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Abstract. In the paper we revisit the problem of fitting logistic regres-
sion to positive and unlabelled data. There are two key contributions.
First, a new light is shed on the properties of frequently used naive
method (in which unlabelled examples are treated as negative). In par-
ticular we show that naive method is related to incorrect specification
of the logistic model and consequently the parameters in naive method
are shrunk towards zero. An interesting relationship between shrinkage
parameter and label frequency is established. Second, we introduce a
novel method of fitting logistic model based on simultaneous estimation
of vector of coefficients and label frequency. Importantly, the proposed
method does not require prior estimation, which is a major obstacle in
positive unlabelled learning. The method is superior in predicting pos-
terior probability to both naive method and weighted likelihood method
for several benchmark data sets. Moreover, it yields consistently better
estimator of label frequency than other two known methods. We also
introduce simple but powerful representation of positive and unlabelled
data under Selected Completely at Random assumption which yields
straightforwardly most properties of such model.

Keywords: Positive unlabelled learning · Logistic regression ·
Empirical risk minimization · Misspecification

1 Introduction

Learning from positive and unlabelled data (PU learning) has attracted much
interest within the machine learning literature as this type of data naturally arises
in many applications (see e.g. [1]). In the case of PU data, we have an access to pos-
itive examples and unlabeled examples. Unlabeled examples can be either positive
or negative. In this setting the true class label Y ∈ {0, 1} is not observed directly.
We only observe surrogate variable S ∈ {0, 1}, which indicates whether an exam-
ple is labeled (and thus positive; S = 1) or unlabeled (S = 0). PU problem natu-
rally occurs in under-reporting [2] which frequently happens in survey data, and it
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refers to situation when some respondents fail to the answer a question truthfully.
For example, imagine that we are interested in predicting an occurrence of some
disease (Y = 1 denotes presence of disease and Y = 0 its absence) using some fea-
ture vector X. In some cases we only have an access to self-reported data [3], i.e.
respondents answer to the question concerning the occurrence of the disease. Some
of them admit to the disease truthfully (S = 1 =⇒ Y = 1) and the other group
reports no disease (S = 0). The second group consists of respondents who suffer
from disease but do not report it (Y = 1, S = 0) and those who really do not have
a disease (Y = 0, S = 0). Under-reporting occurs due to a perceived social stigma
concerning e.g. alcoholism, HIV disease or socially dangerous behaviours such as
talking on the phone frequently while driving. PU data occur frequently in text
classification problems [4–6]. When classifying user’s web page preferences, some
pages can be bookmarked as positive (S = 1) whereas all other pages are treated
as unlabelled (S = 0). Among unlabelled pages, one can find pages that users visit
(Y = 1, S = 0) as well as those which are avoided by users (Y = 0, S = 0). The
third important example is a problem of disease gene identification which aims to
find which genes from the human genome are causative for diseases [7,8]. In this
case all the known disease genes are positive examples (S = 1), while all other can-
didates, generated by traditional linkage analysis, are unlabelled (S = 0). Several
approaches exist to learn with PU data. A simplest approach is to treat S as a
class label (this approach is called naive method or non-traditional classification)
[9]. To organize terminology, learning with true class label Y will be called ora-
cle method. Although this approach cannot be used in practice, it may serve as a
benchmark method with which all considered methods are compared.

In this paper we focus on logistic regression. Despite its popularity, there is a
lack of thorough analysis of different learning methods based on logistic regres-
sion for PU data. We present the following novel contributions. First, we analyse
theoretically the naive method and its relationship with oracle method. We show
that naive method is related to incorrect specification of the logistic model and
we establish the connection between risk minimizers corresponding to naive and
oracle methods, for certain relatively large class of distributions. Moreover, we
show that parameters in naive method are shrunk towards zero and the amount
of shrinkage depends on label frequency c = P (S = 1|Y = 1). Secondly, we pro-
pose an intuitive method of parameter estimation in which we simultaneously
estimate parameter vector and label frequency c (called joint method hereafter).
The method does not require prior estimation which is a difficult task in PU
learning [10,11]. Finally, we compare empirically the proposed method with two
existing methods (naive method and the method based on optimizing weighted
empirical risk, called briefly weighted method) with respect to estimation errors.

