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Clinical data classification 
with noisy intermediate scale 
quantum computers
S. Moradi1, C. Brandner1, C. Spielvogel2, D. Krajnc1, S. Hillmich3, R. Wille3,4, W. Drexler1 & 
L. Papp1*

Quantum machine learning has experienced significant progress in both software and hardware 
development in the recent years and has emerged as an applicable area of near-term quantum 
computers. In this work, we investigate the feasibility of utilizing quantum machine learning (QML) 
on real clinical datasets. We propose two QML algorithms for data classification on IBM quantum 
hardware: a quantum distance classifier (qDS) and a simplified quantum-kernel support vector 
machine (sqKSVM). We utilize these different methods using the linear time quantum data encoding 
technique ( log

2
N ) for embedding classical data into quantum states and estimating the inner product 

on the 15-qubit IBMQ Melbourne quantum computer. We match the predictive performance of our 
QML approaches with prior QML methods and with their classical counterpart algorithms for three 
open-access clinical datasets. Our results imply that the qDS in small sample and feature count 
datasets outperforms kernel-based methods. In contrast, quantum kernel approaches outperform 
qDS in high sample and feature count datasets. We demonstrate that the log

2
N encoding increases 

predictive performance with up to + 2% area under the receiver operator characteristics curve across all 
quantum machine learning approaches, thus, making it ideal for machine learning tasks executed in 
Noisy Intermediate Scale Quantum computers.

Quantum technologies promise to revolutionize the future of information and computation using quantum 
devices to process massive amounts of data. To date, considerable progress has been made from both software and 
hardware points of view. Many researches are underway to simplify quantum  algorithms1–8 in order to implement 
them on existing, so-called Noisy Intermediate Scale Quantum (NISQ)  computers9. As a result, small quantum 
devices based on photons, superconductors, or trapped ions are capable of efficiently running scalable quantum 
 algorithms6,7,10. Quantum Machine Learning (QML) is a particularly interesting approach, as it is suited for exist-
ing NISQ  architectures11–15. While conventional machine learning is generally applied to process large amounts of 
data, many research fields cannot provide such large datasets. One example is medical research, where collecting 
cohorts that represent certain characteristics of diseases routinely results in small  datasets16. NISQ devices can 
efficiently execute algorithms with shallow depth and a low number of  qubits9. Therefore, it appears logical to 
exploit the potential of QML executed on NISQ devices incorporating clinical datasets.

However, the execution of QML algorithms in the form of practical quantum gate operations is non-trivial. 
First, the classical data needs to be encoded into quantum states. For this purpose, prior QML algorithms assume 
that a quantum random access memory (QRAM) device for storing the data is  present17. Nevertheless, to date, 
such practical devices are not available. Second, since the output of quantum algorithms are obviously quantum 
states, the efficient classical bits of information must be extracted through quantum measurements. To date, vari-
ous classical data encoding approaches have been  proposed6,7,18–21. In particular, encoding classical numerical 
features into quantum states has the advantage to utilize log2N number of qubits (a.k.a. linear time encoding) in 
relation to N number of input  features18–21. This approach allows to utilize NISQ devices with a small number of 
qubits and to minimize quantum noise, while at the same time maintaining quantum  speedup14. In contrast, to 
date, this approach in combination with quantum machine learning appears to be underrepresented.

In light of the above proceedings, we hypothesize that clinically-relevant quantum prediction models can be 
built on NISQ devices employing the log2N encoding, having prediction performances comparable to classic 
ML approaches.
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In our work, we propose two quantum machine learning approaches that rely on the log2N  encoding 
approach, thus, not requiring the presence of a fault-tolerant quantum circuit for implementation of quantum 
 RAM17. Previously proposed techniques for estimation of the inner product with Hadamard Test and Swap Test 
assume that there is a quantum RAM or a quantum circuit that store both index of data and their  values22,23. To 
construct a quantum database (QDB) from classical data, (n+m+ 1)-qubits are required for M sample and 
N-feature counts, where n = log2N , m = log2M , and 1 is considered as qubit  register24. In contrast, the log2N 
encoding technique utilizes only n qubit and O(Mn) steps to classically access to data without allocating extra 
qubits to the index of entries of dataset. First, we demonstrate a simple and efficient quantum distance classifier 
(qDC) executable on existing NISQ devices. Second, we present a simplified quantum-kernel SVM (sqKSVM) 
approach using quantum kernels which can be executed once without optimization instead of twice with opti-
mization as in case of the quantum-kernel SVM (qKSVM)  approach6,7.

