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Abstract

Understanding the influence of the built environment on human movement requires quantifying spatial structure in a
general sense. Because of the difficulty of this task, studies of movement dynamics often ignore spatial heterogeneity and
treat movement through journey lengths or distances alone. This study analyses public bicycle data from central London to
reveal that, although journey distances, directions, and frequencies of occurrence are spatially variable, their relative spatial
patterns remain largely constant, suggesting the influence of a fixed spatial template. A method is presented to describe
this underlying space in terms of the relative orientation of movements toward, away from, and around locations of
geographical or cultural significance. This produces two fields: one of convergence and one of divergence, which are able to
accurately reconstruct the observed spatial variations in movement. These two fields also reveal categorical distinctions
between shorter journeys merely serving diffusion away from significant locations, and longer journeys intentionally serving
transport between spatially distinct centres of collective importance. Collective patterns of human movement are thus
revealed to arise from a combination of both diffusive and directed movement, with aggregate statistics such as mean
travel distances primarily determined by relative numbers of these two kinds of journeys.
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Introduction

Understanding the movement patterns of humans or other

animals requires understanding the processes that generate

variations in both time and space. Examining spatial patterns of

movement is often more difficult in humans than in other animals,

because of the dependence of human movement on our own

complexly constructed environments [1,2]; because of a tendency

for sedentary humans (and some primates; [3]) to start and end

journeys from home [4,5]; and because of pragmatic difficulties

associated with the close monitoring of human movement.

Although these latter difficulties can be circumvented through

recent technology enabling detailed yet anonymous tracking [4,6–

11], geographical dependence of movement patterns requires

generalised studies to focus either on abstracted spatial environ-

ments such as subway tunnels [12], footpaths [13], or automobile

expressways [14], or on abstracted movement variables such as

journey distances or durations alone [4,9,15], or relative directions

[6]. This necessary abstraction effectively removes any explicit

dependence of movement patterns on actual journey origins and

destinations, as well as on actual directions of movement [16,17].

Human behaviour is nevertheless very strongly geographically

bound [18,19], and most movements must be presumed to be

motivated by a desire to travel between particular origins and

destinations. While individual movements can be framed relative

to fixed home points [4], collective movement must also be

presumed to be directed to and from centres of shared importance.

Although spatial variations in collective human movement [6,20–

22] are influenced by environmental structure [1,2], understand-

ing general relationships requires a means of quantifying spatial

structure in a general sense.

This quantification can not, however, simply be of geographic

structure alone [23], because collective agreement in projecting

cultural values onto landscapes initiates and continues historical

processes that reconfigure geography to reflect human culture, and

that also reconfigure human culture to reflect geography. It is thus

not geography alone that influences collective human movement,

but also shared cultural understandings of geography. The present

work demonstrates a technique to quantify the structure of such a

‘cultural geography’ [24] in terms of relative degrees of movement

oriented both towards and away from each point [25].

The cultural and geographical space considered here is the

centre of London, U.K., as revealed through analyses of public

data [26,27] from the Transport for London Barclay’s Bicycle

Hire Scheme, detailing origins and destinations of 1,425,884 trips

taken throughout the city over 97 days. The article begins with

analyses of the spatial and temporal patterns of movement

[11,21,22,28], following which the method is described for

analysing vector trajectories to reveal locations of cultural and

geographical significance towards, away from, or around which

movement circles. Analyses conclude by relating the resultant

fields of relative convergent and divergent movement to the

observed spatial variations in movement variables, following which

are discussed the general implications for understanding how

cultural geography influences human movement.

Results

Spatial variations in movement
The bicycle docking stations from which data were collected are

irregularly distributed throughout the city, with numbers of both

bicycles, and of rides originating from or travelling to each of the

351 stations analysed here, decreasing linearly with distance from
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the city’s centre (R2~0:93 in both cases). Because analyses of

spatial pattern require sampling to be regular, the bias introduced

in patterns extracted directly from these spatially irregular data

was removed through projecting all quantities aggregated at each

station onto a spatially regular grid of 351 points spanning the

same area as the bicycle network, with contributions from each

station weighted by distance to each grid point according to the

observed frequency distribution of ride distances (Fig. 1A; effects of

different weighting functions are illustrated in Figs. 2B, C; see

Methods). This projection is a form of spatial smoothing, the

effects of which were revealed through also conducting analyses

with the spatially irregular data collected at each station (see

Table 1, below).

In contrast to the centrality of the bicycle system, spatial

distributions of both mean and standard deviation (SD) ride

distances (respectively on linear scales as d~10Slog dT and on

logarithmic scales as s~Slog d{log dT) were distinctly non-

centralised, and distinctly different from one another (Figs. 1C, D).

The relationship between mean and SD trip lengths was

bifurcated (inset of Fig. 1D), with the two portions of the illustrated

bi-linear regression neatly delineating London east from west.

This spatially variable relationship between �dd and s implies that

the fields of Figs. 1C and D can not have been produced by any

single, spatially invariant process [29]. Rather, as suggested by the

accuracy of the bi-linear model, these spatial distributions—and

thus also the aggregate distribution of Fig. 1A—are likely to have

been generated by two distinct yet related processes, as further

indicated by the bi-modal distribution in the west of the city

(Fig. 1B). This negative spatial relationship between �dd and s was

also reflected in time, with the correlation between hourly values

aggregated from all stations also strongly negative (see Table 1,

below).