Finally, the popular taxonomy used in PU learning [1] differentiates between
three categories of methods. The first group are postprocessing methods which
first use naive method and then modify output probabilities using label frequency
[9]. The second group are preprocessing methods that weigh the examples using
label frequency [12–14]. We refer to [1] (Sect. 5.3.2) for a description of gen-
eral empirical risk minimization framework in which the weights of observations
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depending on label frequency c, for any loss function are determined. The last
group are methods incorporating label frequency into learning algorithms. A rep-
resentative algorithm from this group is POSC4.5 [15], which is PU tree learning
method. The three methods considered in this paper (naive, weighted and joint
method) represent the above three categories, respectively.

This paper is organized as follows. In Sect. 2, we state the problem and discuss
its variants and assumptions. In Sect. 3, we analyse three learning methods based
on logistic regression in detail. Section 4 discusses the relationship between naive
and oracle methods. We report the results of experiments in Sect. 5 and conclude
the paper in Sect. 6. Technical details are stated in Sect. 7. Some additional
experiments are described in Supplement1.

2 Assumptions and Useful Representation for PU Data

In this work we consider single training data (STD) scenario, which can be
described as follows. Let X be feature vector, Y ∈ {0, 1} be a true class label and
S ∈ {0, 1} an indicator of whether an example is labelled (S = 1) or not (S =
0). We assume that there is some unknown distribution P (Y,X, S) such that
(yi, xi, si), i = 1, . . . , n is iid sample drawn from it and data (xi, si), i = 1, . . . , n,
is observed. Thus, instead of a sample (xi, yi) which corresponds to classical
classification task, we observe only sample (xi, si), where si depends on (xi, yi).
Only positive examples (Y = 1) can be labelled, i.e. P (S = 1|X,Y = 0) = 0. The
true class label is observed only partially, i.e. when S = 1 we know that Y = 1,
but when S = 0, then Y can be either 1 or 0. A commonly used assumption is
SCAR (Selected Completely At Random) assumption which states that labelled
examples are selected randomly from a set of positives examples, independently
from X, i.e.

P (S = 1|Y = 1,X) = P (S = 1|Y = 1).

Note that this is equivalent to X and S being independent given Y (denoted
X ⊥ S|Y ) as P (S = 1|Y = 0,X) = P (S = 1|Y = 0) = 0. Parameter c := P (S =
1|Y = 1) is called label frequency and plays an important role in PU learning.
In the paper we introduce a useful representation of variable (X,S) under SCAR
assumption. Namely, we show that S can be represented as

S = Y · ε, where ε ⊥ (X,Y ) and ε ∼ Bern(1, p), (1)

for a certain 0 < p < 1 and Bern(1, p) stands for Bernoulli distribution. Indeed,
we have S = Y ε ⊥ X given Y , as ε ⊥ (X,Y ) implies that ε ⊥ X given Y .
Moreover,

P (S = 1|Y = 1) = P (Y ε = 1|Y = 1) = P (ε = 1) = p.

Thus probability of success P (ε = 1) coincides with c. Under SCAR assumption
we have

P (Y = 1|X) = c−1P (S = 1|X), (2)
1 https://github.com/teisseyrep/PUlogistic.

https://github.com/teisseyrep/PUlogistic
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P (Y = 1|S = 0,X) =
1 − c

c

P (S = 1|X)
P (S = 0|X)

(3)

[9] and
P (X = x|Y = 1) = P (X = x|S = 1). (4)

[2]. Properties (2)–(4) are easily derivable when (1) is applied (see Sect. 7).

We also note that the assumed STD scenario should be distinguished from
case-control scenario when two independent samples are observed: labeled sample
consisting of independent observations drawn from distribution of X given Y = 1
and the second drawn from distribution of X. This is carefully discussed in [1].
Both PU scenarios should be also distinguished from semi-supervised scenario
when besides fully observable sample from distribution of (X,Y ) we also have at
our disposal sample from distribution of X [16] or, in extreme case, we have full
knowledge of distribution of X, see [17] and references therein. One of the main
goals of PU learning is to estimate the posterior probability f(x) := P (Y =
1|X = x). The problem is discussed in the following sections.