In order to test our hypothesis, we demonstrate the performance of the qDC and the sqKSVM approaches 
using real clinical data and compare their performances to qKSVM, as well as to classic computing counterparts 
such as k-nearest  neighbors25 and classic support vector  machines26.

Results
Dataset. This study incorporated three open-access clinical datasets that have been presented and evaluated 
in various  contexts27–29. Each dataset underwent redundancy reduction by correlation matrix  analysis30 followed 
by a tenfold cross-validation split with a training-validation ratio of 80–20%16. Training sets of the folds were 
subjects of feature ranking  analysis31 and the highest-ranking eight as well as 16 (if available) features were 
selected for further analysis. The resulted dataset configurations were analyzed by class imbalance ratios and the 
quantum advantage score (a.k.a. difference geometry)20 for quantum kernel methods. Table 1 demonstrates the 
characteristics of the data configurations as well as the results of the imbalance ratio and the quantum advantage 
scores (for estimation of the quantum advantage scores (gCQ) , see Appendix E of the supplementary material).

Encoding strategies. This study relies on the data encoding strategy which uses sequences of Pauli-Y 
gate rotations ( Ry ) and CNOT gates (see Appendix A of the supplementary material) to result in a number of 
log2N encoding  qubits18,19,21. Ry puts each qubit q in a superposition state Ry(2θ)

∣

∣q� = cos(θ)|0� ± sin(θ) |1� 
and CNOT s entangle qubits. The data encoding feature map with the application of Ry and CNOT is given  by32

where 
∣
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� . To find a relationship between the input data and θ , see Appendix A of the supplementary 
material.

In contrast, previously proposed quantum ML-specific encoding utilizes a block of the Hadamard gates fol-
lowed by a block of Pauli-Z gate rotations ( Rz ) are applied to each  qubit7. To entangle the qubits, nearest neighbor 
CNOT s are also applied. The features of data samples are considered as angles of Rz rotations and the required 
number of qubits for data encoding are equal to the number of features. The data encoding feature map with the 
application of the Hadamard, Rz and CNOT is given  by7

where 
∣

∣ϕ
(−→x

)

� = Uϕ(−→x )H
⊗N |0�⊗N . Uϕ(−→x ) is the model circuit for N features data encoding.

In order to compare the predictive performance of the above two data encoding strategies, the qDC, the 
sqKSVM and the qKSVM (see Appendix C of the supplementary material) approaches were compared utilizing 
a number of N = 8 features. This analysis was executed using the Pennylane simulator  environment33, while the 
sqKSVM was also evaluated on the IBMQ Melbourne machine (see “Methods”). Table 2 demonstrates the cross-
validation area under the receiver operator characteristics curve (AUC) performance values of the quantum ML 
algorithms in relation to the log2N and N encoding qubit strategies.
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Table 1.  Clinical datasets utilized for the study with their sample and selected feature count as well as their 
imbalance ratios and quantum advantage scores (gCQ). Given a two-class dataset, the imbalance ratio ( IR ) is 
IR = x/y , where x is the number of minority class and y is the total number of samples. Furthermore, gCQ 
measures the similarities of quantum kernel and linear classical kernel functions of the same dataset.

