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Preferential solvation has significant importance in interpreting the molecular physicochemical
properties of wide spectrum of materials in solution. In this work, the solute-solvent interaction

of pro-drug Sulfasalazine (55Z) in neat and binary media was investigated experimentally and
computationally. The solute-solvent interactions of interest were spectrophotometrically probed and
computationally investigated for providing insights concerning the molecular aspects of SSZ:media
interaction. Experimentally, the obtained results in 1,4-dioxane:water binary mixture demonstrated

a dramatic non-linear changes in the spectral behavior of SSZ indicative of the dependency of its
molecular behaviors on the compositions of the molecular microenvironment in the essence of solute-
solvent interaction. Computationally, geometry optimization and simulation of the absorption spectra
of SSZ in media of interest were performed employing DFT and TD-DFT methods, respectively, where
the solvent effects on the absorption were examined implicitly using IEFPCM method. Obtained results
revealed a nonpolar nature of the molecular orbitals that are directly involved in the SSZ:medium
interaction. As in good correspondence with the experimental results, these simulations demonstrated
that these orbitals are of non-polar nature and hence minimally affected by polarity of the media and

in turn favoring the non-polar molecular environments. On the other hand, the molecular origin of
SSZ:media interaction was demonstrated explicitly through complexation of SSZ with water molecules
revealing a cooperative hydrogen bonding stabilization with an average length of 1.90 A. The findings of
this work demonstrate the significance of the preferential solvation and composition of the molecular
microenvironment on the physicochemical properties of molecules of pharmaceutical importance.

The physicochemical behaviors of various materials of biomedical importance, including pharmaceuticals, can
exhibit behaviors that are medium dependent'~'2. This kind of amendment in physicochemical properties can
be attributed to preferential solvation processes in solution. On the other hand, the solvation progression of
soluble molecules in media of interests is selectively governed by various types of noncovalent solute-solvent
interactions. These interactions are categorized by intermolecular forces that can lead to modification of the
physiochemical nature of a solute, which in turn may give rise to medium-dependent molecular properties'*~*°.
These intermolecular interactions are of noncovalent nature and can include, but not limited to, hydrogen bonds
and electrostatic attractions. Accordingly, it has been demonstrated that the physicochemical behavior of a drug
can be influenced by its molecular environments. For example, Ohno et al. demonstrated via utilizing quantum
mechanics calculations the effect of solvent hydration on the reactivity of ribonuclease T1 enzyme by tuning its
activity and retaining its native structure®’. Recently, Balius ef al. reported on the role of solvation in aqueous
media on structure-based ligand discovery of proteins of interest*'. They demonstrated the significance of how
the water molecules can crucially influence the protein-ligand binding.

It is noteworthy mentioning that the solvation of substances of pharmaceutical interests can occur in both
neat and binary media. As water is the biological solvent, prospective aspects are more frequently emphasized on
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Figure 1. Chemical structure of SSZ.

aqueous media*°. However, aqueous binary media are imperative to be considered as well, where a combination
of water and organic solvent, such as 1,4-dioxane and acetonitrile, is utilized for studying the physicochemi-
cal properties of pharmaceuticals??-**. Nevertheless, most of these reported studies have considered mainly the
examination of the solubility of these materials in the media of interest without considering the effect of intermo-
lecular interactions of the media with the solute. Thus, further investigations concerning the solute-solvent inter-
actions of pharmaceuticals are still necessary in this regard. To this end, the solute-solvent interactions and their
corresponding effects have been investigated utilizing various experimental and computational methods>*-4!.
Indeed, combination of experimental and computational represents an inimitable opportunity for observing such
kind of interactions, where the experimental results can be molecularly interpreted using various computational
approaches®. Thus, in view of the potential influence of several media properties on the molecular properties
of pharmaceutical materials, such as Sulfasalazine (SSZ), there is a necessity toward gaining insights regarding
such influences in terms of molecular interactions. SSZ, 2-hydroxy-5-[(E)-2-{4-[(pyridin-2-yl)sulfamoyl] phenyl}
diazen-1-yl]benzoic acid, is a prodrug that is often prescribed for treatment of inflammatory bowel disease*>+.
The structure of SSZ is shown in Fig. 1.

As can be noticed in Fig. 1, SSZ represents a unique property conferred upon it by the variety of functional
groups that can potentially facilitate the noncovalent solute-solvent interactions with components present within
its molecular environments. In this work, we aim at providing insights into the molecular solute-solvent inter-
actions of SSZ with its media. The UV-Vis absorption spectroscopy was used to probe experimentally the occur-
rence of this interaction followed by DFT/TD-DFT calculations for interpreting the molecular behavior of this
kind of interaction.