3 Logistic Regression for PU Data

In this section we present three different methods of estimating f(x) := P (Y =
1|X = x) using logistic loss. When data is fully observed the natural way to
learn a model is to consider risk for logistic loss

R(b) = −EX,Y [Y log(σ(XT b)) + (1 − Y ) log(1 − σ(XT b))], (5)

where σ(s) = 1/(1 + exp(−s)) and minimize its empirical version. This will be
called oracle method. Note that using logistic loss function in the definition of
R(b) above corresponds to fitting logistic regression using Maximum Likelihood
(ML) method. Obviously, for PU data, this approach is not feasible as we do
not observe Y and inferential procedures have to be based on (S,X). The sim-
plest approach (called naive estimation or non-traditional estimation) is thus to
consider risk

R1(b) = −EX,S [S log(σ(XT b)) + (1 − S) log(1 − σ(XT b))] (6)

and the corresponding empirical risk

R̂1(b) = − 1
n

n∑

i=1

[si log(σ(xT
i b)) + (1 − si) log(1 − σ(xT

i b))],

which can be directly optimized. In Sect. 4 we study the relationship between
minimizers of R(b) and R1(b)

b∗ = arg min
b

R(b), b∗
1 = arg min

b
R1(b).
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It turns out that for certain, relatively large, class of distributions of X, b∗
1 = ηb∗,

for some η ∈ R (i.e. b∗
1 and b∗ are collinear). Moreover, when predictors X

are normal and when (Y,X) corresponds to logistic model, we establish the
relationship between η and label frequency c which shows that η < 1 and
thus naive approach leads to shrinking of vector b∗. To estimate the poste-
rior f(x) = P (Y = 1|X = x) using naive estimation, we perform a two-
step procedure, i.e. we first estimate b̂naive = arg minb R̂1(b) and then let
f̂naive(x) := c−1σ(xT b̂naive), where unknown c has to be estimated using some
external procedure. Note that even when (Y,X) corresponds to logistic regres-
sion model, b∗ and whence posterior probability is not consistently estimated by
naive method.

The second approach is based on weighted empirical risk minimization. As
mentioned before, the empirical counterpart of risk R(b) cannot be directly opti-
mized as we do not observe Y . However it can be shown [1] that

R(b) = −P (S = 1)EX|S=1

[
1
c

log σ(XT b) +
(

1 − 1
c

)
log(1 − σ(XT b)))

]

+P (S = 0)EX|S=0 log(1 − σ(XT b)).

The risk above is approximated by

R̂(b) = − 1
n

∑

i:si=1

[
1
c

log σ(xT
i b) +

(
1 − 1

c

)
log(1 − σ(xT

i b))
]

+
1
n

∑

i:si=0

log(1 − σ(xT
i b)).

This means that all unlabelled examples are assigned weight 1, whereas each
labelled example is treated as a combination of positive example with weight 1/c
and negative example with weight (1−1/c). The posterior estimator is defined as
f̂weighted(x) = σ(xT b̂weighted), where b̂weighted = arg minb R̂(b). The above idea of
weighted empirical risk minimization was used in case-control scenario for which
the above formulas have slightly different forms, see [12,13].

In the paper we propose a novel, intuitive approach, called joint method
(name refers to joint estimation of b and c). In this method we avail ourselves
of an important feature of logistic regression, namely that posterior probability
is directly parametrized. This in turn allows to directly plug in the equation (2)
into the risk function

R2(b, c) = −EX,S [S log(cσ(XT b)) + (1 − S) log(1 − cσ(XT b))].

The empirical counterpart of the above risk is

R̂2(b, c) = − 1
n

n∑

i=1

[si log(cσ(xT
i b)) + (1 − si) log(1 − cσ(xT

i b))].

The empirical risk R̂2(b, c) can be optimized with respect to b if c is assumed to
be known or can be optimized simultaneously with respect to both b and c.
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In the latter case the posterior estimator is f̂joint(x) := σ(xT b̂joint) where
(b̂joint, ĉjoint) = arg minb,c R̂2(b, c). Note that when conditional distribution of
Y given X is governed by logistic model i.e. P (Y = 1|X = x) = σ(βT x), for
some unknown vector β, then in view of (2) P (S = 1|X = x) = cσ(βT x) and
R̂2(b, c) is log-likelihood for observed sample (xi, si). Whence under regularity
conditions, maximisation of R̂2(b, c) yields consistent estimator of (β, c) in view
of known results in consistency of maximum likelihood method. To optimize
function R̂2 we use BFGS algorithm, which requires the knowledge of functional
form of gradient. The partial derivatives of R̂2 are given by

∂R̂2(b, c)
∂b

= − 1
n

n∑

i=1

xiσ(xT
i b)(1 − σ(xT

i b))
[

si − cσ(xT
i b)

σ(xT
i b)(1 − cσ(xT

i b))

]
,

∂R̂2(b, c)
∂c

= − 1
n

n∑

i=1

[
si

c
− (1 − si)σ(xT

i b)
1 − cσ(xT

i b)

]
.