Dataset #Samples Imbalance Ratio #Features gCQ Reference

Pediatric Bone Marrow Transplant 2-year survival 134 0.33
8 0.40

27

16 0.60

Wisconsin Breast Cancer Malign-vs-benign 569 0.37
8 1.30

28

16 3.50

Heart Failure Mortality 300 0.5 8 0.42 29
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Quantum and classic machine learning predictive performance evaluation. The quantum dis-
tance classifier (qDC) first calculates the distance between the state vector of a test sample and each state vector 
of the training sample in set P and set Q and, then, assigns a label of the test sample to the label of the closest 
set. In the qDC, we divide the training set, with M number of samples, based on their labels {a, b ∈ R} into two 
subset {P} and {Q} , where {P} contains only label a with the number of samples MP and {Q} contains only label 
b with the number of samples MQ with MP +MQ = M . The task is to determine the label of the given test 
sample 

{

yk
}

 , if yk = a or yk = b . Mathematically, if |v� is the state vector of the test sample as well as |u� ∈ P 
and |w� ∈ Q , then the label of |v� is determined by yk = a , if min(||u� − |v� |) ≤ min(||w� − |v� |) , otherwise 
yk = b . The distance between the vectors is given  by8 i.e.

where |•| is the norm l2 of a vector. Therefore, the task is to calculate the inner product �u|v� with a quantum 
computer.

The two different approaches to estimate �u|v� with quantum computers are Hadamard  Test22 and the Swap 
 Test23. For the simplified quantum kernel SVM (sqKSVM), we first need to note that the standard form of the 
quantum kernelized binary classifiers is

where ỹ is the unknown label, yi is the label of the i th training sample, αi∗ is the i th component of the support 
vector −→α ∗ = (α1

∗,α2∗, . . . ,αM∗) , M is the number of training data, and K
(−→x i ,

−→
x̃
)

 is the kernel matrix of all 
the training-test pairs.

For a given dataset D =
{(−→x i , yi

)

: −→x i ∈ RM , yi ∈ {−1, 1}
}

i=1,...,M
 , one option to bypass the drawbacks of 

the qKSVM algorithm (see Appendix C of the supplementary material) as presented  in6,7 is to set uniform weight 
αi

∗ = 1 , in case of IR = 0.5 (balanced dataset). Otherwise, αi∗ = IR for the majority class and αj∗ = 1− IR for 
the minority class. Thresholding the value 

∑M
i=1 yiαi

∗K
(−→x i ,

−→
x̃
)

 yields the binary output as following

In Eq. (5), K
(−→x i ,

−→
x̃
)

 is defined as (see Appendix F of the supplementary material)

The dataset configurations were utilized to estimate the performance of quantum and classic machine learn-
ing algorithms incorporated in this study. Performance estimation was done by confusion matrix  analytics34. 
Prediction models were built based on the given training subset, followed by evaluating the respective validation 
subsets of each fold. Average area under the receiver operator characteristics curve (AUC) was calculated across 
validation cases for each predictive model. To build predictive models, quantum ML approaches included the 
qDC, the sqKSVM and the qKSVM (see Appendix C of supplementary material) were utilized. Classic machine 
learning approaches were k-nearest neighbors (ckNN)25 and support vector machines (cSVM)26. See Table 3 for 
the comparison of cross-validation AUC performances of quantum and classic computing algorithm within the 
dataset configurations.

Estimation of the probability of errors rate. Our experimental demonstrations are performed on the 
15-qubit IBMQ Melbourne processor based on superconducting transmon qubits. The experiment has been 
conducted on the Wisconsin Breast Cancer dataset with 8 and 16 features, given, that this dataset provided the 

(3)||u� − |v� | = ||u� |||v� | − �u|v�

(4)ỹ = sgn

(

M
∑
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yiαi
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)

)

(5)ỹ =
{

1
∑M

i=1 yiαi
∗K

(−→x i ,
−→
x̃
)

≥ 0

−1 else

(6)K
(−→x i ,

−→
x̃
)

= |�u|v�|2

Table 2.  Comparison of the cross-validation AUC performance for different data encodings. The qDC, 
qKSVM, and sqKSVM run on Pennylane simulator for N = 8 . For the log2N encoding, N features are encoded 
into log2N qubits with sequences of Pauli-Y gate rotations ( Ry ) and CNOT s. In another strategy, N features 
are encoded into N qubits with sequences of the Hadamard gates, Pauli-Z gate ( Rz ) rotations followed by 
nearest neighbor CNOT s. *The sqKSVM was also executed on the IBMQ Melbourne machine for reference 
comparison.