Lengths and numbers of journeys
The distribution of rides in the west of the city suggests a

distinction between ‘short’ and ‘long’ trips (Fig. 1B). The extent to

which such a distinction might underlie the bifurcated relationship

between mean and SD trip lengths was examined by separating

rides either side of a variable distance, d0, to enable separate

analyses of both short and long trips in terms of lengths,

respectively denoted dS and dL, and numbers, denoted nS and nL.

These values were then recombined to produce a single

probability distribution for trips of length d as

Figure 1. Frequency distributions and maps of ride distances. (A) Frequency distribution of ride distances (grey line). Black dot shows median
distance (dm~1:64 km), while solid black line shows least-squared error Gaussian curve fitted to the portion d§dm , which was e{(d=2:74)2

. Dashed
black line shows typical power-law distribution of d{1:6 . (B) Distance distributions within 2 km of northern (at 20.150W), eastern, and western
extremities of the bicycle system, with linear frequency scale. Distributions smoothed to aid visual display. (C, D) Maps of (C) mean and (D) SD ride
distance in km and log km, respectively, plotted against longitude (ordinate in degrees east; spanning 10.5 km) and latitudes between 51.49 and
51.530N (abscissa; spanning 5.8 km), both in 0.010 increments. Maps show the River Thames; St. Paul’s (black cross); and the train stations (red and
blue London Tube symbols, clockwise from east) of Liverpool Street, Waterloo, Victoria, Paddington, and King’s Cross. Black outlines clockwise from
top depict Regent’s Park, St James/Green Park/Buckingham Palace Gardens, and Hyde Park. Circled crosses denote: the official centre of London (H, in
Trafalgar Square); the centre of the network of bicycle stations (B, on the Strand); and of all rides actually taken (R; in Holborn). Blue dots mark
positions of minima and maxima within each panel. Inset in (D) shows relationship between mean and SD ride distances respectively plotted on
horizontal and vertical axes, with scales as in panels (C) and (D). Minimal error bi-linear regression as indicated (R2~0:90) precisely divides east from
west either side of the solid red line shown in both panels. Dashed red line in (C) traces ridge of maximal mean distance.
doi:10.1371/journal.pone.0037754.g001
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p(d)* nS N(�ddS,s0)znL N(�ddL,s0)
� �

=(nSznL), where N(m,s0)
denotes a normal probability distribution with mean m and SD

s0, with the latter held constant throughout (and all results

invariant for all values of s0 & 1 km).

Across a range of values of d0, the ability of this categorisation of

short and long journeys to reconstruct observed variations in SD

distances was tested both in space through comparing observed

and reconstructed distributions at each station, and in time

through comparing hourly distributions of rides aggregated across

all stations, with d0~1:3 and 1.1 km yielding the respective

minimal errors (and with the former value used throughout;

Fig. 2A). Reconstruction was very accurate (Table 1), demonstrat-

ing that observed temporal and spatial variations in SD need not

reflect a single process with a complex and variable SD, but can

simply reflect variations in the combination of two processes of

equal and constant SD representing short and long journeys.

Numbers of short and long trips were positively correlated

(R2~0:67), with decreases in trip numbers associated with

decreases in the lengths of short journeys (R2~0:80), yet with

increases in the lengths of long journeys (R2~{0:92), suggesting

that the separation of the two peaks of Fig. 1B towards the west of

the city reflects a generally linear process. Furthermore, variations

in mean ride distances were most strongly correlated in both time

and space with the proportion of long rides, PL~nL=(nSznL),
rather than with actual distances of either short or long rides

(Table 1). Spatial variations in PL (Fig. 3A) clearly revealed the

cause of both the delineation of east from west London, and of the

increase in SD trip lengths in the far east (Fig. 1D). Moving

westward towards the delineation, both lengths and proportions of

long trips increased. Lengths of long trips continued to increase

west of the delineation, yet their proportion decreased, producing

an overall decrease in mean trip lengths.

These spatial patterns remained qualitatively very similar

throughout the day, with temporal variations (Fig. 3B) reflecting

synchronous shifts in �ddL, �dd , and PL across the city (Figs. 3C, D).

Temporal variations in mean ride distances were predominantly

explained (84%) by shifts in the scale of Fig. 1C, with only 16%

explained by relative changes in the spatial distribution, a value

commensurate with previous results from Shenzen, China (of

26%; [11]). In two dimensions, the contour of maximal PL (see

Fig. 4, below) very accurately reproduced the ridge of maximal

ride distances (Fig. 1C), while the spatial delineation obtained from

the bi-linear regression between PL and dL (also in Fig. 4) very

accurately reproduced that between mean and SD distances

(Figs. 1C, D).