For c = 1, the first equation above reduces to well-known formula for gradient of
the maximum likelihood function for standard logistic regression. In general we
observe quick convergence of BFGS algorithm. The proposed method is described
by the following scheme.

Algorithm 1. Joint method for posterior estimation
Input : Observed data (xi, si), i = 1, . . . , n; new instance x
(b̂joint, ĉjoint) = arg minb,c − 1

n

∑n
i=1[si log(cσ(xT

i b)) + (1 − si) log(1 − cσ(xT
i b))]

Compute f̂joint(x) := σ(xT b̂joint)
Output : f̂joint(x)

Finally, we note that the joint method above is loosely related to non-
linear regression fit in dose-response analysis when generalized logistic curve is
fitted [18].

4 Naive Method as an Incorrect Specification of Logistic
Regression

In this Section we show that naive method is related to incorrect specification of
the logistic model and that the corresponding parameter vector will be shrunk
towards zero for relatively large class of distributions of X. Moreover, we estab-
lish the relationship between the amount of shrinkage and label frequency.

Assume for simplicity of exposition that components of X are non-constant
random variables (in the case when one of predictors is a dummy variable which
allows for the intercept in the model, collinearity in (9) corresponds to vector of
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predictors with dummy variable omitted) and assume that regression function
of Y given X has the following form

P (Y = 1|X = x) = q(βT X), (7)

for a certain response function q taking its values in (0, 1) and a certain β ∈ Rp.
We note that when oracle method (5) is correctly specified, i.e. q(·) = σ(·),
then β = b∗ (cf [19]). Here we consider more general situation in which we may
have q(·) �= σ(·). Under SCAR assumption, P (S = 1|X = x) = cq(βT X) and
thus when cq(·) �= σ(·) then maximising R̂1(b) corresponds to fitting misspecified
logistic model to (X,S). Importantly, this model is misspecified even if the oracle
model is correctly specified. Observe that in this case shrinking of parameters
is intuitive as they have to move towards 0 to account for diminished (c < 1)
aposteriori probability. We explain in the following why misspecified fit, which
occurs frequently in practice may still lead to reasonable results. Assume namely
that distribution of X satisfies linear regression condition (LRC)

E(X|βT X = x) = wx + w0 (8)

for a certain w0, w ∈ Rp. Note that (8) has to be satisfied for a true β only. LRC
is fulfilled (for all β) by normal distribution, and more generally, by a larger
class of elliptically contoured distributions (multivariate t-Student distribution
is a representative example). Then it follows (see e.g. [20])

b∗
1 = ηβ (9)

and η �= 0 provided Cov(Y,X) �= 0. In this case true vector β and its projection
on a logistic model are collinear which partly explains why logistic classification
works even when data does not follow logistic model. When oracle method (5)
is correctly specified, i.e. q(·) = σ(·), then (9) can be written as

b∗
1 = ηb∗ = ηβ, (10)

i.e. risk minimizers corresponding to naive and oracle methods are collinear.
In the following we investigate the relationship between label frequency c and
collinearity factor η. Intuition suggests that small c should result in shrinking of
estimators towards zero. First, we have a general formula (see [19] for derivation)
describing the relationship between c and η when (7) holds

1
c

=
EX [σ(XT β)Xj ]
EX [σ(XT b∗

1)Xj ]
=

EX [σ(XT β)Xj ]
EX [σ(XT ηβ)Xj ]

,

for any j, where Xj is j-th coordinate of X = (X1, . . . , Xp). Unfortunately,
the above formula does not yield simple relationship between c and η. Some
additional assumptions are needed to find more revealing one. In the case when
X has normal distribution N(0, Σ) it follows from [20] together with (2) that
the following equality holds

Eσ′(βT X)
Eσ′(ηβT X)

=
η

c
, (11)
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where σ′(s) denotes derivative of σ(s) wrt to s. This is easily seen to be a
corollary of Stein’s lemma stating that Cov(h(Z1), Z2) = Cov(Z1, Z2)Eh′(Z1)
for bivariate normal (Z1, Z2). Equation (11) can be used to find upper and lower
bounds for η. Namely, we prove the following Theorem.