Dataset qDC qKSVM sqKSVM sqKSVM* qubits

Pediatric Bone Marrow Transplant 2YS
0.62 0.63 0.62 0.61 log2N

0.61 0.63 0.61 0.59 N

Wisconsin Breast Cancer Malign-vs-benign
0.92 0.92 0.88 0.87 log2N

0.90 0.91 0.87 0.85 N

Heart failure Mortality
0.62 0.51 0.51 0.50 log2N

0.60 0.51 0.51 0.50 N
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highest predictive cross-validation performance. On the NISQ device and simulator, each circuit is run with a 
fixed number of measurement shots (= 8192). We plot scatter diagrams for the inner product values from the 
simulator and the inner product from the NISQ device in Fig. 1. To show the correlation between the experi-
mental and the simulator values of the inner products, we also fit optimal lines using least square regression in 
Fig. 1. To measure the difference between the inner products from the simulator and the inner product from 
the NISQ device, the root mean square error (RMSE) was calculated. The value of RMSE was 0.039 (3.9%) and 
0.075 (7.5%) for 8 and 16 feature counts, respectively (Fig. 1). Therefore, the fidelities of the quantum circuits on 
the quantum cloud device were estimated 96% and 92.5% for the 8 and 16 feature counts, respectively. For more 
details of the experiment see Appendix G of the Supplementary material.

The depolarizing noise model represents a linear relationship between the ideal (simulator) and the noisy 
(experiment) values of the inner products based on Eq. (14) in “Methods”. Nevertheless, the slope of the fit lines 
in Fig. 1 show that the depolarizing noise model cannot estimate the true value of probability of error rate ( � ). 
This is due to gate  errors35 that are originated from miscalibration of quantum Hardware, not being covered by 
the depolarizing noise model.

Discussion
In this study, we aimed to investigate the effect of two encoding strategies in various quantum machine learning-
built clinical prediction models. Next to prior quantum machine learning approaches, we also proposed two 
methods specifically designed for the log2N encoding approach.

Our results demonstrate that the log2N  encoding in combination with low-complexity quantum machine 
learning approaches provides comparable or better results than the N  encoding approach with previously-
proposed quantum machine learning methods. This advantage was demonstrated not only in a simulator envi-
ronment, but also utilizing NISQ devices. The low algorithmic quantum complexity also aims towards building 
prediction models that may be easier to interpret in the future, especially in light of the high complexity of classic 
machine learning  approaches36. In contrast, it is important to emphasize, that the proposed quantum machine 
learning processes are also applicable in big data, given, that calculating the inner product of quantum states in 
NISQ devices can be done efficiently with the log2N  encoding  approach21,22. The log2N  data encoding is also 
more robust against noise compared to the N data encoding, since it uses less number of noisy qubits of the NISQ 
device to estimate the inner product of quantum  states10.

After encoding data from classical Euclidean space into quantum Hilbert space, the distance between data 
points may increase or decrease, which has implications in case of kernel  methods20. The gCQ score can represent, 

Table 3.  Comparison of the cross-validation AUC performance with QML and ML algorithms. For all QML 
algorithms, N features are encoded into log2N qubits with sequences of Pauli-Y gate rotations ( Ry ) and CNOT 
s. All QML algorithms were executed on the IBMQ Melbourne machine. *Heart failure has no 16-feature 
variant, since the maximum number of features are 13.

Dataset #Features sqKSVM qKSVM qDC cSVM ckNN

Pediatric Bone Marrow Transplant 2YS
8 0.61 0.63 0.60 0.64 0.61

16 0.66 0.69 0.64 0.71 0.64

Wisconsin Breast Cancer Malign-vs-benign
8 0.87 0.92 0.91 0.89 0.90

16 0.88 0.93 0.90 0.89 0.93

Heart Failure Mortality* 8 0.50 0.51 0.60 0.53 0.58

Figure 1.  Scatter diagrams of simulator inner products vs. experiment inner products for both the train state 
vectors and test state vectors. This data corresponds to the Wisconsin Breast Cancer dataset with 8 (left) and 16 
(right) features. The red lines represent optimal fit lines based on least-squared regression.
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whether distances between data points would increase or decrease after data encoding. For further explanations 
see Supplemental Appendix E.