Thus arises one fundamental contribution of the present work,

in the demonstration that patterns of collective movement do not

arise from one single process. Rather, in contrast to statistical

descriptions of movement as a singular, aggregate phenomenon

(for example, [9–11,15,21]), these analyses demonstrate that the

Figure 2. Effects of distance weighting and short–long division. (A) Correlations between observed and reconstructed SDs (‘SD–SD’), and
between observed distances and proportion of long trips (‘D–P’), as a function of the distance separating short from long trips. Correlations were
calculated both spatially (through aggregating data across the whole day, and comparing stations; shown by dashed lines) and temporally (through
aggregating data across all stations, and comparing the 18 hours of the day; shown by solid lines). Vertical line indicates the division used in all
analyses of 1.3 km. (B) R2 correlations between distances and numbers of short (nS and dS) and long (nL and dL) trips, and convergence (C) and
divergence (D) fields, as functions of the distance weight used to project data onto the regular grid. Vertical line indicates chosen value of
k~2:74 km. (C) Repeat of panel (B), but using radial divergence and convergence rather than the full measures (see Methods).
doi:10.1371/journal.pone.0037754.g002

Table 1. Spatial and temporal correlations between observed and modelled movement variables.

�ddO* sM*

sO dS dL PL
�ddM sO

Time(I) 20.54 0.76 0.79 0.99 20.58 0.95

Time(R) 20.73 0.75 0.85 0.97 20.44 0.79

Space(I) 20.72{ 0.23 0.12 0.83 20.72{ 0.91

Space(R) 20.90{ 20.44 0.51 0.79 20.81{ 0.89

R2 correlation coefficients between observed (O) and modelled (M) mean (�dd) and SD (s) distances, as well as mean short (dS ) and long (dL) distances, and the relative
proportion of long trips (PL). Relationships are given between irregular spatial averages aggregated at each station (‘I’), and after projection onto a spatially regular grid
(‘R’).
{Spatial R2-values for d*s are from bi-linear regressions like that illustrated in Fig. 1D, with signs reflecting those of corresponding full linear regressions.
doi:10.1371/journal.pone.0037754.t001
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distinct spatial patterns of mean and SD ride distances observed

here (Figs. 1C, D) minimally requires the combination of two

homoscedastic processes distinguished by spatial variation in mean

distances. Moreover, the fact that temporal variations in these two

process maintain the same relative spatial structure across the city

(in terms both of mean distances and proportions of long to short

trips; Fig. 3) strongly suggests the influence of a fixed geographical

template, as now further explored.

Relationships with underlying spatial structure
The fixed spatial patterns discerned above must reflect collective

movement oriented to, and strongly influenced by, a spatially

heterogeneous landscape. It is, however, not just spatial hetero-

geneity—or, in general, geography—itself that influences move-

ment, but also cultural values as collectively projected onto

geographical structure. The former can be directly and objectively

quantified; the latter can not. These dual influences on movement

dynamics were examined here through quantifying the extent to

which locations of cultural or geographical significance (hereafter,

‘significant locations’) cause movement to be oriented in some

structured way relative to the random orientation expected in an

homogeneous landscape [25]. Because significant locations likely

act both as point sources producing a ‘social force’ [30] effecting

radial movement, and also as centres around which movement

circles, the structuring of movement was quantified here in terms

of total numbers times distances of rides (n|d ), distinguished only

by whether overall orientation was towards (convergence, C) or

away from (divergence, D) each location (see Methods). Moreover,

because significant locations are likely to engender equally greater

convergence and divergence, the two fields were considered

separately here, in contrast to conventional calculations of net

divergence (that is, divergence minus convergence). Significant

locations will produce increases in one or both of these fields that

extend across some finite spatial range.

The resultant fields were predominantly structured by greater

absolute cycling activity in the city’s centre, and mirrored the

strong centrality described above of both London itself and of the

bicycle system, analogous to most other work on movement in

urban spaces [21,22,28]. However, the relative temporal invari-

ance of the spatial structures of Fig. 3 demonstrates that the

cultural and geographical landscape studied here (and likely that in

[11]) influences movement independent of absolute numbers,

precisely as would be required for a landscape to influence

individual journeys. These flux fields of convergence and

divergence therefore must also be calculated in a relative sense.

Flux fields vary in time or space through variations in the degree

of orientation towards significant locations. The necessary

rescaling of these fields was achieved here relative to expected

orientations calculated from an equivalent set of rides simulated to

be dependent only upon the intrinsic properties of the bicycle

network, yet randomly oriented in space. Differences between flux

patterns arising from the observed and simulated rides thus

quantify the relative degree of intentional orientation towards,

away from, or around, significant locations. To ensure adequate

spatial sampling, 100 times as many rides (thus totalling 140

million) were simulated as actually observed, with resultant fluxes

divided by 100 for subsequent comparison (see Methods).

The simulated numbers of trips, nij , between each pair of

stations, i and j, can be used to generate a spatial distribution of

expected probabilities, pij~nij=
PN

k nik, where N is the number of

bicycle docking stations. The probability that mij trips are actually

observed can then be calculated as [31],

Figure 3. Spatial and temporal variations in movement variables. Mean lengths of long (dL), short (dS), and all (d) trips as a function of (A)
longitude and (B) time of day, both on same vertical scale shown on left of (A). Both panels also show the proportion of long rides on same scale
shown on right of (B). (C) Variations in spatial patterns of �dd and �ddL throughout the day, with temporal progression indicated by grey arrows
connecting from left to right the hours 6:00 to 13:00 (decreasing); 13:00 to 18:00 (increasing); and 18:00 to 23:00 (again decreasing). (D) As for (C), but
for the proportion of long trips.
doi:10.1371/journal.pone.0037754.g003
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p
0
ij~

