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Abstract: Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic
and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a
low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by
beneficial physical and chemical properties which are improved at the nanoscale level due to the
emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles
in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations.
Advances in the technology for the preparation of lignin nanoparticles are described highlighting
structure activity relationships.

Keywords: lignin nanoparticles; cosmetic and cosmeceutical applications; antioxidant activity;
UV shielding activity; sunscreen formulations

1. Introduction
1.1. Drawbacks of Current Antioxidant and UV Shielding Ingredients in Sunscreen Formulations

The harmful consequences of prolonged exposure of human skin to sunlight have
long been explored [1]. UV radiation (190–400 nm) is the main cause of generation of
radical reactive oxygen and nitrogen-centered species and related oxidative stress. Radicals
are responsible for lipid peroxidation and degradation of elastin and collagen, promoting
both loss of skin elasticity and aging [2]. In addition, they react with DNA promoting
apoptosis, genetic mutation, and cancer [3]. In this latter case, the radical damage is
related to melanoma, the most aggressive form of skin cancer, arising from melanocytes
resistant to chemotherapy [4,5]. Sunscreen formulations are designed to protect the skin
from solar radiation and possibly from melanoma. They contain active ingredients capable
of absorbing (organic chemical filters, OCFs) or reflecting (physical mineral filters, PMFs)
the UV radiation. PMFs are generally used as nanoparticles since the nanoscale improves
the reflectance activity, as well as the consumer cosmetic acceptance [6]. In a typical high
sun protection factor (SPF) sunscreen, the final concentration of PMFs and OCFs can
reach 45% by weight [7]. In addition, UV boosters are used to further increase the SPF by
physical effect, tuning the ratio between the UV shielding efficiency and the total UV filter
concentration [8]. UV boosters are usually composed of plastic micro-sized spheres from
petroleum origin, such as styrene/acrylate copolymers, that are well recognized as a waste
in water pollution [9].

High amounts of PMFs, OCFs, and UV boosters, are detected in marine environ-
ments [6] as a consequence of their release from cosmetics, producing submicronic aggre-
gates in freshwater, or alternatively, sediment settles in seawater [10]. Consequently, the
growing consumption of sunscreens has gradually led to a significant increase in coastal
pollution with a deleterious impact on marine organisms [11]. 3-Benzylidene-camphor
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(3-BC) and 3-(4-methyl benzylidene)camphor (4-MBC), which belong in the OCFs family,
induce severe and fast coral bleaching, altering the symbiosis between coral and zoox-
anthellae, and inhibiting the reproduction of both oligochaete Lumbriculus variegatus [9]
and marine phytoplankton [12]. Moreover, they are concentrated in tissues of aquatic
organisms (mussels, crustaceans, eels, fishes, marine mammals, and pelagic birds) due to
the high lipophilicity [13]. In a similar way, PMFs are harmful to marine ecosystems. Zinc
oxide nanoparticles contributed significantly to the whitening of the Acropora spp. [14], and
titanium oxides negatively affect dinoflagellates, fish, algae, and marine invertebrates [15].

Risks for human health are also associated to UV filters [16] as a consequence of pho-
totoxic and photoallergic responses and, in the long term, photoaging and cell damage [17].
The absorbance spectrum of OCFs changes during the UV exposure time as a consequence of
structural transformation and degradation processes [18]. These processes can produce free
radicals and interaction with other sunscreen ingredients and skin constituents (e.g., lipids,
proteins, and nucleic acids), altering the absorbing property of the sunscreen and inducing
oxidative damage [19]. Avobenzone (AVOB), that is a widely recognized OCF in commercial
sunscreens, demonstrated photo instability after prolonged UV exposure to yield radical
photoproducts (Figure 1A) [20], and octyl methoxycinnamate (OMC), the most used UV-B
filter, is photo-unstable after exposure to sunlight, undergoing photodimerization and loss of
shielding efficiency. In this latter case, the photoproducts 4-methoxy benzaldehyde (4-MBA)
and 2-ethylhexanol (2-EH) are also produced (Figure 1B) [21,22]. Moreover, benzophenone-3
(BP-3), and octocrylene (OC) are able to penetrate in the epidermal nucleated layers generating
in situ radical species after UV irradiation [23].
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Despite photodegradation and generation of radicals, OCFs cause other drawbacks
for human health. For example, AVOB promotes obesogenic phenotypes in normal hu-
man epidermal keratinocytes (NHEKs), increasing the gene transcription of peroxisome
proliferator-activated receptor γ (PPARγ) and fatty acid-binding protein [24], and affecting
diabetes [25] with disruptive endocrine effects [26]. The toxic effect of some of the most
representative OCFs are summarized in Table 1.