Methods

Experimental procedure and method. SSZand all neat solvents of spectroscopic grades were purchased
from Sigma-Aldrich; all chemicals were used as received. The UV-Vis absorption spectra of SSZ were measured
in neat solvents and 1,4-dioxane: water binary mixtures of v:v ratio within the range 0-100%. SSZ stock solution
was prepared in methanol with concentration of 3.06 x 10~*M. The preparation was conceded out by transferring
a 0.6 mL of stock solution, then evaporating the methanol under medium pressure at room temperature, followed
by re-dissolving the residue of SSZ in 10 mL of the medium of interest. The UV-Vis absorption spectra in the
media of interest were measured using Agilent double beam spectrophotometer in quartz cells.

Computational methods. All calculations were conducted using the Gaussian 09 software package*!.
Structure of SSZ was optimized followed by frequency calculations employing the density functional theory
(DFT) with B3LYP/6-31 4 G(d) basis sets. The solvent effect was examined implicitly employing the integral
equation formalism polarizable continuum model (IEF-PCM)*. The UV-Vis absorption spectra of SSZ were
simulated employing the Time-dependent DFT (TD-DFT) with two basis sets; namely, B3LYP/6-31 + G(d) and
CAM-B3LYP/6-31+ G(d). Simulations were conducted using the optimized geometry as an input. Explicit sol-
vent effect was examined using water and 1,4-dioxane molecules for complexation with SSZ at the same level of
theory.

Results and Discussion
The absorption spectra of SSZ in selected neat solvents of different polarity and bearing various hydrogen bond-
ing abilities were measured. Normalized absorption spectra at unity in selected solvents are displayed in Fig. 2. As
can be noted, the absorption spectrum of SSZ exhibits main absorption bands within the range of 230-450 nm,
where its position obviously varies depending on the nature of the medium. In particular, the illustrations in
Fig. 2 depict SSZ absorption spectra at maximum absorption bands of ~265 (\,,,;) and 360 nm (\,,,,) that can
be due to T—m* electronic transition as demonstrated by the TD-DFT calculations. Furthermore, SSZ spectrum
exhibited a notable shoulder at a wavelength of ~320 nm in aqueous media; however, this band did not appear
in other media. As this might be attributed to either overlap with other bands or retarded electronic transitions,
further analyses were necessitated as described in the computational part of this study. Upon further examination
of Fig. 2, one can notice that the absorption spectra of SSZ exhibit media-dependent features, where this depend-
ency can be rationalized for probing the SSZ-media interactions. In addition, it is interesting to note that both
of N\pay's exhibit solvent dependency. However, the significant difference is the disappearance of the shoulder in
non-aqueous media as the spectra pass from a non-polar to a polar microenvironment, such as 1,4-dioxane and
water respectively. This spectral behavior can be attributed to the fact that SSZ’s absorption spectrum appears at
different wavelength as solvent polarity varies indicative of general type of interaction.

Considering the main band at \,,, (360 nm), shifts in a hypsochromic manner is noted. Taking into con-
sideration the solvent effects on the ground and excited states of SSZ, this spectral behavior is influenced by
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Figure 2. Normalized absorption spectra of SSZ in selected neat solvents.

increasing the solvent polarity indicative of relatively higher dipole moments in the ground state compare to
the excited state. Indeed, in addition to media polarity, upon taking other media parameters into consideration,
specific interactions including hydrogen bonding cannot be neglected. This is in the sense that such noncovalent
interactions play a key role in influencing the magnitude of each other within the geometry of SSZ. The vital
physical parameters of solvents to be considered herein include refractive index, orientation polarizability, solvent
electric permittivity, and Kamlet-Taft solvent parameters. Initially, to understand molecularly the solvatochromic
behavior of SSZ and their correlation with different solvent’s parameters, the properties of \,,,, in particular
and electronic absorption spectrums were correlated with various pertinent scales of polarity. In fact, it is more
reasonable to considered the combined effect of solvent’s refractive index and electric permittivity as presented by
orientation polarizability (A f (¢, n)), which can expressed as:

e—1 nt—1

2e4+1 20+ 1 (1)