Theorem 1. Assume that X follows normal distribution N(0, Σ) and that lin-
ear regression condition holds (8). Then

4cEσ′(βT X) ≤ η ≤ c
Eσ′(βT X)
Eσ′(cβT X)

≤ c. (12)

Note that RHS inequality in (1) yields the lower bound on the amount of shrink-
age of true vector β∗ whereas LHS gives a lower bound on this amount.

Proof. Let Z = βT X and note that Z has normal distribution N(0, a2) with
a2 = βT Σβ. It follows from the fact that σ′(s) = σ(s)(1−σ(s)) is nonincreasing
for s > 0 that function h(λ) = Eσ′(λZ) is non-increasing. This justifies the last
equality on the right as c ≤ 1. Define g(λ) = h(1) − (λ/c)h(λ) and note that
g(0) = h(1) > 0, g(c) ≤ 0 and g is continuous. Thus for a certain λ0 ∈ [0, c] it
holds that g(λ0) = 0 and it follows from (11) and uniqueness of projection that
η = λ0. In order to prove the RHS inequality it is enough to prove that g(λ)
is convex as then λ0 ≤ λ∗, where λ∗ is a point at which a line h(1) − λh(c)/c
joining points (0, g(0)) and (c, g(c)) crosses x-axis. As λ∗ = (h(1)/h(c))c the
inequality follows. Convexity of g follows from concavity of λh(λ) which is proved
in Supplement. In order to prove the left inequality it is enough to observe that
σ′(x) ≤ 1/4 and use (11) again.

Note for c → 0 the ratio of the lower and upper bound tends to 1 as
Eσ′(cβT X) → 1/4. To illustrate the above theoretical result we performed sim-
ulation experiment in which we artificially generated a sample of size n = 106

in such a way that X followed 3-dimensional standard normal distribution and
Y was generated from (7) with q(·) = σ(·), with known β. Then Z = βT X
has N(0, ||β||2) distribution and the bounds in (12) depend only on c and
||β||. Figure 1 shows how collinearity parameter η and the corresponding bounds
depend on c, for three different norms ||β||. Note that the bounds become tighter
for smaller ||β|| and smaller c. Secondly, for small c, the lower bound is nearly
optimal.

5 Experiments

5.1 Datasets

Weuse 9 popular benchmark datasets fromUCI repository2. To createPUdatasets
from the completely labelled datasets, the positive examples are selected to be
labelled with label frequencies c = 0.1, 0.2, . . . , 0.9. For each label frequency c

2 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Fig. 1. Shrinkage parameter η wrt c for simulated dataset for n = 106.

we generated 100 PU datasets labelling randomly elements having Y = 1 with
probability c and then averaged the results over 100 repetitions.

In addition, we consider one artificial dataset having n observations, gen-
erated as follows. Feature vector X was drawn from 3-dimensional standard
normal distribution and Y was simulated from (7) with q(·) = σ(·), with known
β = (1, 1, 1). This corresponds to correct specification of the oracle method. The
observed variable S was labelled as 1 for elements having Y = 1 with proba-
bility c. Note however, that in view of discussion in Sect. 4, the naive model is
incorrectly specified. Moreover, recall that in this case β = b∗ = arg minR(b).
The main advantage of using artificial data is that β (and thus also b∗) is known
and thus we can analyse the estimation error for the considered methods. For
artificial dataset, we experimented with different values of c and n.

5.2 Methods and Evaluation Measures

The aim of the experiments is to compare the three methods of learning param-
eters in logistic regression: naive, weighted and joint. Our implementation of
the discussed methods is available at https://github.com/teisseyrep/PUlogistic.
Our main goal is to investigate how the considered methods relate to the oracle
method, corresponding to idealized situation in which we have an access to Y . In
view of this, as an evaluation measure we use approximation error for posterior
defined as AE = n−1

