRET technology, some genetically encoded calcium ion indicators
were developed [210,211] and used for imaging Ca2+ concentration changes in cultured cells and
neurons [211].

Due to the remarkable increase in bioluminescence activity offered by NanoLuc, combined with
its high thermal stability and pH-insensitivity, NanoLuc-based BRET sensors have started to emerge
as an attractive sensor format for use in point-of-care applications. Recently, nanoBRET sensor
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platforms for detection of small-molecule drugs (LUCiferase-based Indicators of Drugs, LUCIDs) and
antibodies (LUMinescent AntiBody Sensor, LUMABS) have been developed by the groups led by
M. Merkx. Sensing mechanisms of LUCIDs and LUMABS sensors are described in detail in [212,213].
These sensors allow measurement of antibodies directly in blood plasma, eliminating the need for the
complex liquid handling steps associated with conventional immunoassays [214]. Bioluminescence can
be easily registered with a smartphone digital camera [215]. The developed sensors were applied to
detect anti-HIV1, anti-hemagglutinin, and anti-dengue virus type I antibodies [212,214,215] as well
as methotrexate, dinitrophenol, creatinine, and theophylline molecules [212,213,216]. In principal,
the sensor’s modular design allows the easy adaptation to many other analytes. Engelen W. et al.
developed a NanoBRET-based protein-DNA hybrid molecular beacons sensor that permits the detection
of low pM concentrations of nucleic acids (exemplified by miRNA21) directly in complex media. Due to
the use of bright NanoLuc, these BRET beacons are at least 2 orders of magnitude more sensitive than
the previously reported nucleic acid BRET sensors [217]. Moreover, nanoBRET-based homogeneous
insulin assay was developed by Shigeto and colleagues [218]. The BRET signal was proportional to
the insulin concentration, and the lower detection limit was 0.8 µM. An important step towards the
application of LUCID, LUMABS, and other BRET-based diagnostic assays is the translation from a
laboratory-based assay to a fully implemented point-of-care assay. The assay reported by Shigeto
can be also applied to continuous monitoring of the time-dependent cellular response in vitro and as
authors expected to drug development by high-throughput screening [218].

4.3. Application of NanoLuc as a Label for In Vitro Binding Assay

Similar to the other luciferases, NanoLuc loses its bioluminescent activity upon chemical
conjugation with biospecific molecules: we could not find any published work regarding the
preparation of such conjugates. Therefore, NanoLuc tags for in vitro binding assay are typically
produced by genetic fusion with biospecific polypeptides—antibodies or antigenes. For example,
Ren et al. genetically fused NanoLuc with aflatoxin-specific nanobody, obtained from an immune
alpaca phage-display VHH library. The fusion protein was applied as a label in one-step competitive
bioluminescent immunoassay for the detection of aflatoxin in cereal, which showed more than a 20-fold
improvement in sensitivity as compared to classical ELISA [219]. NanoLuc fused with HIV-1 p24 or
gp41 antigen was applied for qualitative and quantitative detection of anti-HIV-1 antibody in sera
with the sensitivity exceeding that of ELISA 104-fold [220]. A similar assay was used to detect human
norovirus-specific antibodies [221] or autoantibodies directed against proinsulin/insulin, which is
important for diagnosis of type 1 diabetes [222].

Genetic fusion has the advantage of generating homogeneous conjugates with a well-defined
antibody-luciferase stoichiometry. However, it requires cloning for each new antibody-luciferase
conjugate and often involves cumbersome expression optimization and access to mammalian expression
systems. Wouters et al. reported an easily accessible, efficient, and chemoselective method for the
synthesis of antibody-luciferase conjugates. [109]. The NanoLuc was genetically fused with protein
G domain containing the photo-cross-linkable non-natural amino acid para-benzoylphenylalanine
(developed by Hui et al. [223]) that can be photo-cross-linked to the antibody using UV light illumination
(365 nm). The method does not require cloning or recombinant antibody expression and can be directly
applied to almost all human and many mammalian monoclonal IgG antibodies. The obtained
NanoLuc-antibody conjugates were used in cell immunostaining, solid-phase immunoassay,
and Western blotting [109].