1

2pð Þ(N{1)=2
exp

{(mij{nij)
2

2
PN
k=i

nik

2
6664

3
7775, ð1Þ

such that greater differences between the observed and expected

distributions will produce lower probabilities. Conversely, some

appropriately inverted form of these probabilities will provide a

measure of the relative extent to which fluxes of cyclists are

spatially non-random because of movement towards, away from,

or around significant locations. However, this equation describes

the probabilities of moving from one single node, i, and the

required probability distribution must be obtained by additionally

summing over all nodes,
P

i. The denominator of the exponential

in this case simply equals the total number of rides,

NT~
P

i

P
k=i nik~1,425,884, and the logarithm of Eq. 1 then

gives,

ln p
0
ij~{

1

2
N(N{1) ln (2p){

(mij{nij)
2

2NT

: ð2Þ

Re-writing this as,

Dmij{nij D*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
const:{ln p

0
ij

q
, ð3Þ

demonstrates that absolute differences between observed and

expected numbers of trips, Dmij{nij D, scale monotonically, albeit

non-linearly, with the desired probability in inverted form.

Relative convergence and divergence fields can therefore be

calculated directly from absolute differences between observed and

expected numbers of rides. Moreover, Eq. 1 merely describes the

probability of a given difference in the spatial distribution of rides,

regardless of whether differences are positive (more rides) or

negative (less rides). The signs of these differences are, however,

meaningful in this context, and so fields were calculated from the

full signed differences, with negative values indicating lower than

expected fluxes (Figs. 4A, B).

In an homogeneous space with uniformly distributed bicycle

docking stations, convergence and divergence will be equal yet

each will be individually greater than zero. The relative fields

simply remove these non-zero components expected with random

orientation, such that non-zero values will only arise from

collective orientation towards, away from, or around significant

locations. In the absence of particular hypotheses, movement must

be generally presumed randomly oriented; these relative fields

must be expected to be devoid of structure; and no relationships

will be expected with the spatial patterns of movement variables

observed above. In contrast to this ‘null’ hypothesis, the strong

relationships observed here (Table 2) must reflect non-random

orientation of movement to the underlying cultural and geograph-

ical landscape.

Reflecting the above relationships between trip numbers and

distances, lengths of short trips (dS ) increased with increasing flux

(most strongly with divergence), while both mean overall and

long-trip distances decreased (with the strongest relationships

being �dd*{C and dL*{(CzD); Table 2). The relationships

between fluxes and numbers of trips were then used to

reconstruct pL based on the positive linear relationships of

nL*D and nS*CzD (Table 2), with the resultant field of

P
0
L~D=(0:53Cz1:39Dzconst:) (Fig. 4C) accurately reproduc-

ing the spatial field of mean ride distances.

Importantly, while spatial distributions of distances and

numbers of trips remained qualitatively similar throughout the

day, as previously described (Figs. 3C, D), flux fields changed

considerably (Figs. S1 and S2), with only those aggregated across

the entire day accurately reproducing spatial variations in

movement dynamics. This suggests that the two flux fields of

Figure 4. Convergence and divergence maps. Maps of net vector
(A) convergence and (B) divergence, constructed as for Figs. 1C and D.
Scales represent anomalies above expected values, in units of 1,000 rider
km/day, with blue dots marking locations of maxima and minima. Solid
red lines delineate the two bi-linear portions relating PL to dL ; dashed red
lines trace ridge of maximal PL (directly comparable to equivalent lines in
Fig. 1C; compare 1-D version of Fig. 3A); and solid blue lines delineate
regions of positive from negative net flux. (C) Mean trip distance
reconstructed from individual regressions of nL*D and nS*DzC.
doi:10.1371/journal.pone.0037754.g004

Table 2. Correlations between movement variables and flux
fields.

Variables C D CzD P
0
L

�ddS 0.43 0.87 0.82

�ddL 20.46 20.78 20.81

nS 0.74 0.58 0.93

nL 0.28 0.94 0.70

pL 20.63 0.74

�dd 20.83 20.72 0.68

s 20.88 20.64

Strengths of relationship (as R2 correlation coefficients) between convergence
(C), divergence (D), total flux (CzD), and p

0
L as modelled from C and D and

explained in text; and lengths and numbers of short and long trips, the
proportion of long trips, and mean (�dd) and SD (s) distance. Bold font indicates
maximal correlation for each movement variable. Values of R2

v0:5 are not
shown.
doi:10.1371/journal.pone.0037754.t002
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daily convergence and divergence accurately captured the spatially

fixed aspects of the city’s cultural geography.

Angular orientation
Although measures of convergence and divergence generated

by random movement through an infinite, homogeneous envi-

ronment will be equal, each will be non-zero without representing

any actual directional preference. Similarly, although the flux

fields calculated as described above quantify the relative degree of

non-random movement towards and away from each location,

they nevertheless do not represent any particular angular

orientation. A non-zero measure of adjusted convergence or

divergence simply means that convergent or divergent movement

towards or away from a given point exceeds that expected with

random orientation, regardless of whether or not that convergence

or divergence is oriented along any particular direction.

The extent to which travel is actually oriented both away from

gradients of divergence and towards gradients of convergence

thus provides an independent measure of the extent to which

travel is actually oriented to the local cultural or geographical

features as represented by the spatial structure of the flux fields.