∑n
i=1 |f̂oracle(xi)−f̂method(xi)|, where ‘method’ corresponds

to one of the considered methods (naive, weighted or joint), i.e. f̂naive(x) :=
c−1σ(xT b̂naive), f̂weighted(xi) := σ(xT

i b̂weighted) or f̂joint(xi) := σ(xT
i b̂joint). The

oracle classifier is defined as f̂oracle(xi) := σ(xT
i b̂oracle), where b̂oracle is mini-

mizer of empirical version of (5). Estimation error for posterior, defined above,
measures how accurate we can approximate the oracle classifier when using S
instead of true class label Y . We consider two scenarios. In the first one we
assume that c is known and we only estimate parameters corresponding to vec-
tor X. This setting corresponds to known prior probability P (Y = 1) (c can be
estimated accurately when prior is known via equation c = P (S = 1)/P (Y = 1)
by plugging-in corresponding fraction for P (S = 1)). In the second more realistic
scenario, c is unknown and is estimated from data. For joint method we jointly

https://github.com/teisseyrep/PUlogistic
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minimize empirical risk R̂2(b, c) with respect to b and c. For two remaining meth-
ods (naive and weighted) we use external methods of estimation of c. We employ
two methods; the first one was proposed by Elkan and Noto [9] (called EN) is
based on averaging predictions of naive classifier over labeled examples for val-
idation data. The second method, described in recent paper [11], is based on
optimizing a lower bound of c via top-down decision tree induction (this method
will be called TI). In order to analyse prediction performance of the proposed
methods, we calculate AUC (Area Under ROC curve) of classifiers based on
f̂method on independent test set.

For artificial datasets, the true parameter β is known so we can analyse mean
estimation error defined as EE = p−1

∑p
j=1 |b̂j −βj |, where b̂ corresponds to one

of the considered methods. Moreover, we consider an angle between β and b̂.
In view of property (9) the angle should be small, for sufficiently large sample
size. Finally, let us note, that some real datasets may contain large number of
features, so to make the estimation procedures more stable, we first performed
feature selection. We used filter method recommended in [21] based on mutual
information and select top t = 3, 5, 10 features for each dataset (we present
the results for t = 5, the results for other t are similar and are presented in
Supplement). This step is common for all considered methods.

5.3 Results

First, we analyse how the approximation errors for posterior depend on c, for
real datasets (Fig. 2). We show the results for unknown c, the results for known
c are presented in Supplement https://github.com/teisseyrep/PUlogistic. For
unknown c, estimation of label frequency plays an important role. We observe
that the performance curves vary depending on the method used. For most
datasets, TI method outperforms EN, which is consistent with experiments
described in [11], an exception is spambase for which TI works poorly. Impor-
tantly, joint method is a clear winner for most of the datasets, what suggests that
simultaneous estimation of c and b is more effective than performing these two
steps separately. Its superiority is frequently quite dramatic (see diabetes, credit-
g and spambase). For most datasets, we observe the deterioration in posterior
approximation when c becomes smaller. This is concordant with expectations,
as for small c, the level of noise in observed variable S increases (cf Eq. (1)) and
thus the gap between oracle and naive methods increases.

Tables 1 and 2 show values of AUC, for cases of known and unknown c,
respectively. The results are averaged over 100 repetitions. In each repetition,
we randomly chose c ∈ (0, 1), then generate PU dataset and finally split it into
training and testing subsets. For naive and weighted methods, c is estimated
using TI algorithm (the performance for EN algorithm is generally worse and
thus not presented in the Table). The last row contains averaged ranks, the larger
the rank for AUC the better. The best method from three (naive, weighted and
joint method) is in bold. As expected, the oracle method is an overall winner.
The differences between the remaining methods are not very pronounced. Sur-
prisingly, naive and joint methods work in most cases on par, whereas weighted

https://github.com/teisseyrep/PUlogistic
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Table 1. AUC, known c

Oracle Joint Naive Weighted

Breastc 0.993 0.981 0.987 0.974

Diabetes 0.821 0.805 0.808 0.805

Heart-c 0.879 0.847 0.849 0.850

Credit-a 0.914 0.875 0.899 0.891

Credit-g 0.740 0.726 0.727 0.725

Adult 0.874 0.874 0.869 0.874

Vote 0.973 0.974 0.968 0.970

Wdbc 0.987 0.981 0.971 0.970

Spambase 0.911 0.914 0.892 0.899

Rank 3.8 2.4 2.1 1.7

Table 2. AUC (est. c)