When feature count increases, gCQ increases as well, because quantum state vectors of input features become 
closer due to the high dimensionality property of the Hilbert space. Higher feature count significantly influences 
performance in a positive way if gCQ is < 1 (e.g. + 5–6% AUC in the Pediatric bone marrow dataset). It has been 
shown that classical ML models are competitive or outperform quantum ML approaches when gCQ is  small20. 
Nevertheless, we demonstrated that when gCQ > 1 , higher feature count does not contribute much to the per-
formance increase (e.g. 1% difference in the Wisconsin breast cancer dataset). It is important to point out that 
a high gCQ (> 1) alone does not mean that the dataset is not ideal for kernel-based quantum machine learning. 
Specifically, the highest AUC of 0.93 was achieved in the 16 feature counts Wisconsin breast cancer dataset, while 
it also demonstrated the highest gCQ , which also confirms prior  findings20. In contrast, the same dataset in the 
classic SVM resulted in 0.89 AUC. We hypothesize that this phenomenon is due to the high sample count of the 
Wisconsin breast cancer dataset (M = 569). In general, the imbalance ratio of the datasets did not appear to be 
correlated with predictive performance. The log2N increased AUC with up to 2% compared to the N encoding 
when comparing the execution of the quantum machine learning approaches using simulation environment. 
This behavior was also identifiable with executions in NISQ devices, in case of kernel methods and the qDC. 
We hypothesize that lower AUC performance for the N  encoding method in the simulator environment and 
NISQ device is due to higher number of qubits which likely lead to lower value of inner products. This is in line 
with the findings  in20.

In general, the qKSVM demonstrated 2–5% higher AUC compared to the sqKSVM. The relative performance 
increase of the qKSVM was in relation to sample count and feature count. Specifically, the qKSVM showed an 
average 2% higher AUC with small sample count (Heart failure and Pediatric bone datasets), while it had 5% 
higher AUC in the Wisconsin breast cancer dataset. Nevertheless, both the qKSVM and the sqKSVM increased 
its AUC with double feature counts in the small Pediatric bone marrow dataset. This level of performance increase 
was not identifiable in the larger Wisconsin breast cancer dataset. Classic SVM demonstrated similar properties 
in relation to higher feature counts in small  datasets20, while it was outperformed by the qKSVM in the large 
Wisconsin breast cancer dataset.

In conclusion, quantum SVM approaches benefit from higher feature count in general, where the qKSVM—
due to relying on optimization—has a particular benefit compared to the sqKSVM. In contrast, the sqKSVM 
algorithm reduces the time complexity of the qKSVM algorithm significantly, which may be advantageous in case 
of large datasets on NISQ devices. In the large Wisconsin breast cancer dataset, the qDC demonstrated higher 
performance compared to the sqKSVM, especially in small feature counts (0.91 AUC vs 0.87 AUC in the qDC and 
the sqKSVM respectively in 8 features). The qDC resulted in the highest AUC of 0.60 across all other quantum 
(0.50–0.51 AUC) and classic machine learning (0.53–0.58 AUC) approaches in the Heart failure dataset. We 
hypothesize that this is due to the distribution characteristics of the samples belonging to the two subclasses in 
the feature space, which challenges classification with kernel methods. Generally, the performance of the executed 
quantum and classic machine learning approaches are comparable within the collected cohorts (Table 3).

According to our findings, quantum distance approaches can provide high performance with small feature 
and sample counts, which is particularly ideal for NISQ devices. In contrast, quantum kernel methods appear 
to provide high performance with high feature and sample counts. We demonstrated that the log2N encoding 
strategy allows to execute quantum ML algorithms for highly dimensional clinical datasets on low qubit count 
NISQ devices. In general, quantum machine learning benefits from utilizing the log2N encoding strategy, as it 
increases predictive performance and reduces execution time in NISQ devices, while keeping model complexity 
lower. Our experiments also pointed out an important implication of how noise shall be estimated. As such, the 
depolarizing noise model cannot cover gate errors.

We consider our findings of high importance in relation to building future quantum ML prediction models 
in NISQ devices for clinically-relevant cohorts and beyond.

Methods
All experiments of this study were performed in accordance with the respective guidelines and regulations of 
the open-access data sources this study relied on. For details, see section “Access”.