The non-random structure of the bicycle system itself, however,

generates preferred directions of travel, predominantly towards

and away from the city’s centre where there are more bicycle

stations. The directly observed angular orientations were

therefore adjusted by subtracting the net movement vectors

generated by the simulated set of 140 million randomly-oriented

rides (see Methods).

Angular differences were then calculated between these net

adjusted movement vectors and maximal gradient vectors away

from divergence and towards convergence, combined according to

the relative strengths of the fields. Alignment with individual fields

was also examined, to identify the field (C, D, or CzD) with

which movement was most strongly aligned. Net adjusted

movement vectors still generally radiated out from the city’s

centre (Fig. 5D), and were most strongly aligned to gradients of the

combined (CzD) field, with a mean + SD angular difference of

{16+240 (Fig. 5A). Orientations of net movement vectors

constructed from long trips only were similarly aligned to the

combined field, with angular differences of {11+250 (Figs. 5C,

F). In contrast to both of these results for which alignment

improved with increasing field strength (Figs. 5A, C), short trips

were most strongly aligned with divergence alone (Fig. 5E), with

angular differences of {10+300 (Fig. 5B) discernibly increasing

with increasing flux.

Relationships with larger scale transport
The strong radial divergence observed in particular for short

trips (Fig. 5E) obviously requires cyclists to first travel to the city

centre before cycling outward. These patterns of convergence and

divergence must therefore be considered with regard to the use of

other modes of larger-scale transport to and from the city centre,

predominant among which is the underground railway, or ‘Tube.’

Correlating numbers of passengers entering and exiting the

Tube [32] with the distance of each Tube station from the global

centre of divergence revealed that this divergent centre also

represents the approximate centre of activity of the underground

railway system (Fig. 6A; and see [22]). Numbers of passengers

entering an exiting each Tube station were strongly correlated

with numbers of long journeys starting or ending near those

stations (R2~0:37; Fig. 6B), yet were only weakly related to

numbers of short journeys (R2~0:11).

Discussion

Public bicycles greatly facilitate the dense permeation of large

urban centres, and data from their usage offer unique opportu-

nities to examine the influences of cultural and geographical spaces

on human movement [21,28]. In this study, spatial and temporal

variations in numbers of rides had a greater influence on observed

mean distances than did variations in individual journey distances.

Because relationships between numbers and lengths of rides are

almost universally inverted, only one of them—in this case,

numbers of rides—will positively determine observed mean

distances at any point in space or time, while the other—

distances—will be negatively correlated as in Table 2, reflecting a

secondary, indirect influence. Accurate understanding of human

movement thus requires more than just aggregating individual

journeys while ignoring (causes of) spatial heterogeneity in journey

numbers. In fact, while temporal variations in journey numbers

and distances were pronounced (Fig. 3B), 84% of this variation

arose through changes in the relative scales of fixed spatial

distributions (Figs. 3C, D) [11], with spatial distributions of mean

travel distances primarily dependent upon the relative numbers of

different kinds of trips, rather than on actual distances of

individual trips.

Discernment of such apparently fixed spatial templates does not

in itself, however, enable any explanation of their origin, and

therefore nor any generalisation beyond the particular place of a

given study. Attaining such generalisation requires relating

variations in movement dynamics to the general properties of

underlying cultural and geographical features, demanding a means

of independently quantifying landscape structure in a general

sense. The primary contribution of the present work is in

providing precisely such a means, through constructing relative

flux fields that capture only those components of movement that

are non-randomly oriented towards, away from, or around

significant locations. These flux fields provide a direct quantifica-

tion of cultural or geographical significance that may be

independently related to aggregate variations in journey distances,

numbers, and directions.

Relationships between the flux fields and both short and long

journeys enable further elucidation of differences between these

two categories of journeys. The centralised field of divergence

(Fig. 4B) indicates an even stronger tendency than expected under

random orientation for travel to diverge from the centre, and very

likely reflects the use of other modes of transport, notably

including the Tube, to first converge towards this centre, before

using bicycles to diverge away. Divergent movement was most

apparent in the alignment of short journeys (Fig. 5E), the lengths of

which also decreased with decreasing divergence. Their numbers

were, however, most strongly related to total flux (CzD), and

were only weakly related to numbers of Tube passengers,

suggesting that these numbers are directly determined by overall

cultural or geographical significance, and that short trips represent

effectively random, diffusive movement [33] away from regions of

significance.

Relationships with long journeys were, in contrast, effectively

reversed, such that trip numbers were most strongly related to

divergence alone, while distances and orientations were deter-

mined by the combined fields of divergence and convergence

(Figs. 5C, F). Orientations were, however, related to flux gradients

only across the central, southern, and eastern portions of the city,

with distinctly different patterns in the north and far west. While

differences in the north can be readily interpreted through

reference to the general, centrally divergent pattern of all rides

(Fig. 5D), to reveal that long trips in this portion of the city differ
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by actually serving transport towards the divergent centre, long

rides in the far west appear to reflect transport away from the city

centre, yet in directions unrelated to divergence gradients.