The excellent thermostability of NanoLuc allows the obtaining of protein-based nanoparticles
displaying multivalent NanoLuc on their surfaces. NanoLuc was genetically fused with elastin-like
polypeptides containing poly-aspartic acid tail (ELP-D). Above the transition temperature (40 ◦C),
the ELP-D forms aggregates whose sizes are regulated to around 30 nm as a result of the charge
repulsion of the poly-aspartic acid chains. These particles displaying multiple molecules of NanoLuc
were used as a detection probe in immunoassay of α-fetoprotein. The sensitivity of the developed
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assay was 10 times higher than that of an assay relying on the use of the monomeric version of the
fusion protein [224].

The original approach to obtain NanoLuc conjugate with DNA fragments was described in [225].
Luciferase was genetically fused with the catalytic domain of replication initiator protein (pRep)
from porcine circovirus type 2. The trombin DNA aptamer elongated with the pRep recognition
oligonucleotide was synthesized chemically. Stable non-covalent complex DNA-NanoLuc was obtained
by mixing these two compounds and examining as a label in model trombin sandwich solid-phase
assay, showing the excellent detection limit of 0.1 nM. The value of this method is that, in principle,
it can be applied for the synthesis of many other DNA-luciferase complexes.

The T7 coliphage was genetically engineered to express the NanoLuc, and was used as a
bioluminescent indicator of bacterial contamination [226]. In this construct, NanoLuc was fused to the
carbohydrate binding module (CBM), providing specific binding of the reporter to crystalline cellulose.
The engineered phage infected E. coli in the water sample (if any), resulting in NanoLuc-CBM expression.
It was irreversibly immobilized on cellulose particles, which were added into the sample, and collected
by centrifugation or fixed on a cellulose membrane by filtration. The reporter bioluminescence was
measured on the addition of a substrate. The phage-based assay demonstrates its significant diagnostic
value for inexpensive, rapid, and sensitive detection of E. coli in drinking water [226]. Due to the
inherent specificity of phages for the respective bacteria, an approach can be developed to detect
other bacterial contaminants. A similar approach was used to determine bacterial contamination in
cheese [227].

Of special interest is the application of NanoBiT technology for in vitro binding assay. Even though
bioluminescent reporters based on the luciferases of firefly, click beetle, or Renilla were split and
extensively used as excellent reporters that display sensitive and reversible signals, these luciferases are
not very stable and their reconstitution efficiency is not very high—typically less than 1%—as assumed
by an in vitro experiment using purified probes (e.g., [228]). For this reason, the application of luciferase
protein fragment complementation assay to in vitro diagnostics has been hampered in spite of its
potentially wide applications as a sensitive homogeneous assay. Ohmuro-Matsuyama and Ueda have
developed a homogeneous non-competitive open sandwich bioluminescent immunoassay of osteocalcin
peptide using NanoLuc-based protein fragment complementation assays [229]. They additionally
split LgBiT into two parts, yielding a smaller N-terminal derivative (LnBiT) and two C-terminal,
11-residue peptides (LcBiT and SmBiT) corresponding to consecutive beta strands. These fragments
were fused with variable regions VH and VL of anti-osteocalcin antibody, correspondingly. When LnBiT,
VH-LcBiT, and VL-SmBiT were mixed, the bioluminescence intensity increased remarkably depending
on the dose of osteocalcin peptide. The EC50 value and the detection limit were 123 ± 16 nM and 5 nM,
respectively. Since the bioluminescent signal was strong and stable enough and could be observed
with the naked eye or digital camera, it could become the foundation for developing many other
point-of-care detection systems.

Ranawakage et al. used a NanoLuc-based HiBiT system to develop quantitative
immunoprecipitation assay for determining the dissociation constant (Kd) of antigen–antibody
interactions in solution [230]. The assay applicability was demonstrated by examining the affinities of
monoclonal antibodies against the epitope tags (FLAG, HA, V5, PA, and Ty1).