Estimation of the inner product �u|v� and |�u|v�|2. Figure 2 shows the quantum circuit for estimation 
of the real part of �u|v� with the Hadamard Test.

To estimate the real part of �u|v� on the quantum computer with the Hadamard Test, the training and test 
data needs to be prepared in a quantum state as

where |u� and |v� are the quantum states for the train and test datasets, respectively.
Then the Hadamard gate on the ancilla qubit interferences the training vector |u� with the test vector |v�

Finally, the measuring quantum state given in Eq. (8) in the computational basis |0� a gives probability as

(7)
1√
2
(|0� a|v� + |1� a|u� )

(8)
1

2
(|0� a(|v� + |u� ) + |1� a(|v�− |u�) )
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where Pr is the value of the probability of measurement on the |0� a state of Eq. (8) and �u|u� = �v|v� = 1 . Since 
our datasets are real values Re(�u|v�) = �u|v� . See Appendix H of the Supplementary material for details of the 
estimation of the inner product on the IBMQ Melbourne machine with the Hadamard Test.

The inner product �u|v� can also be estimated on a quantum computer with the Swap Test (see Fig. 3). The 
Hadamard gate is applied on the ancilla qubit to create a superposition of |u�|v� , i.e.

The application of the single-controlled swap gates on the state given in Eq. (10) entangles the ancilla qubit 
with |u�|v� . The resulted entangled quantum state is 1√

2

(

|0� a
∣

∣u�
∣

∣v� + |1� a|v�|u�
)

 . Then, another Hadamard gate 
interferences the product state of the state vectors of the training and the test i.e.

Measuring the quantum state given in Eq. (11) in the computational basis yields |0� a with the probability

(9)Pr(
∣

∣0�a) = (1+ Re(�u|v�))
2

(10)
1√
2

(

|0� a
∣

∣u�
∣

∣v� + |1� a|u�|v�)

(11)
1

2
(|0� a(|u�|v� + |v�|u� )+ |1� a(|u�|v� − |v�|u� ))

Figure 2.  Quantum circuit computes the real part of the inner product �u|v� . The Hadamard gate puts the 
ancilla qubit ( q0 ) into uniform superposition. A single-controlled unitary gate entangles the exited state of the 
ancilla qubit with the training data state vector ( 

∣

∣u� = U
∣

∣q1q2q3� ). The X gate flips the ancilla qubit. Another 
single unitary controlled gate entangles the state vector of the test data ( 

∣

∣v� = V
∣

∣q1q2q3� ) with the excited state 
of the ancilla qubit. A second X gate flips the ancilla qubit. The Hadamard gate on the ancilla qubit interferences 
train and test data state vectors. The ancilla qubit is measured using a Pauli-Z gate. The real value of �u|v� is 

estimated from Eq. (9). The measurement gate is done by a Pauli-Z gate and Z =
(

1 0

0 −1

)

.

Figure 3.  Quantum Circuit to compute |�u|v�|2 . The model circuits encode train and test data into quantum 
states 

∣

∣u� = U
∣

∣q1q2q3� and 
∣

∣v� = V
∣

∣q4q5q6� . The Hadamard gate on the ancilla qubit ( q0 ) generates a 
superposition of the quantum state including the train and test datasets. The application of the single-controlled 
swap gates with the ancilla qubit as the control results in an entangled state of Eq. (10). Another Hadamard gate 
on the ancilla qubit interferences |u�|v� and |v�|u� . The ancilla qubit on the |0� state is measured in the Z basis. 
Therefore, the value of |�u|v�|2 can be obtained from Eq. (12).
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where Pr is the value of the probability of measurement on the |0� a state of Eq. (11). See Appendix D of the Sup-
plementary material for details of the estimation of the inner product on the IBMQ Melbourne machine with 
the Hadamard Test.

Simplified quantum kernel support vector machine. The quantum Support Vector Machine algo-
rithm is proposed  in37 for big data classification. They show exponential speedup for their algorithm via quan-
tum mechanically access to data. Nevertheless, this approach is not ideal for NISQ  devices9. To date, two separate 
qKSVM approaches are proposed for data classification via classical access to  data6,7. In these approaches, the 
quantum circuits must run twice on the quantum computer and a cost function needs to be optimized on the 
classical computer to compute the support  vector7. We propose a simplified version qKSVM called sqKSVM as 
shown in Fig. 4.