Table 1. Toxic effects of some of the most representative OCFs applied in sunscreen formulations.

OCFs UV Range Photodegradation Toxic Effects

AVOB 357 yes
Suppression of human trophoblast cells and apoptosis mediated by

mitochondrial disruption [27], induction of obesogenic phenotypes [28],
and hormone-like activity [29].

HS 295–315 no Skin penetration [30], disrupts estrogen [31].

OMC 280–355 yes Skin penetration, hormone like-activity; reproductive system, thyroid, and
behavioral alterations in animal studies [17].

OB 270–350 yes Estrogenic activity, alteration of sperm production in the animal associated
with endometriosis in women [32].

AVOB: avobenzone. HS: homosalate. OMC: octyl methoxycinnamate. OB: oxybenzone.

1.2. Alternative UV Shielding and Antioxidant Ingredients in Sunscreen Formulations

The use of PMFs and OCFs is regulated by directives from different agencies, such as
the Food and Drug Administration (FDA) and the European Chemicals Agency, in order to
adequate the UV protection to minimal side effects for health [33]. The use of alternative
eco-friendly and natural ingredients, deprived of toxic effects, is strongly recommended
and foreseen in future formulations.

The toxicity and pollution effects of actual commercial UV filters increased the interest
for eco-friendly and natural alternatives [34]. Their use is considered an advantage not
only for the ability to improve the SPF value in safer formulations, but also in improving
the photostability of traditional UV filters [35]. Secondary metabolites of the cell, such
as terpenoids and products of the shikimic acid and polyketide pathways, can play a
relevant role bearing conjugated double bonds and aromatic pharmacophores with high
UV absorbing and antioxidant properties [36]. They have been selected during molecular
evolution by plants and microorganisms in developing defense strategies to minimize the
damage of UV radiation and chemical oxidative stresses [37–39]. Sunscreen formulations
containing mixtures of secondary metabolites from plants, algae, and fungi, as well as from
cyanobacteria [40], showed a higher shielding effect with respect to commercial filters. In
addition, mycosporins and mycosporin-like amino acids (MAAs) [41] produced by marine
phototrophs (dinoflagellates, cyanobacteria, and macro algae) [42] are able to convert
radiative energy in thermal energy without generation of radical species [43]. Sunscreen
formulations containing MAAs from Porphyra umbilicals showed a high protective effect on
fibroblasts and keratinocytes exposed to UV-A [44]. Mixtures of secondary metabolites from
the spent fraction of coffee grounds and green coffee oil (GCO) have a synergistic effect
with traditional OCFs and increase the SPF value of sunscreen formulations (+20%) [45].
The protective effect from UV-B exposure by grapes wine extract of Jacquez (namely JW-E),
containing high level of proanthocyanidins, anthocyanins, and hydroxycinnamic acids,
has been evaluated by three-dimensional tissue cell model of the human epidermis [46].
Finally, the water resistance of OCFs is improved by natural waxes that stabilize the SPF
value of sunscreen formulations after immersion in water [47]. Waxes also increase the
SPF value and improved the photostability of OCFs and PMFs after UV irradiation [35].
Despite exhibiting strong sun protection effect, most crude plant extracts are insoluble in
water, thus hindering their practical applications.
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2. Lignin as a Novel Eco-Friendly Sunscreen Ingredient

The development of sunscreen formulations based on renewable and recyclable re-
sources received a great interest, mainly due to circular economy and green chemistry
concerns. In this context, lignin, the most abundant polyphenol in nature, is increasingly
becoming one of the main protagonists since it is recovered in large amounts as a low-cost
waste from pulp and paper industry and biorefinery [48]. The low environmental impact of
lignin extraction and purification technologies has been reported and discussed, focusing
on the expected benefits of lignin as a high added value material [49–51]. Current and
potential application of lignin has been reviewed [52–56], focusing on power fuel and
syngas production (Fischer–Tropsch synthetic fuels), material science and fine-chemicals,
specialties, and commodities preparation [57,58]. Lignin confers rigidity and microbio-
logical and mechanical resistance to lignocellulosic materials [59]. In addition, it shows
low-medium UV-shielding [60], antioxidant activities [61,62] and biocompatibility [63].
The lack of toxicity of lignin has been reported by in vivo toxicity assessment in embryonic
zebrafish (Danio rerio) [64]. The efficacy of lignin as an alternative sunscreen ingredient
depends on its origin and composition, as well as from the structural order and dimensional
scale [65]. The main lignin functions in sunscreen cosmetics are summarized in Table 2.
The next paragraphs will report about these specific aspects.