However, the adjusted fields for both convergence and

divergence decreased below zero in moving west from the city’s

centre (Figs. 4A, B). Rather than negative divergence implying

convergence, it merely reflects a weaker tendency than expected

for movement to be divergent. The orientation of rides with flux

gradients thus ought to be generally weaker as relative flux fields

decrease towards and then further below zero. Accordingly, as

both convergence and divergence fields decreased towards the

west of the city, so did the collective alignment of long trips with

the gradients of these fields (Figs. 5C, F). (The aggregate

southward trajectory apparent in the latter figure reflects a non-

significant yet pervasive tendency of all trips to move an average of

41 m to the south.)

Extending beyond previous analyses of ‘polycentric’ urban

structure [22,34], these analyses effectively partition the city into

three regions, with long trips collectively oriented to cultural or

geographical features only within the largest portion comprising

60% of the city. Although orientations were not aligned to

structures identified through the flux analyses within the remaining

40% of the city (indicated by green and red arrows in Fig. 5F),

both numbers and distances nevertheless remained strongly

related (Table 2).

Rather than these two categories of journeys representing

regular movement to and from fixed ‘home’ points [3], and other

movement [4], or any distinction between work- and non-work-

related travel [28], the separation here of short from long journeys

provided an effective way to distinguish between two categorically

different kinds of journey. Shorter journeys serve diffusive

movement [33] generally directed away from locations of cultural

or geographical importance, while the relationship of their lengths

with divergence suggests a ‘social force’ [30] type of effect by

which greater divergent flux increases the lengths of these trips.

These trips are accordingly interpreted, and referred to from

hereon, as ‘diffusive’ trips. (Because of a continual supply of

cyclists, the cycling system is open and diffusion is not able here to

be diagnosed through its closed-system characteristic of distribu-

tional width increasing with the square root of time. Nevertheless,

diffusion in both open and closed systems results in vector

trajectories to be directed outward from points of supply, exactly

as observed here in Fig. 5E.)

The second category represents longer journeys that are not just

oriented away from centres of larger-scale divergence, but actively

engage in the cultural geography of the city through also being

Figure 5. Angular differences between movement vectors and flux gradients. (A–C) Angular differences between net movement vectors
adjusted for system structure and expected vectors following gradients of vector fields against which movement vectors were most strongly aligned,
plotted against respective field strengths for (A) all, (B) short, and (C) long trips. Red and green points in (A, C) identify outlying groups excluded from
calculations of mean angular differences. Anti-clockwise angular differences between observed and expected angles are positive; clockwise are
negative. Flux values on abscissa are in units of 1,000 ridden kilometres per day, as in Fig. 4. Red lines show mean (solid) + SD (dashed) angular
differences (excluding red and green circled points). (D–F) Net movement vectors of (D) all, (E) short, and (F) long trips, with colours in (D, F)
corresponding to outlying regions identified in (A, C). Blue lines trace contours of corresponding flux fields (Fig. 4, and abscissae of corresponding
panels A–C).
doi:10.1371/journal.pone.0037754.g005
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oriented towards geographically distinct regions of convergence.

These trips are also more directly connected to other modes of

transport, and are interpreted, and referred to from hereon, as

‘directed’ trips. The contrasting properties of the two types of

journeys are summarised in Table 3.

General Implications
This study reveals two categorically different kinds of journeys,

and the necessity of two distinct fields or ‘layers’ [35] to describe

any single space of cultural geography. The functions of each of

the two categories of journey were, however, only able to be

inferred through reference to both fields, and the necessity of

these two fields therefore can not merely reflect the distinction of

two categories of journey. Rather, any description or model of

spatial variations in movement dynamics is likely to require

multiple spatial fields because of the hierarchical structure of

transport systems. Movement within any urban area will be

sustained by collective convergence from beyond as enabled by

transport infrastructure at larger scales. Centres of divergence at

any given hierarchical level are thus likely to be centres of

convergence at higher levels (for a concrete illustration of

convergence within the London Tube, see Fig. 6 of [22]).

Subsequent movement will for many people simply diverge away

from such larger-scale convergent centres, while others will

continue to orient themselves toward places of collective

significance. These two modes of movement represent two

categorically distinct ways by which people engage with a given

landscape and transport system, and this study demonstrates that

the influence of spatial structure on movement can not be

represented through a single spatial map, but rather requires the

mapping of two distinct surfaces.

Moreover, individual humans generally move greater distances

with probabilities or frequencies of occurrence, p(d), often

decreasing according to a power law, p(d)*d{m, where mw0
[4,10,22,36]. However, there generally exists a minimal movement

distance below which observations diverge from such power laws

(commonly 5–10 km; [9,15]). Because shorter journeys occur

more frequently than longer journeys, studies examining the

power-law distributions of movement distances neither represent

nor reflect the majority of journeys. Power laws nevertheless often

prove ‘surprisingly’ accurate at describing distributions of move-

ment distances [15], suggesting they arise from a universal

dynamic of movement [37].

While the small size of London’s bicycle system prevents

journeys of sufficient length to fit a power-law distribution here

(Fig. 1A), the approximate agreement between the median trip

distance of 1.64 km and the distance of 1.3 km dividing diffusive

from directed journeys suggests that such a categorical distinction

may also underlie the commonly observed failure of travel

distances to adhere to power laws below a certain limit [9,15].