Af =

where, € is solvent’s electric permittivity and n is its refractive index. The plot of X ,,, as presented by wavenum-
ber as a function of A fis shown in Figure S1. As can be noted, the correlation between absorption wavenum-
ber and polarizability orientation of SSZ in different solvents of various polarities has inferred that there is a
non-linear correlation between A fand X\, over the range of tested solvents. This observation may be inferred
as the existence of specific intermolecular interactions in addition to the polarizability effect; this mainly includes
the effect of hydrogen bonding. Henceforth, the existence of specific interaction can be practically examined
employing the Kamlet-Taft approach. Examining the molecular structure of SSZ, one can notice that SSZ can
intermolecularly interact with the medium through donating and accepting hydrogen bonding. Importantly, the
Kamlet-Taft method takes into consideration the combined effect of the solvent’s parameters through conducting
a multi-linear-regression-analysis (MLRA) according to eq. 2:

Nmax = No +aa + b3 + cm* 2)

where, X\, = maximum wavelength, X\, =regression intercept/gaseous phase, o =hydrogen bond donor acidity
(HBD), 3 =hydrogen bond donor basicity (HBA), ©° = index of solvent’s dipolarizability, a, b, and ¢ are inde-
pendent constants, whose sign and magnitude portray the extent of corresponding solvent-solute interactions
and their effect on the absorption maximum wavelength. The Kamlet-Taft parameters of examined solvents are
compiled in Table S.1; this includes 3, o, and *. Based on the MLRA of Kamlet-Taft method, this analytical
approach demonstrates that the structure of SSZ constitutes different functional polar groups, with the ability
of facilitating the hydrogen bondings in patterns that promote solute-solvent interactions, which in turn can be
specific in nature. An MLRA test on neat solvents yielded the following correlation as noted in eq. 3:

N (324 £ 14.5) + (45 £ 17)7* — (11 & 7)o + (30 + 12)8 3)

max2 —

The MLRA results revealed a fair level of acceptancy of correlation (R =0.83) indicative of a relatively com-
plexed correlations that in turn necessitates applying further analysis. Interestingly, the high tendency of SSZ
to form strong hydrogen bonding with the media of interest can be elucidated through examining the effect of
strong hydrogen bond acceptor, such as water, on the absorption spectrum of SSZ using aqueous binary media;
namely 1,4-dioxane:water binary mixture, as illustrated below.

Recently, one can notice a growing interest in employing binary solution systems for investigating the phys-
icochemical properties of various materials. The molecular behavior of solutes can exhibit a molecular behavior
in the binary systems that is relatively different compared with the individual neat solutions. Hence, employing
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Figure 3. Absorption spectra of SSZ in 1,4-dioxane:water binary mixture of varying composition.

0.54

40.53

/nm

max2

40.48

358 - - - . 0.47
[} 20 40 60 80 100
%Vw

Figure 4. Plots of spectral properties of SSZ (A, and Abs..,,,,) as functions of water component (v,,).

such binary systems can offer biologically mimicked molecular environment, which in turn can provide enhanced
and relatively more informative systematic examination of the physicochemical properties for the solutes of inter-
ests compared with neat solvents. Among the most popular binary systems in this regard is 1,4-dioxane:water
mixture?#4-52, Such popularity can be attributed to the similarity of these two solvents in terms of viscosity and
density in addition to their miscibility of all fractions despite the large difference in their polarity. To this end,
the absorption spectra of SSZ in 1,4-dioxane:water binary media of variable volumetric fractions (vg,:v,,) are
displayed in Fig. 3. The arrows indicate the spectral behavior with increasing water content in the binary system.
Starting with neat 1,4-dioxane and then increasing the water content, as can be noted, the absorption peak at
Amax1 a1d shoulder at X3, start to fade and grow, respectively, with isopiestic point at X\ of 290 nm in all ratios of
the binary mixtures. Concerning the \.,,;, as expected, on can notice that the effect of the nature of 1,4-dioxane
started to overcome the spectral features of SSZ, which in turn retards further conclusion to be reached at this
range. In addition, the shoulder at \;,, reached a maximum growth with v,, of approximately 70%. On the other
hand, for the main absorption peak at \,..,, SSZ absorption spectrum exhibited \,,, of 358 and 360 nm in neat
1,4-dioxane and water, respectively. Further examination of Fig. 3, one can notice that the water content did not
only influenced \,,,,,, but also the absorbance value Abs,,,, at X\pay0-