Table 2. Cosmetic and cosmeceutical application of lignin.

Lignin Property Petroleum Derived Compounds Substituted by Lignin Ref.

Antioxidant BHT, BHA [66]

UV booster acrylates/c10-30 alkyl acrylate cross-polymer [67]

Antimicrobic agent phenoxyethanol, hydroxybenzoates and triclosan [68]

Chelating agent EDTA, THPE [69]

Emulsifier and stabilizer acrylamides salts [70]

BHT: butylated hydroxytoluene; BHA: butylated hydroxyanisole, EDTA: ethylenediaminetetraacetic acid;
THPE: tetrahydroxypropyl ethylenediamine.

2.1. Structure, Availability, and Green Application of Lignin

Lignin is an important source of phenolic compounds [71]. It is one of the main
components in the plant cell wall beside cellulose, hemicellulose, pectin, and extractives.
This polymer is biosynthesized by a cascade of oxidative radical couplings, involving three
phenylpropanoid monomers (monolignols), namely para-hydroxyphenyl (H), syringyl (S),
and guaicyl (G) alcohols (Figure 2A) [72]. These compounds differ in the degree of methoxy-
lation of the aromatic ring and are present in the polymer in a different ratio depending on
the plant species considered [59]. The biosynthesis of monolignols starts in the cytoplasm,
from which they are successively transported to the apoplast and delivered in different
zones of the secondary area (central lamella and secondary wall of the xylem) [73,74]. The
physiological significance of this distribution is apparently simple: differential targeting
allows for the construction of lignified cell walls with distinct biophysical properties [75].

The first step of the lignification process is the dehydrogenation of monolignols to
corresponding phenoxy radicals plant cell-wall oxidases (lignin-peroxidase LiP, manganese-
peroxidase MnP, hybrid LiP-MnP, versatile-peroxidase VP, and laccase) [72]. Monolignols
form a network of inter-unit linkages to yield relatively low molecular weight oligomers
involved in the formation of stable supramolecular π-π aggregates into a complex 3D
molecular architecture [76]. The main types of inter-unit linkages are the alkyl-aryl ether
β-O-4, phenylcoumaran (β-5), 1,2-diaryl-propane (β-1), diaryl (5-5), diaryl ether (4-O-5),
pinoresinol (β-β), and dibenzodioxin structural residues (Figure 2B).

Lignin is classified into three basic types depending on the number and quality of sub-
units: softwood, hardwood, and grass lignin (Table 3). In addition, some unconventional
types of structural motif, such as caffeyl lignin units (C-lignin), were also found [77].
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Table 3. Classification of different types of lignin depending on the amount of para-hydroxyphenyl
(H), guaiacyl (G), and syringyl (S) sub-units.

Type Grass Lignin Softwood Hardwood

H 5–35% <5% 0–8%
G 35–80% >95% 25–50%
S 20–55% 0% 45–75%

Proportion of different monolignols in lignin of different plants source. Adapted from [78–80].

Different technologies are available to separate wood components, and they can be
classified depending on the scale of the treatment [81]. At the analytical scale (from mg
to gram), milled wood lignin (MWL) is considered the most reliable model of native
lignin. MWL is produced from wood chips by extraction with 1,4-dioxane and successive
precipitation in water [82]. At the industrial scale (ton scale), two main types of lignin
are prevailing: sulfur-containing lignin and sulfur-free lignin. Sulfur-containing lignin
include lignosulfonate (LS) and kraft lignin (KL), which are produced in a strong alkaline
and oxidative medium. The second category includes soda lignin (SL), organosolv lignin
(OL) ionic liquid lignin (ILL), and steam-exploded lignin (SEL) [83].