Oracle Joint Naive Weighted

0.993 0.983 0.988 0.977

0.821 0.798 0.805 0.796

0.879 0.843 0.850 0.853

0.914 0.889 0.899 0.897

0.740 0.724 0.730 0.718

0.874 0.872 0.869 0.863

0.973 0.972 0.968 0.977

0.987 0.981 0.969 0.973

0.911 0.913 0.893 0.856

3.8 2.2 2.2 1.8

Table 3. |c − ĉ|

EN TI Joint

0.060 0.064 0.030

0.234 0.169 0.071

0.138 0.121 0.043

0.125 0.130 0.317

0.287 0.261 0.143

0.244 0.214 0.059

0.044 0.088 0.024

0.099 0.068 0.033

0.189 0.267 0.033
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Fig. 2. Approximation error for posterior wrt to c, for estimated c.
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Fig. 3. Mean absolute error p−1 ∑p
j=1 |b̂j−β| wrt to sample size n, where b̂ corresponds

to one of the methods: naive, weighted and joint method.
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Fig. 4. Degree of angle between β and b̂ wrt to sample size n, where b̂ corresponds to
one of the methods: naive, weighted and joint.

method performs slightly worse. The advantage of joint method is the most
pronounced for spambase, for which we also observed superior performance of
the joint method wrt approximation error (Fig. 2, bottom panel). Finally, joint
method turns out to be effective for estimating c (Table 3)- the estimation errors
for joint method are smaller than for TI and EN, for almost all datasets.

Figures 3 and 4 show results for artificial data, for c = 0.3, 0.6, 0.9, respec-
tively. Mean estimation error converges to zero with sample size for weighted
and joint methods (Fig. 3) and the convergence for joint method is faster. As
expected, the estimation error for naive method is much larger than for joint and
weighted methods, which is due to incorrect specification of the logistic regres-
sion. Note that weighted and joint methods account for wrong specification and
therefore both methods perform better. Next we analysed an angle between true
β (or equivalently b∗) and b̂. Although the naive method does not recover the
true signal β, it is able to consistently estimate the direction of β. Indeed the
angle for naive method converges to zero with sample size (Fig. 4), which is in
line with property (9). Interestingly the speed of converge for weighted method is
nearly the same as for naive method, whereas the convergence for joint method
is a bit faster.
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6 Conclusions

We analysed three different approaches to fitting logistic regression model for PU
data. We study theoretically the naive method. Although it does not estimate
the true signal β consistently, it is able to consistently estimate the direction of
β. This property can be particularly useful in the context of feature selection,
where consistent estimation of the direction allows to discover the true signifi-
cant features - this issue is left for future research. We have shown that under
mild assumptions, risk minimizers corresponding to naive and oracle methods are
collinear and the collinearity factor η is related to label frequency c. Moreover,
we proposed novel method that allows to estimate parameter vector and label
frequency c simultaneously. The proposed joint method achieves the smallest
approximation error, which indicates that it is the closest to the oracle method
among considered methods. Secondly, the joint method, unlike weighted and
naive methods, does not require using external procedures to estimate c. Impor-
tantly, it outperforms the two existing methods (EN and TI) wrt to estimation
error for c. In view of above, joint method can be recommended in practice,
especially for estimating posterior probability and c; the differences in AUC for
classifiers between the considered methods are not very pronounced.

7 Proofs

Equation (2) follows from

P (S = 1|X = x) = P (Y ε = 1|X = x) = P (Y = 1, ε = 1|X = x)
= P (Y = 1|X = x)P (ε = 1|X = x) = P (Y = 1|X = x)P (ε = 1)
= P (Y = 1|X = x)P (S = 1|Y = 1).

The third equality follows from conditional independence of Y and ε given X.
To prove (3), note that P (Y = 1|S = 0,X) can be written as

P (Y = 1, ε = 0,X)
P (S = 0,X)

=
P (ε = 0)
P (ε = 1)

P (Y = 1,X)P (ε = 1)
P (S = 0,X)

=
P (ε = 0)
P (ε = 1)

P (Y = 1, ε = 1,X)
P (S = 0,X)

1 − c

c

P (S = 1,X)
P (S = 0,X)

=
1 − c

c

P (S = 1|X)
P (S = 0|X)

,

where the second to last equality follows from P (ε = 0)/P (ε = 1) = (1 − c)/c.
To prove (4) we write

P (X = x|S = 1) = P (X = x|Y = 1, ε = 1) = P (X = x|Y = 1).

The third equality follows from conditional independence of X and ε given Y .
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