Quantitatively, the spectral behavior of SSZ in the binary system in terms of \,,,., and Abs,,,, as functions
of v,, are displayed in Fig. 4. Interestingly, as can be noted in Fig. 4, \,,,, exhibited a dramatic bathochromic
shift with the increase of water content in the binary mixture to reach a maximum value of 271 nm at v,, of 35%.
However, with increasing water content, \,,,, started to show hypsochromic shift behavior to reach a new final
value of 365 at high v,. On the other hand, for Abs,,,,, no change was observed for solutions of v,, <20%, yet a
bathochromic shift in X\, of ~9nm was observed. A maximum change in Abs,,, is observed at v, of 70%. These
dramatic changes in the spectral behavior of SSZ are indicative of the dependency of its molecular behaviors not
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Figure 5. Normalized experimental and simulated absorption spectra of SSZ in water; inset: side and top views
of optimized geometry of SSZ.

only on the type of media, but also on the compositions of its molecular microenvironment in the essence of
solute-solvent interaction.

Importantly, it is must be mentioned that the nonlinearity of the physicochemical properties of
1,4-dioxane:water binary mixtures have been reported by Takamuku et al.>. They reported three microscopic
sub-systems with respect to the molar fraction of 1,4-dioxane (Xg,). For solutions of compositions of x4, <0.1,
Kgiox > 0.3, and 0.1 < x40, < 0.3, three sub-systems were distinguished; namely, water hydrogen-bonded network,
1,4-dioxane:water hydrogen-bonded network dominated by 1,4-dioxane, and 1,4-dioxane:water binary clusters,
respectively. Hence, the non-linear correlation between the spectral behavior of SSZ and the composition of
1,4-dioxane:water binary mixtures is in good correspondence with these microsystems and in good agreement
with previously reported results concerning the properties of 1,4-dioxane:water binary mixtures.

As can be noted from the aforementioned experimental results, computational invistigations are necessary for
elucidating the molecular origin of SSA:media interaction. In this regard, DFT and TD-DFT calculations were
performed in the essence of providing molecular interpretation concerning the SSZ-medium interactions. The
initial geometry optimization of SSZ was performed in vacuum using the DFT method with B3LYP functional
and 6-31 G+ (d) basis set. The optimized geometry in vacuum was then used as entry for optimization in the
media of interest employing the same level of theory and IEFPCM solvation approach. The frequency calcula-
tions of all optimized geometries confirmed that these geometries are of minimal energy. Geometry optimization
calculation revealed dipole moment (i) of 5.7 and 7.0 Debye in 1,4-dioxane and water, respectively, indicative
of the slight increase in polarization of SSZ in aqueous media compared with 1,4-dioxane. TD-DFT calculations
were conducted using the optimized geometry as initial entry for the calculations in the corresponding media.
To this end, it must be mentioned that employing the most appropriate DFT functional to be considered for sim-
ulating the absorption spectra of SSZ in various media is judged based on matching with the experimental spec-
trum. In this regard, two DFT functionals were tested with the same basis set; namely, BSLYP and CAM- B3LYP.
Simulations were performed for the first twelve transition bands. The simulated and experimental absorption
spectra of SSZ in water are shown in Fig. 5. The inset shows the side and top views of the optimized geometry of
SSZ used for generating the simulated spectra.

Examining Fig. 5, as compared with the experimental spectrum, one can notice that the B3LYP and CAM-
B3LYP over-estimated and under-estimated the electronic transitions, respectively, with AX of approximately 10
and 26 nm, respectively, with respect to the experimental \,,,,. Further analysis was performed employing the
same functionals for other solvents; this includes methanol, 1,4-dioxane, and acetonitrile. Simulated absorption
spectra of SSZ in these selected solvents are displayed the supplementary information; see Figure S3. As can be
noted in Figure S3, a systematic underestimation and overestimation of X\, is observed using B3LYP and CAM-
B3LYP functionals, respectively, with no discrepancies among solvent. However, for the rest of the spectrum,
employing the CAM- B3LYP functionals has successfully re-produced a spectrum that is in excellent agreement
with the experimental one in terms of spectral shape. This can be noticed in particular for \,,,; and the shape of
the spectrum at X\ <300nm. Hence, CAM- B3LYP functionals was employed for other media as well. Simulated
spectra of SSZ in vacuum, 1,4-dioxane, and water are shown in Fig. 6. The vertical lines represent the major
electronic transitions that exhibit oscillation strength (f) > 0.1. Likewise, the same transitions were observed in
all media. However, the simulated spectra in 1,4-dioxane and water did not exhibit media dependent for X\,
where a value of 343.5 nm was obtained for both media with minimal discrepancy in oscillation strength f of
1.203 and 1.190, respectively. Whereas for \,,,;, a bathochromic shift of AX of ~1.5 nm was observed in aqueous
media, which in turn is in fair correspondence with the experimental results. For the third electronic transition
band, labeled as b in Fig. 6, hypsochromic shift of AX of ~2.0 nm was observed in aqueous media indicative of fair
separation from the main band c. This separation between bands b and ¢ exhibited an increase of only 2.0 nm in
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Figure 6. Simulated absorption spectra of SSZ in vacuum, water, and 1,4-dioxane.