Sulfur-free lignins have been applied in the production of probiotics for animals
due to their capacity to improve the growth of beneficial bacteria [84,85], influencing
the absorption of bile acids in the lipid metabolism [86,87]. In addition, LS is used as a
binder, dispersing agent, emulsifier, and heavy metal sequestrant in the design of advanced
materials and wastewater treatment, as in the case of absorption of toxic chromium, copper,
cadmium, lead, zinc, nickel, cobalt, and mercury ions [88]. From the biological point of view,
KL and SEL showed antioxidant activity in preserving human red blood cells [89]. This
activity was associated to non-etherified phenolic hydroxyl groups, ortho-methoxy groups,
and aliphatic hydroxyl groups in the side chain. In particular, ortho substituents, such as
methoxy groups, stabilize phenoxy radicals by resonance and hinder their propagation.
Conjugated double bonds can also improve the antiaging activity by extensive electronic
delocalization. In some cases, the antioxidant activity was associated to antiviral [90],
antimicrobial, and anticancer properties [91].
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2.2. The Technology for the Self-Assembling of Lignin Nanoparticles

The low solubility of lignin represents a limit for its application in the cosmetic and
cosmeceutical formulations [92]. This bias can be solved by the self-assembly of the native
polymer into highly ordered lignin nanoparticles (LNPs) [93]. LNPs are characterized by
improved chemical and physical properties compared to the native state [94]. Their size
tunability and spherical shape allowed to broaden the fields of application, encompassing
drug delivery systems [95], flame retardant [96] and reinforcing materials [97], and waste
treatment [98]. Remarkably, LNPs show improved UV shielding [94] and antioxidant
properties [99] (see next paragraph). Table 4 reports the major technologies available for
the production of LNPs, the relative experimental conditions, and some of their specific
applications. Briefly, the following technologies have been reported for the preparation of
LNPs: (i) solvent exchange precipitation method where the starting solvent was slowly
replaced by an anti-solvent by dialysis; (ii) treatment of lignin solution by adding strong
acid; (iii) aerosol flow reactor equipped with collision-type jet atomizer; (iv) microchannel
reactor in which the lignin solution is continuously mixed with the antisolvent; (v) CO2
compressed fluid as antisolvent; (vi) flash-precipitation by fast adding of anti-solvent in
lignin solution; and (vii) mini-emulsion between oil-phase and aqueous lignin solution
under ultrasound treatment followed by polymerization with cross-linker agent. The
formation of LNPs is influenced by different experimental parameters, including the
physical properties of the medium (solvent, pH, temperature, stirring speed), and the
chemical structure of the starting substrate (composition, molecular weight, polarity, and
impurities). Among them, the pH value controls the ionization of the phenolic moieties,
which in turn affect inter- and intra-molecular electrostatic interactions in the polymer.
Recent studies based on light scattering analysis and pulse field gradient NMR, showed
that the KL self-association process occurs below pH 9.0–11.5, the process being more
efficient in water than in organic solvents [100]. In addition, a low value of temperature
favors the aggregation [101], and a combined effect of temperature and pH can finely
control the particle dimension [102]. As a general trend, softwood lignins show a higher
degree of aggregation with respect to the hardwood counterpart, suggesting the greater
presence of efficient intermolecular HOMO-LUMO interactions [103].

The structuration process of LNPs is driven mainly by noncovalent interactions,
including H-bonding, van der Waals forces, and π-π stacking aggregation between the
aromatic rings of different molecules [104]. Although no studies have been carried out on
the specific role played by H-bonding in the self-assembly of lignin, this is commonly cited
as a relevant contributing interaction due to its directional nature [105,106]. In accordance
with this hypothesis, the formation of H-bonding network affects the mechanical properties
of KL gels [107]. The specific role of the Van der Waals forces in tuning the macro-syneresis
of KL gel has been also reported [108].

Table 4. Major technologies available for the production of LNPs.

Lignin Tech. Size (nm) pH Shape Advantages Application(s) Limits Ref.

SL SEP 50–250 7 S no aggregation drug delivery and stabilizer toxic chemicals [109,110]
SL AP 50–250 >7 I - drug delivery, bioplastic - [111,112]
AL AFR 30–100 <12 S high yield bioplastic aggregate [94,113,114]
AL AP 30–100 <12 S high stability sunscreen high ionic strength [115]
AL MR 30–100 <12 S dispersibility antioxidant, antimicrobial toxic chemicals [116,117]
AL SEP 30–100 <12 S - antioxidant, antimicrobial toxic chemicals [115,118]
KL AFR 38–250 4–12 I stability adhesives - [113,119]
KL PCA 38–250 4–12 S high solubility commodities high ionic strength [120,121]
KL FP 38–250 4–12 S UV-shielding materials - [110,122]
KL MP 38–250 4–12 S - commodities - [110,122]
OL AFR 30–250 3.5–8 S high yield adhesives aggregate [110,113,116]
OL FP 30–250 3.5–8 S stability commodities high ionic strength [122]
OL SEP 30–250 3.5–8 S stability materials toxic chemicals [112]