Software and hardware. For classical machine learning algorithms, we use classical machine learning 
(CML) libraries of scikit-learn38. Pennylane-Qiskit33 is used for quantum circuit simulation and quantum exper-
iment for designing quantum computing programs. Pennylane-Qiskit 0.13.0 plugin integrates the Qiskit quan-
tum computing framework to the Pennylane simulator.

For executing quantum algorithms on existing quantum computers, this study relied on IBM’s remote quan-
tum machines (https:// quant um- compu ting. ibm. com/) that can run quantum programs with noisy qubits. Since 
IBM quantum computers only support single-qubit gate and two-qubit CNOT gate operations, complex gate 
operations must be decomposed into elementary supported gates before mapping the quantum circuit on noisy 
hardware. Owing to the specific architecture of IBM quantum computers, all two-qubit CNOT gate operations 
must satisfy the constraints imposed by the coupling  map39, i.e., if qi is the control qubit and qj is the target qubit, 
CNOT(qi , qj) can only be applied if there is coupling between qi and qj . In case of running the QML algorithms on 
the quantum computer, we choose the 15-qubits IBMQ Melbourne machine with the supported gates I , U3 , and 
CNOT , where I is identity single-qubit gate, U3 is single-qubit arbitrary rotation gates with CNOT as two-qubit 
gate. Figure 5 shows the coupling map of the IBMQ Melbourne with its gate error rates.

Depolarizing noise model. A simple model to describe incoherent noise is the depolarizing noise model. 
For a n qubit pure quantum state |u� , the depolarizing noise operator (channel) leads to a loss of information with 
probability � and with probability (1− �) the system is left  untouched40. The state of the system after this noise is

where ǫ� denotes the noise channel, ρ = |u� �u| is a density matrix, � is the probability of error rate that depends 
on NISQ devices, the gate operations, and the depth of the quantum circuit, and I is the ( 2n × 2n ) identity matrix.

The expectation value of observable O for a state represented by a density matrix ρ is given by

(12)Pr(
∣

∣0�a) =
(

1+ |�u|v�|2
)

2

(13)ǫ�(ρ) = (1− �)ρ + �
I

2n

(14)�O� = tr[ǫ(ρ)O] = (1− �)�O� +
�

2n
tr(O)

Processing Data vector training ⃗
and test 

Initial State |0⟩

Encoding: | ⟩ and | ⟩

Estimation of kernel 
⃗ ⃗

Calculation of ∗

Prediction new label for test data 

∗ ⃗ ⃗

Classical computer NISQ

Figure 4.  Schematic of the sqKSVM for data classification algorithm. First, the training data vector −→x  and test 
x̃ are prepared on a classical computer. Next, the original training data and test data are encoded into quantum 
states followed by computing the kernel matrix of all pairs of the training-test data K

(−→x i ,
−→
x̃
)

 with a NISQ 
computer. If α∗ = (α1

∗
,α2

∗
, . . . ,αM

∗) are considered to be a solution of the support vector, the binary classifier 
can be constructed based on Eq. (5).
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where 〈O〉 is the noisy expectation value and 〈O〉 is the noiseless expectation  value41.

Data availability
The source code of the implemented quantum algorithms can be accessed by the link: https:// github. com/ sassa 
n72/ Quant um- Machi ne- learn ing. For classical machine learning executions, this study relied on the scikit-learn 
 library38: https:// scikit- learn. org/ stable/. All included open-access datasets are accessible through the following 
links: Pediatric bone marrow transplant  dataset27: https:// archi ve. ics. uci. edu/ ml/ datas ets/ Bone+ marrow+ trans 
plant% 3A+ child ren. Wisconsin breast cancer  dataset28: https:// archi ve. ics. uci. edu/ ml/ datas ets/ Breast+ Cancer+ 
Wisco nsin+ (Diagn ostic). Heart failure  dataset29: https:// www. kaggle. com/ andre wmvd/ heart- failu re- clini cal- data.
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