aqueous media, yet more separation permits the appearance of the shoulder that is qualitatively in good corre-
spondence with the experimental results. However, one can confer the unsatisfactory behavior of the simulated
systems in terms of interpreting the experimental results; indeed, this observation can be attributed to the general
nature of implicitly of the simulated medium that does not take into consideration specific types of intermolecu-
lar interactions including HB.

Interestingly, one can notice that the main three electronic transitions observed experimentally in neat aque-
ous media, namely two peaks and shoulder in particular, were reflected as only two peaks in the simulated spec-
trum, which in turn may be attributed to insufficient polarization of SSZ in the corresponding examined medium
employing the implicit solvation model. Nevertheless, although the shoulder did not appear in the simulated
spectrum in aqueous medium, the electronic transition exhibited an oscillation strength of approximately 0.12,
which in turn is worth of further consideration. In addition, it can be noticed that the experimental shoulder at
X320 did now show up computationally in all media. Considering the experimental disappearance of this shoulder
in non-aqueous media, this might be attributed to specific solute-solvent interactions involving specific molecular
orbitals (MOs) of SSZ, which in turn requires performing more computational analyses concerning the MOs of
SSZ involved in the electronic transitions of interest. Correspondingly, the MOs of interest of SSZ were simulated
for the optimized geometries in all media; see Fig. 7. Based on TD-DFT simulations, these three electronic bands
can all be attributed to w — =" electronic transitions. For the main band (c), HOMO — LUMO transition is the
only contribution to the main band of X\ ,. As shown in Fig. 7, both the HOMO and LUMO are distributed
over the pyridine moiety of SSZ, which are part of a character that is aromatic in nature, which in turn makes
them less subjective to be influenced by the interaction with molecular media. This is in good agreement with the
minimal shift in \,,,, observed experimentally in water compared with 1,4-dioxane. For the second band, b, the
main contributions are HOMO-6 — LUMO + 1 and HOMO — LUMO + 1 electronic transitions. The LUMO + 1
is the ™ of C= O of the carboxyl group. We believe that the experimental appearance of this band as shoulder
in aqueous band might be attributed to the increase in the population of this state as it is more stabilized in
polar media. For the first band, a, the main contributions are HOMO-6 — LUMO + 1, HOMO-5 — LUMO, and
HOMO — LUMO + 1 electronic transitions. Likewise, the aromatic nature of the main MO that contributes in
this transition, namely HOMO-5, is one of the m MO of the benzene ring of salicylic acid moiety, which in turn
disfavors the polar molecular environments and hence less populations might be observed in aqueous media
compared with 1,4-dioxane.

As noted above, most of the MOs involved in the electronic transitions as the main contributors in the three
bands of SSZ absorption spectrum are of non-polar nature and hence favoring the non-polar molecular environ-
ment. Thus, we further attempted to provide more interpretation regarding the polarity effect on SSZ-medium
interactions. As stated earlier, the geometry optimization revealed an increase in the diploe moment (Ap) of only
1.3 Debye in water compared with 1,4-dioxane. These effects can be viewed with respect to the electrostatic poten-
tial surfaces (EPS) of the molecule, and localized charge effect of SSZ atoms (NBO charges), as illustrated in Fig. 8.