S: spherical shape. I: irregular shape. SEP: solvent exchange precipitation. AP: acid precipitation. AFR: aerosol flow reactor. MR:
microchannel reactor. PCA: compressed fluid antisolvent technique. FP: flash-precipitation. MP: mini-emulsion polymerization.
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2.3. Antioxidant Activity

Radical species take part in various degenerative processes, including aging and
inflammatory response triggered by UV exposure [123]. For this reason, antioxidants are
common ingredients in sunscreen formulations [124]. Lignin shows antioxidant activity
due to the presence of the phenolic pharmacophore able to scavenge reactive radical species
with formation of highly stabilized mesomeric forms. Figure 3 describes the main phenolic
sub-units responsible for the radical scavenger activity. Phenolic hydroxyl groups, ortho-
methoxy groups, and aliphatic hydroxyl groups play a crucial role in this activity. In
particular, ortho substituents, such as the methoxy groups, stabilize phenoxy radicals by
both resonance and steric hindrance effects.
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Figure 3. Classification and structural representation of lignin sub-units with antioxidant activity
and chromophoric groups.

The demethylation process of these groups, as well as the presence of conjugated double
bonds, further increase the antioxidant activity by increasing the total amount of OH and
favoring extensive electronic delocalization. Table 5 reports the antioxidant activity of a panel
of low molecular weight compounds commonly considered as simplified models of lignin, as
evaluated by the DPPH assay [103]. As a general trend, the antiradical power (ARP; defined
as the reverse of the dose inhibiting the 50% of the DPPH radical) and the number of reduced
DPPH units (NRD; which represents the moles of DPPH reduced per mole of compound) show
that syringyl-like derivatives have higher antioxidant activity than guaiacyl and para-hydroxy
phenyl counterparts (Table 5, entry I versus entry II). In addition, lower values of ARP and
NRD were observed when a carbonyl moiety was present in the phenylpropanoid side-chain
(Table 5, entry III, IV), while the presence of a conjugated double bond system increased the
antioxidant activity (Table 5, entry VII, VIII, IX, and X) [125].

In addition to the capacity of sequestering radical species, lignin is promising to inhibit
lipid peroxidation and, from a general point of view, the oxidative degradation of other cos-
metic ingredients. For example, the ability of KL to inhibit the undesired radical production
by PMFs (e.g., TiO2) in sunscreen formulations has been demonstrated [126]. Interestingly,
the antioxidant activity of LNPs was different order of magnitude higher than that of
native lignin [94,127]. This behavior can be explained by the higher density of phenolic
and carboxylic groups on the surface of LNPs with respect to the native polymer [128],
as well as by the occurrence of favorable electron transfer processes between the ordered
π-π stacked aromatic moieties [117]. In order to further increase the antioxidant activity,
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LNPs with mixed adsorbed polyphenols were prepared, highlighting the synergistic effects
among the components [129]. The application of LNPs as UV filter or, alternatively, UV
booster in broad-spectrum sunscreen formulations has been explored [130–132], confirming
the beneficial role of lignin when used in the nanoscale form.

Table 5. Antioxidant activity comparison of main lignin subunit.

# Name Structure ARP a NRD b # Name Structure ARP NRD

I Guaiacol
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activity, LNPs with mixed adsorbed polyphenols were prepared, highlighting the syner-
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132], confirming the beneficial role of lignin when used in the nanoscale form. 
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effect. The contribution of auxochromic groups in lignin to generate a bathochromic effect 
(redshift phenomena) is reported [136] (Figure 4). LNPs are characterized by improved 
UV-shielding properties in relation to the native counterpart. For example, KL nanoparti-
cles showed a higher absorption efficacy (up to 30%) than native KL, associated to the 
presence of a larger absorption band in the region of the longest wavelengths [94,137]. 
This effect is mainly due to the occurrence of π-π stacking interactions between the aro-
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2.4. UV Shielding Activity