Tetsuo and colleagues developed a novel high-throughput serum neutralization test (SNT)
for the serological diagnosis of infections (classical swine fever, bovine diarrhea, and borderline
disease viruses) based on genetically engineered pestiviruses expressing the HiBiT peptide [231].
Swine or bovine kidney cells line were infected with recombinant viruses in serially diluted antiserum.
Recombinant virus growth in cell culture occurs if the serum does not contain neutralizing antibodies.
The luciferase activity of culture supernatants or cell lysates was measured using a Nano-Glo HiBiT
lytic detection system (Promega, Madison, WI, USA). It depended on serum dilution and the time of
virus inoculation. The authors concluded that the luciferase-based SNT will replace conventional SNTs.
The proposed method is suitable for high-throughput testing for the control and study of pestiviruses.
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4.4. NanoLuc in Genetic Reporter Assay

NanoLuc application in luciferase genetic reporter assay does not fundamentally differ from the
RLuc one. What is essentially new here is that due to the small size and extreme brightness of NanoLuc,
it is widely used as an effective reporter in developing stable reporter viruses. These luciferase-tagged
viruses are applicable not only for studying the virus life cycle in vitro and in vivo (viral proliferation,
replication, assembly/release and entry) and analyzing virus-host interactions but also for evaluating
therapeutic strategies and developing new inhibitors and vaccines. NanoLuc-based reporter viruses were
successfully designed to study such dangerous diseases as: influenza A virus [232–236], hepatitis B [236–239]
and E viruses [240], HIV [241], rotavirus [242], flavivirus [243–245], and arboviruses [246] which indicates
the great potential of NanoLuc for such application.

In the recent years, CRISPR/Cas9 has emerged as a prominent technology for genome editing due
to simplicity and ease of use. There are some publications describing the integration of NanoLuc gene
directly into the endogenous gene using the CRISPR/Cas9 system. This allows efficient measurement
of transcriptional activity for genes of interest in native epigenetic landscape which is not achievable
under exogenous transfection-based luciferase reporter assays. The novel approach may provide new
insights into understanding precise gene regulation in various developmental and pathophysiological
conditions [247,248]. Moreover, the NanoLuc-based CRISPR/Cas9 system is a very useful tool to isolate
gene-edited cells [248–250]. By combining the HiBiT reporter technology with the CRISPR/Cas9 editing,
Schwinn et al. [251] developed the approach for sensitive quantification of both protein abundance
and its post-translational modifications.

5. Conclusions

The analysis of the literature data on the use of coelenterazine-dependent luciferases as
bioluminescent reporters clearly shows them to be a powerful analytical tool capable of solving
a wide range of research and application problems. Figure 7 lists the main principles of analytical
methods and the investigations that can be carried out on their basis. Some approaches are implemented
involving both luciferases and Ca2+-regulated photoproteins, whereas some of them can be applied
considering the unique capabilities of the reporters belonging only to each of these two groups.
A number of approaches have become common and widely used, while others hold much promise
for development analytics urgently needed for the present moment. A case in point here is the
NanoLuc-based analytical system that Promega (USA) challenged to propose for the rapid detection of
antibodies to SARS-Cov2 virus [252].

Figure 7. Main principles on the basis of which analytical methods and investigations can be carried out.
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A huge number of various enzymes and their substrates, including those artificially created
and commercially available, which have various useful properties, provide a real opportunity for
the experimenter to choose the option that best suits his needs. Within the framework of this
review, we did not mention the availability of modern photometers—their variety and high analytical
characteristics are able to satisfy the highest requirements of the users. Analytical approaches and
methods based on these bioluminescent systems make it possible to successfully solve not only purely
fundamental problems of modern biology. Their widespread introduction into practice of biomedical
and environmental laboratories is also evident.
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Abbreviations

CTZ coelenterazine
CTM coelenteramide, decarboxylated derivative of CTZ
Luc luciferase
PhP Ca2+-regulated photoprotein
apoPhP polypeptide part of PhP
CBP Ca2+-dependent coelenterazine-binding protein
apoCBP polypeptide part of CBP
GFP green fluorescent protein

EF-hand
The Ca2+-binding sites formed by helix-loop-helix
motifs
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