Although such departure from power-law behaviour might be

taken to suggest analogous departure from a ‘universal’ movement

dynamic [37], the shorter, diffusive journeys observed here were in

fact strongly regulated by cultural and geographical structure in

their orientations, distances, and numbers.

Assuming that a bicycle system of unlimited size would indeed

result in a power-law distribution of longer trips, then these results

suggest that, rather than power law distributions arising through

aggregation of individually diffusive—and therefore undirected—

movement, as previously observed [38], they arise through

directed orientation within heterogeneous environments [39].

However, modelling the processes generating such distributions

requires assuming spatial structure to be also distributed according

to a power law [39], effectively transferring the question of why

power laws describe distributions of movement distances to why

they describe distributions of spatial structure.

Repeating the present analyses over larger scales, and including

other modes of transport, would offer an ideal way to examine

whether or not spatial structure might be ultimately responsible for

observed adherence of movement distributions to power laws. This

work also provides an ideal basis from which to examine in more

detail the nature of collective orientation towards and away from

significant locations. In particular, such collective orientation

could arise because of a single, culturally shared map of a

geographical space (however approximate individual representa-

tions may be), or because individuals respond more to proximal

cues that themselves are mediated by a larger structure. Extending

from the present work to tease apart these different mechanisms of

orientation [40–42] is likely to offer profound advances in

understanding the influence of cultural geography on human

movement.

Figure 6. Relationships with underground rail system. (A)
Relationship between numbers of passengers per day entering or
leaving underground (‘Tube’) railway stations, and the distance of those
stations from the global centre of divergence at 0.1230W, 51.5170N.
Regression line shown in black (R2~0:46). The red dot indicates
passenger numbers at the station closest to the centre of divergence
(Holborn Station, 85,600 passengers per day), and the blue dot the
equivalent for convergence (Whitechapel Station, 34,800 passengers
per day). (B) Relationship between total daily numbers of long bike trips
(d§1:3 km) closest to each Tube station within the bicycle network
area, and corresponding numbers of Tube passengers. Regression line
shown again in black (R2~0:38), with coloured dots corresponding to
those in panel (A).
doi:10.1371/journal.pone.0037754.g006

Table 3. Diffusive versus directed movement.

Variable Diffusive Directed

Length short long

Flux*Length D CzD

*Orientation D CzD

*Number CzD D

Tube R2 0.11 0.37

Properties of two classes of journey as distinguished both by lengths either side
of 1.3 km, and by relationships between flux fields and journey lengths,
orientations, and numbers. The strongest relationships with flux fields are
indicated in each case, either as divergence alone (D), or total flux (CzD). All
relationships are positive, except the negative relationship between lengths of
directed trips and CzD (see Table 2). Correlations with numbers of Tube
passengers are also shown.
doi:10.1371/journal.pone.0037754.t003
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Materials and Methods

Data used
The data were obtained from the Guardian newspaper’s website

[43], and extended across the 97 days from the first day of

operation of the bicycle system on 30 July, until 3 November,

2010. Bicycles may only be taken between the hours of 06:00 and

23:59, with analyses extending across the 18 operational hours

each day. There were a total of 1,425,884 trips starting and ending

at different stations.

A number of trips started and ended at the same stations, likely

because the data extended from the first day of operation of the

bicycle system, and bicycles were taken for novelty alone, rather

than for any purposefully directed travel. Relative numbers of

these trips, however, decreased rapidly, from over 7% on the first

day to under 3% after one month to around 1.5% at the end of the

97 days covered here. These trips were therefore excluded from all

analyses, leaving the total of 1,425,884 trips starting and ending at

different stations.

Use of the bicycles is free for the first 30 minutes, after which

time users are charged according to the duration of a ride

(according to the costs detailed at http://www.tfl.gov.uk/

roadusers/cycling/14811.aspx). Although this financial incentive

to restrict rides to less than 30 minutes may have influenced the

observed distribution of ride durations (Fig. 7), a 30-minute trip

nevertheless corresponds to 4.09 km in the analogous distribution

of distances—well beyond the distance of 1.3 km that distin-

guished long from short trips. The primary results of this study are

thus unlikely to have been affected by the extent to which ride

durations may have been intentionally restricted to less than

30 minutes.

The number of stations was sufficient to ensure that all R2

statistics reported in the main text were entirely significant

(pƒ10{6), and significance values are therefore not explicitly

stated.

Spatial projection
Quantification of the spatial regulation of movement dynamics

will only be unbiased to the extent that spatial sampling is regular.

It was therefore necessary to project data from the spatially

irregular bicycle docking stations onto a spatially regular grid. This

projection combined the weighted effects of multiple stations at

each point, and was therefore a form of spatial smoothing. Such

smoothing is appropriate because any hypothesis that geography

affects movement dynamics must consider geography as a

continuum; in other words, must presume that movement near a

particular point of cultural or geographical importance will be

determined by distance to that point. This smoothing is equivalent

to presuming that movement dynamics at a particular point can be

estimated through combining independent (distance-weighted)

contributions from the stations surrounding that point.

The regular grid was constructed from 351 points, the same

number as of bicycle docking stations. The maps shown in the

main text (Figs. 1, 4) were constructed on a grid of 5,510 points

spaced at 0:0010 latitudinal and longitudinal intervals. The

351 points of the regular grid were spaced 5,510=351~15 units

of 0:0010 longitude apart, starting at a randomly selected grid box

in the south east, and progressing in a raster scan pattern first east

and then north.