The Sun emits electromagnetic radiation in three ultraviolet (UV) wavelength areas.
Rays with the shortest wavelength (UV-C, 100–290 nm) are captured by atmosphere, UV-
A radiation at medium wavelength (UVA, 290–320 nm) and longer wavelength (UV-B,
320–400 nm) reach the surface of Earth. Excessive exposure to UV-B causes sunburn, while
UV-A penetrates deeper into the skin. Both UV-A and UV-B are causing agents for DNA
damage and cancer [133]. Lignin shows a broad absorption range in the UV region due to
the presence of different chromophores and auxochromic groups (Figure 3), the maximum
of absorbance being located at 283 nm [134,135]. Auxochromic groups (from ancient Greek
αὐξάνω auxanō “increase” and χ$ῶµα chrōma “color”) are groups of atoms bearing non-
bonding electrons (OH, OCH3, NH2, CO, SH, and SCH3) able to increase the chromophore
effect. The contribution of auxochromic groups in lignin to generate a bathochromic effect
(redshift phenomena) is reported [136] (Figure 4). LNPs are characterized by improved
UV-shielding properties in relation to the native counterpart. For example, KL nanoparticles
showed a higher absorption efficacy (up to 30%) than native KL, associated to the presence
of a larger absorption band in the region of the longest wavelengths [94,137]. This effect is
mainly due to the occurrence of π-π stacking interactions between the aromatic moieties,
that can form two main types of aggregates, namely sandwich-type (H-orientation) and
head-to-tail (J-orientation) aggregates. The J-orientation (water media) is the most efficient
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to decrease the energy gap for the π-π* electronic transition, thus enhancing the absorption
efficacy of UV photons [138]. In addition, charge transfer complexes between electron-
donating phenolic groups and electron acceptor ortho-quinones moieties can further increase
the UV photo-absorbing capacity of LNPs [139].
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Notably, experimental data highlighted that the UV-absorbing capacity of lignin
increases during the exposition to radiation as a consequence of the formation of novel
chromophores, such as quinonoid units [140]. The negative charged surface of LNPs
can be further functionalized by consecutive deposition of natural macromolecules or
polyelectrolytes with opposite charge by the layer-by-layer technique (LbL) [141,142]. In
this way, mixed LNPs containing layers of other natural polyphenols, such as tannic acid,
showed enhanced UV shielding properties, by occurrence of a synergistic effect between
the aggregate polymers [116]. Finally, the cavity of LNPs can be exploited for the physical
encapsulation of both OCFs and PCFs to yield functionalized LNPs with UV shielding
properties higher than the parent compounds. One example of this strategy is represented
by the encapsulation of TiO2 inside lignin-based colloidal nanoparticles to afford a stable
UV filter deprived of undesired side-chain catalytic effect in the generation of radical
species [143].

2.5. Other Physical and Chemical Properties of LNPs Useful in Sunscreen Formulation

LNPs are characterized by a large panel of physical and chemical properties useful
for the design of sunscreen formulations, encompassing emulsion stabilizer, antimicrobial,
and chelating properties. These properties will be explored in the following paragraphs.

2.5.1. Emulsion Stabilizer Properties

The emulsions are unstable systems due to the high surface energy exerted between
the two immiscible phases. For this reason, the presence of a surfactant able to reduce the
surface energy is required [144]. Most surfactants derive from non-renewable precursors
and are generally not biodegradable [145]. Lignin is considered an amphipathic polymer
due to the presence of both hydrophilic and hydrophobic components. In addition, the
presence of ionizable groups make it an efficient stabilizer by the occurrence of electrical
repulsion effects [146]. A case of study for the application of LNPs as a stabilizer is
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represented by the production of Pickering emulsions, which were characterized by a
higher deformation resistance compared to that stabilized with conventional surfactants.
This effect was associated to the barrierless adsorption of the LNPs at the interfaces of
two immiscible liquids, thanks to their partial wetting properties [147]. LNPs were also
efficient Pickering emulsifiers to stabilize oil emulsions in water (O/W) in the formulation
of sunscreen containing low soluble organic substances [148].

2.5.2. Antimicrobial Properties

Lignin is characterized by antimicrobial activity as a consequence of the capacity to
interact with the bacterial cell causing lysis with consequent release of the cell content. KL
is effective against Erwinia carotovora and Xanthomonas campestris pv. vesicatoria (but not
against Pseudomonas syringae), while AL showed antimicrobial activity against Escherichia
coli, Staphyloccocus aureus, and Pseudomonas [149]. In particular, the C=C double bond and
γ-methyl groups in the side chain confer to lignin a higher antimicrobial activity than
phenolic and aliphatic groups [150]. Again, LNPs showed higher antimicrobial activity
than the native counterpart, as a consequence of the highest contact surface area available
for the interaction with the microorganisms [134], associated to the possibility to penetrate
into the bacterial cell. In addition, LNPs favored the damage of the bacterial cell by electron
transfer processes able to generate local radical species [115]. Examples of the synergy
activity between silver nanoparticles [150] and lignin against Gram-positive and Gram-
negative bacteria have been reported, focusing on the role of lignin as a recognizer and
delivery system for the controlled release of the silver ion [151]. In this latter case, the
amount of silver ions used in the treatment was 10 times lower than conventional materials,
reducing the known negative impact of silver wastes on the environment. Examples of
the use of lignin as a green antimicrobial ingredient in the formulation of cosmetics are
reported, as in the case of the reduction or substitution of high environmental impact
antimicrobial agents, such as phenoxyethanol, hydroxybenzoates, and triclosan [68].