As can be noted in Fig. 8-left, EPS simulations revealed an increase of approximately 15% in the charge dis-
tribution across the molecule in aqueous media compared with 1,4-dioxane, which can be mainly noted for the
change in the bluish color of the carboxyl group of the salicylic acid moiety. This is indicative for potentially more
specific solute-solvent interaction; namely, hydrogen bonding. On the other hand, the NBO calculations revealed
the atomic charges of all atoms of SSZ molecule; see Fig. 8-right. Correspondingly, we focused on functional
groups that are subjective for potential solute-solvent interactions and can be involved in the electronic transitions
of the main three bands of SSZ absorption spectrum; this includes the azo, carboxyl, and hydroxyl of the salicylic
acid moiety, and the amide group of the pyridine moiety. Hence, we observed an increase in the polarization of
all bonds in aqueous media with a charge difference of an average of approximately 0.02. This minimal change in
bond polarization is in good correspondence with the dipole moment and EPS calculations. Furthermore, Figs 7
and 8 revealed that the moieties of SSZ that can be utilized for specific intermolecular interactions with solvent
molecules, which in turn may have consequential effects on the absorption spectra of SSZ. As proof of principle, a
combination of explicit and implicit solvent effects of water and 1,4-dioxane was examined through complexation
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Figure 7. Molecular orbitals of SSZ involved in the electronic transitions of the main three bands in the
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Figure 8. Molecular properties of SSZ in water and 1,4-dioxane: (left) the electrostatic potential surfaces,
(right) NBO charges.

of two solvent molecules with one SSZ molecule employing DFT/CAM-B3LYP/6-31 G + (d) method in combi-
nation with IEFPCM solvation approach. Figure 9 illustrates the optimized geometry of the corresponding HB
complexes in water and 1,4-dioxane, respectively. Importantly, the molecular origin of solvent effect is explicitly
demonstrated through cooperative hydrogen bonding of SSZ with solvent molecules. For SSZ:H,O complex, it is
noteworthy mentioning that the with hydrogen bond length (dy) of approximately 1.90 A was obtained for only
the explicit solvation effect.

However, notable increase to 3.18 A in the dyy, involving the carboxyl group upon employing the combination
with implicit solvent effect of the IEFPCM method with minimal effect on the other HBs. It must be mentioned
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that water molecules behave in this scenario as cooperative HB donor and acceptor as illustrated by the arrows in
Fig. 9. On the other hand, 1,4-dioxane behaves only as an HB acceptor. An average dy of approximately 1.80 A is
obtained between SSZ and 1,4-dioxane molecules. Interestingly, the cooperativity of hydrogen bonding of SSZ:2H,0O
complex, where SSZ can synchronizingly act as hydrogen donor and acceptor, is in good agreement with the exper-
imental results as revealed by the MLRA of the spectral behavior of SSZ in different solvents. The explicit-implicit
solvent combined effect of water and 1,4-dioxane on the absorption spectra of SSZ was examined; obtained results
are displayed in Figure S4. Comparing the two spectra, one can notice an insignificant effect of solvent on X\ ,,,, with
obtained values of 344.4 and 345.8 nm in water and 1,4-dioxane, respectively, which in turn is in fair agreement with
the experimental results in terms of the red shift of 2 nm observed in 1,4-dioxane compared with water. However, the
shoulder at \;,), which is observed experimentally for SSZ in aqueous medium, was not observed computationally.
Furthermore, the X\, exhibited no solvent dependency. In addition, a slight increase of ~1% in the fvalue was
observed in both solvents for the main band X\, compared with the implicit solvation effect.

Conclusions

The solute-solvent interaction of SSZ was successfully demonstrated experimentally in neat and binary
1,4-dioxane:water mixtures. The electronic UV-Vis absorption band of SSZ that matches to the transitions in the
7 — 7* illustrated notable solvatochromic shifts with changes in the absorption spectrum indicative of the influ-
ence exerted by solvent-solute interactions on the corresponding electronic transitions. As in good agreement
with the nature of 1,4-dioxane:water binary mixture, a non-linear correlation was demonstrated for the spectral
behavior of SSZ in the mixture indicative of adaptation of SSZ to the nature of its local molecular microenviron-
ment. Computationally, the absorption spectra of SSZ were simulated successfully through TD-DFT calculations
taking into consideration the implicit and explicit solvation approaches. Although these calculations success-
fully reproduced the absorption spectra of SSZ in terms of main transition bands, insignificant spectral shift was
observed employing the implicit and explicit solvent effects. In addition, it has been demonstrated that the MOs
involved in these electronic transitions are of non-polar nature indicating the fair favoritism of the corresponding
non-polar molecular environment. The EPS and NBO calculations, as in good correspondence with the TD-DFT
calculations, confirmed the fair effect of the polarity of the molecular microenvironment on charge distribu-
tion across the molecule and the localized atomic charges, respectively, with more charge separation is observed
in aqueous media. Furthermore, SSZ can molecularly interact with solvent molecules through strong coopera-
tive hydrogen bonding as explicitly demonstrated in water and 1,4-dioxane. These observations can in turn be
utilized for interpreting the physicochemical behavior of SSZ in alike biological microenvironments.
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