Distance weighting and the short–long distinction
The Gaussian weighting function of w(d)~exp({d2=k2) with

k~2:74 km was the least-error fit to the frequency distribution of

trip distances beyond the median distance, as indicated in Fig. 1A.

The effect of different values of k on the relationships between the

divergence (D) and convergence (C) fields, and on both numbers

and lengths of short and long trips, are illustrated in Fig. 2B, for

which relationships with the single component (C or D) of greatest

influence (Table 2) was analysed. All relationships were maximally

strong, and of minimal error, very close to the value of

k~2:74 km.

The distinction between short and long trips was examined both

in terms of the ability to reconstruct spatial and temporal

variations in SD, and in the strength of relationship between trip

distances and the proportion of long trips (PL~nL=(nSznL)).
Values were compared as measured at each station, not as

projected onto the spatially regular grid. In all cases, minimal

errors were precisely coincident with maximal correlations, and all

were very close to the chosen value of d0~1:3 km (Fig. 2B).

Calculation of convergence and divergence
Divergence as a discrete measure is conventionally the radial

projection of net motion away from a given point. In contrast, the

analyses here separated the two components of movement towards

(convergence) and away from (divergence) each point. Further-

more, convergence and divergence fields were formed from

summing the total distances ridden in any direction—not just the

radial component—oriented respectively towards and away from

each point. Radial flux represents the degree to which cultural

geography promotes movement directly towards (for convergence)

or away from (for divergence) particular places, while the full flux

fields analysed here encapsulate both this sense of direct

movement, along with the degree to which places of cultural or

geographical significance are also places around which movement

circles in not necessarily direct patterns of convergence and

divergence. Equivalent relationships with radially projected

measures of convergence and divergence were qualitatively

identical, with merely weakened strengths of relationship, and

are presented in Fig. 2C and Table 4.

The calculation is illustrated in Fig. 8, for which the trip AB
�!

is

directed away from O, and therefore adds the distance dAB to the

divergence field at O, weighted by the distance to the nearer

station, A, according to exp({d2
OA=2:742). The trip BA

�!
adds the

same value of dAB
:exp({d2

OA=2:742) to the convergence field at

Figure 7. Frequency distribution of ride durations. Vertical line
indicates 30 minutes, below which duration bicycle rental is free.
doi:10.1371/journal.pone.0037754.g007
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O. The trip BC
�!

, which is intersected by the perpendicular to O,

adds dBD to the convergence field and dDC to the divergence field,

both weighted according to the distance to the closest point, which

is to the orthogonal intersection, dOD. The trip CB
�!

simply reverses

these contributions, such that dCD
:exp({d2

OD=2:742) is added to

the convergence field, and dDB
:exp({d2

OD=2:742) is added to

divergence.

Values of radial flux are such that the trip AB
�!

contributes the

component dAEvdAB, again weighted by distance to the nearest

point, A. Thus, AB
�!

adds dAE
:exp({d2

OA=2:742) to the divergence

field at O, while BA
�!

adds the same value to the convergence field.

The trips BC
�!

and CB
�!

do not contribute to radial divergence.

Simulation of neutral values of convergence and
divergence

Convergence and divergence calculated as described above

depend both on absolute numbers of trips and on directions. In the

absence of any spatial structure, travel would be expected to be

randomly oriented, in which case the flux fields would scale

directly with numbers of rides alone. The contribution of such

non-directed travel to the observed flux fields was estimated

through simulating a set of rides with the same statistical properties

as the observed rides, yet randomly oriented in space. Subtracting

these fields from the observed fields according to Eq. 3 produces

measures of convergence and divergence that exclusively reflect

active orientation towards, away from, or around points of cultural

or geographic significance.

Flux fields expected with random orientation were calculated

from a simulated set of 100 times the 1,425,884 observed trips

trips, generated according to the same frequency distribution of

distances (Fig. 1A) by randomly selecting a starting station along

with a trip distance from the observed distribution. The end

station was then chosen as the station closest in distance from the

random start station to the selected distance. Because this

procedure generates trips statistically likely to be directed toward

the centre of the city where there are more stations, one half of all

simulated trips were randomly reversed in direction. After dividing

by 100, these neutral fields were subtracted from the observed

convergence and divergence fields, to generate the anomaly fields

presented in the main text (and in Figs. S1 and S2).

Supporting Information – Hourly Flux Fields
To illustrate the utility of the convergence and divergence

analyses in capturing the ‘daily pulse’ [28] of the city, hourly

values of each field are shown in Figures S1 and S2, respectively.

Supporting Information

Figure S1 Hourly patterns of convergence. Hour is

indicated in lower right corner of each panel, with red lines

delineating positive from negative net flux (that is, anomalies

above neutral values, on scale of hundreds of ridden kilometers per

hour). Longitudinal and latitudinal scales are the same as for all

maps in main text, with colour scale shown on right in units of

hundreds of cycled kilometres per hour.

(EPS)

Figure S2 Hourly patterns of divergence. Colour scale and

all other aspects are precisely the same as for convergence in Fig.

S1, and may be directly compared.

(EPS)
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