2.5.3. Chelating Properties

Chelating agents are ingredients able to complex metal ions in a stable way. These
compounds play a crucial role in the stability and efficacy of cosmetics since the chelation
mechanism stabilizes metal ions by preventing them from reacting with other substances
and skin. The adsorbing capacity of lignin has been studied against different metal species,
including chromium, copper, cadmium, lead, zinc, nickel, cobalt, and mercury [152,153].
The chelating process occurs by coordination of the metals with Lewis basic sites in lignin,
such as carbonyl, carboxylic, and phenolic groups [154]. The adsorption was found to be
pH dependent, being favored by deprotonation of the active groups in lignin [155]. In
this context, the use of lignin to replace commercial chelating agent characterized by a
well-known environmental pollution impact (e.g., EDTA) has been reported [156].

3. Color Agreeableness of Lignin

The dark color of lignin, that is mainly due to the harsh conditions of physical and
chemical treatments (e.g., high temperature and oxidative transformations), hinders the
promotion of lignin-based cosmetics on the market [157]. The principal methods to assess
the lignin color are the Munsell and CIELAB procedures [158]. The Munsell color system
determines the classification of the color by measuring the human perceptual response,
and consists in the evaluation of three independent variables, represented by the color hue
(measured in degrees on a horizontal circle), saturation (measured radially from the neutral
gray axis outwards), and brightness (measured vertically on the gray axis from 0 for black
and to 10 for white) parameters. This method is accurate and quantitative, but it is limited
by a laborious visual matching. The CIELAB method is based on a spectrophotometer
analysis in two different modes: (i) specular component included (SCI); and (ii) specular
component excluded (SCE) modes. SCI is used to evaluate the actual color using both
specular and diffuse reflected light, while SCE determines the color by excluding any
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specular reflected light. In the International Commission on Illumination L*a*b* (CIELAB)
color space, the L* value represents a bright behavior of a sample as follows: white when
L* = 100 and black when L* = 0; +a* is a red shade and −a* is a green shade; +b* is a yellow
shade and −b* is a blue shade. A total color difference value (∆E) is defined as following
Equation (1):

∆E =
[(∆L∗)2 + (∆a∗)2 + (∆b∗)2]

2
(1)

where ∆L*, ∆a*, and ∆b* are the differences in L*a*b* values between a reference and
a sample. In order to enhance the color agreeableness of lignin, the chromophore and
auxochrome groups should be blocked or cleared. This is of particular relevance in the case
of sunscreen formulation. The main techniques applied to lighten lignin are described in
the following paragraphs.

3.1. Drying of Lignin

Drying of lignin involves the control of the organization of the polymer structure at
the morphological level by removal of the water molecules included in the sample [159].
An appropriate drying procedure can significantly reduce the dark color of lignin without
extensive structural modification of chromophores and auxochrome moieties. This pro-
cedure has been applied in the preparation of light-colored sun creams, the control of the
color intensity depending on the specific drying method (i.e., oven, vacuum, freeze, and
spray drying) [160]. Oven and vacuum drying procedures favored the formation of large
particles with a glossy surface and a dark color, while spray and freeze drying make the
lignin as a lighten colored fine powder. In addition, a correlation between the particle size
and the lignin color was observed, small-sized particles being less colored.

3.2. Fractionation of Lignin with Solvents

Light-colored lignin nanoparticles (CEL-NP) have been obtained from rice husks
through initial extraction of cellulolytic enzyme lignin (CEL) followed by the solvent
shifting procedure [161]. The color of CEL-NP and CEL was evaluated using the L* a* b*
(CIELAB) color space method and compared with lignin from rice husks without cellulase
treatment (RH) and organosolv lignin (OL), as references. The brightness (L*) and redness
(a*) values of CEL were similar to those of RH as a consequence of the low effect of cellulase
activity on phenolic and quinoid chromophore groups. The L* value of CEL was higher
than that of OL and the a* value of CEL was lesser than OL. This is because CEL was
prepared under much milder conditions than OL. As expected, the nanostructuration
process further increased the lightness of the sample (CEL-NP). The effect of mixture of
organic solvents in the lightness of lignin has been also reported [162].

3.3. Heat Treatment

The thermal processing of lignin involves the cleavage ofβ-O-4 linkages and demethoxy-
lation. Usually, this process produces condensed structures and increases the amount of
chromophores groups [163,164]. As an alternative, the steam and heat treatment of wood
(steam explosion procedure) for the extraction of lignin, consists in heating the starting
material at temperatures between 180 ◦C and 220 ◦C and high pressure. This procedure
affords an effective discoloration of lignin [165]. In this latter case, the degree of color
change (as evaluated by the DE* value) was highly dependent from the temperature and
pressure parameters.

3.4. Chemical and UV Whitening of Lignin

Traditional chemical bleaching procedures are not suitable for lignin color reduc-
tion as their aim is to profoundly degrade the lignin structure. Softener procedures are
therefore required to whiten lignin without reducing the antioxidant and UV shielding
capability. Among them, sulfonation, sulphomethylation, and butane sulfonation treat-
ments at high temperature and pressure have been shown to be effective in whitening
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eucalyptus lignin [166]. The reaction occurred preferentially at the C-α position of the
phenylpropanoid side chain, while, when performed in the presence of formaldehyde
and Na2SO3, the aromatic C-5 position was also modified [167]. UV irradiation combined
with a long-time (20 h) H2O2 treatment effectively decolorizes sulfonated alkali lignin
(SAL) by reducing the amounts of aromatic moieties and methoxyl and phenolic hydroxyl
groups. Thanks to this treatment, SAL was successfully used as a dye dispersant [168].
Pre-treatments of the starting material can facilitate the bleaching procedure. They include
autohydrolysis, steam explosion, and treatment with dilute acids. In particular, the autohy-
drolysis process improved the whitening of KL and decreased the excessive consumption
of the sample during the overall whitening processes [169]. Selective functionalization
procedures can also be applied in the whitening of lignin. For example, the acetylation of
solvent-fractionated KL with acetic anhydride reduced the color intensity of the sample
without interfering with its UV absorption capability (313.5% and 145.6% in brightness
and L* value, respectively). In this latter case, the acetylation process was responsible for
the inhibition of the auxochrome effect of the phenolic moieties, as a consequence of its
electron withdrawing effect. Acetylation prevented demulsification processes due to the
fine control of the polarity of lignin [158]. As a general trend the lightening process slightly
interferes with the antioxidant and UV shielding properties.

4. Conclusions

The future trend in the application of lignin in solar screen formulations appears to be
dependent on two main variables: (a) the availability of adequate technologies for lignin
transformation and enhancement; and (b) the availability of an economically sustainable
and stable market over time. In the first case, different nanotechnologies are presently
available for the transformation of technical lignin into nanoparticles with a controlled
dimension and superficial charge, which are useful for the formulation of solar screens. The
undoubted advantage of these new active ingredients lies in their proven biocompatibility,
complete biodegradability, and antimicrobial activity, associated with improved antioxi-
dant and UV shielding properties, emerging from the reduction of the molecular scale as a
consequence of specific no covalent interactions. The great variety of lignin wastes from
pulp and paper, agro-industrial, and biorefinery transformations also allows for a large
panel of starting materials that differ in the solubility and other chemical and physical
properties favoring compatibility with the ingredients of the formulation. In addition,
lignin has peculiar UV absorbing properties which cover both the UV-A and UV-B range,
thus reducing the actual requirements of complex mixtures of synthetic organic and inor-
ganic filters. Being empty, the beneficial properties of lignin nanoparticle may be further
increased by drug delivery processes involving the time-dependent release of selected
natural substances [170]. Finally, a careful choice of the starting material, combined with
enzymatic or chemical pre-treatments, also allows the control of the color of the nanoparti-
cles, better meeting the consumer’s tastes. With regard to the sustainability of the economic
market, the lignin industry demand is expected to register around 6% of compound an-
nual growth rate (CAGR) between 2020 and 2026, and as a case of study, the demand for
lignin-sulphonate wastes from pulp and paper is expected to grow at a CAGR of 1.6%
over the forecast period, mainly for application in paint and coating products, laundry
and cleaning detergents, biomaterials, and cosmetic and cosmeceutical formulations [171].
Processes for the extraction and recovery of technical lignin are available at the industrial
scale as a result of collaboration between universities and private groups [172], and high
quality grade lignin is available at approximately 600 $/t, a cost that is significantly lower
than that of current sunscreens, also considering the benefit for human health and the
environment [55]. Taken together, these data highlight lignin as one of the main alternatives
for petroleum-based compounds in cosmeceutical and sunscreen formulations.
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