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Abstract
In 2014, Hu introduced the concept of three-way decision spaces and axiomatic definition of
decision evaluation functions. In three-way decision spaces, decision evaluation function
satisfies minimum element axiom, monotonicity axiom and complement axiom. Since then,
the research on construction method of decision evaluation functions from commonly used
binary aggregation functions becomes a research hotspot. Meanwhile, uninorms, as one
class of binary aggregation functions, have been successfully applied in various application
problems, such as in decision making, image processing, data mining, etc. This paper
continues to consider this research topic and mainly explores the new construction methods
of decision evaluation functions based on uninorms. Firstly, we show two novel transfor-
mation methods from semi-decision evaluation functions to decision evaluation functions
based on uninorms. Secondly, using known semi-decision evaluation functions, we give
some new construction methods of semi-decision evaluation functions. Thirdly, we give
some novel construction methods of decision evaluation functions and semi-decision
evaluation functions related to fuzzy sets, interval-valued fuzzy sets, fuzzy relations and
hesitant fuzzy sets. Based on them, decision maker can obtain more useful decision eval-
uation functions, thereby more choices can be used for realistic decision-making problems.
Finally, we consider two real evaluation problems to illustrate the results obtained in this
paper. The three-way decisions results of evaluation problem show that the construction
method proposed in this paper is superior to some existing construction methods under
some conditions.
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1 Introduction

1.1 A short review of three-way decisions

The theory of three-way decisions, as an exploration of thinking in three (Yao 2012), was
proposed by Yao (2009). The basic idea of three-way decisions arises from Pawlak’s rough
sets (Pawlak 1982; Pawlak 1991) and decision-theoretic rough sets (Yao 2003, 2007, 2008).
In three-way decisions, there are three sorts of decision rules, that is, acceptance rules,
uncertainty rules and rejection rules. According to these decision rules, for each object in a
universe, it can be divided into positive region by acceptance rules, boundary region by
uncertainty rules, and negative region by rejection rules. It is worth noting that three-way
decisions is an extension of classical two-way decisions (Yao 2009, 2010, 2011). Under
some conditions, three-way decisions is superior to the classical two-way decisions (Yao
2011). During the last 10 or more years, three-way decisions has met a fast development
both in real application and theory. The researches on three-way decisions mainly focus on
three aspects as follows.

The first aspect is the background researches on three-way decisions. These researches
mainly focus on the generalization of Pawlak’s rough sets, such as decision-theoretic rough
sets (Yao 2003, 2007, 2008), game-theoretic rough sets (Azam and Yao 2014), fuzzy rough
sets/rough fuzzy sets (Dubois et al. 1990), variable precision rough sets (Ziarko 1993), fuzzy
covering-based rough sets (Yang and Hu 2016; Yang and Hu 2017), multi-granulation rough
sets (Lin et al. 2013; Sun et al. 2021), and so on.

The second aspect involves the theoretical framework researches on three-way decisions.
These studies mainly focus on construction and interpretation of decision evaluation
functions (Yao 2010, 2011, 2012), value domain of decision evaluation functions (Yao
2012), the mode of three-way decisions (Yao 2012), three-way decision spaces (Hu 2014;
Hu 2016; Hu et al. 2016; Hu 2017; Hu et al. 2017; Jia and Qiao 2020; Qiao and Hu 2018;
Qiao and Hu 2020), trisecting-and-acting framework of three-way decisions (Yao 2015),
and so on.

The third aspect refers to real application studies of three-way decisions. In real appli-
cation, three-way decisions plays a key role in decision making (Jiang and Hu 2021; Li et al.
2020; Liang et al. 2015; Liang et al. 2016; Yao and Azam 2015), image processing (Yue
et al. 2021), neural networks (Cheng et al. 2021), investment (Jiang and Hu 2021),
incomplete fuzzy decision system(Zhan et al. 2021; Ye et al. 2021), clustering (Chu et al.
2020; Yu et al. 2021), classification (Subhashini et al. 2022), conflict analysis (Li et al. 2021;
Lang et al. 2020; Lang and Yao 2021), active learning (Min et al. 2020), and so on.

1.2 A brief introduction of uninorms

Triangular norms (t-norms, for short) and triangular conorms (t-conorms, for short) (Kle-
ment et al. 2000) are extensions of conjunctions and disjunctions. T-norms and t-conorms
play a vital role in fuzzy logic. Uninorms, as a generalization of t-norms and t-conorms, was
introduced by Yager and Rybalov (1996). Unlike t-norms with neutral element 1 and t-
conorms with neutral element 0, the neutral element of uninorms can be taken each value of
unit interval [0, 1]. Thus, t-norms and t-conorms are two special cases of uninorms. During
the last 20 or more years, both theory and real application of uninorms were developing
rapidly.
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To be more specific, in theory, there are a lot of literatures which relate to various
respects of uninorms, such as the structure of uninorms (Fodor et al. 1997; Li and Shi 2000),
migrativity properties (Zhou and Yan 2021), conditional distributive equations (Zhang and
Qin 2022), construction methods (Zong et al. 2020), and so on. In real application, uninorms
plays an important role in decision making (Campanella and Ribeiro 2011; Yager and
Rybalov 2011), image processing (Bustince et al. 2007; González-Hidalgo et al. 2015), data
mining (Yan and Chen 2005), classification (Roy et al. 2020), neural networks (de Campos
Souza and Lughofer 2021; de Campos Souza and Lughofer 2022a; de Campos Souza and
Lughofer 2022b), and so on.

1.3 Motivation of this research

In 2014, after systemically researching on three-way decisions, Hu (2014) introduced the
axiomatic definitions for decision condition, decision measurement and decision evaluation
function and established three-way decision space on fuzzy lattice, i.e., a complete dis-
tributive lattice with a strong negation. Since then, in order to generalize the application
range of three-way decision space, Hu (2016) extended the decision measurement domain of
three-way decision space from fuzzy lattice to partially ordered set. Therefore, the existing
three-way decisions become the special cases of three-way decision space, for instance,
three-way decisions based on fuzzy sets (Hu 2014; Zadeh 1965), interval-valued fuzzy sets
(Hu 2014), fuzzy relations (Qiao and Hu 2018; Jia and Qiao 2020), hesitant fuzzy sets (Hu
2016), shadowed sets (Jiang et al. 2022; Pedrycz 1998; Yao and Yang 2022), and so on.
Therefore, three-way decision space is a useful tool to research three-way decisions.

In order to better illustrate our motivation, we review the concept of decision evaluation
function as follows. Let X and Y be two universes. In this paper, Map(X, Y) denotes the
family of all mappings from X to Y. Let U and V be two nonempty universes. If we make
decisions on universe U, then U is said to be a decision universe. If we define condition
functions on universe V, then V is said to be a condition universe. Let
ðPC; � PC

;NPC ; 0PC ; 1PC Þ and ðPD; � PD
;NPD ; 0PD ; 1PDÞ be two partially ordered sets with

strong negations PC and PD.

Definition 1.1 (Hu 2016) Let V be a condition universe and U be a decision universe. Then
a mapping E : MapðV ;PCÞ ! MapðU ;PDÞ is said to be a decision evaluation function of
U, if it satisfies the axioms as follows:

(E1) Minimum element axiom

Eðð0PC ÞV Þ ¼ ð0PDÞU :

(E2) Monotonicity axiom

A �PC B ) EðAÞ �PD EðBÞ
for each A;B 2 MapðV ;PCÞ:

(E3) Complement axiom

NPDðEðAÞÞ ¼ EðNPC ðAÞÞ
for each A 2 MapðV ;PCÞ:
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On the one hand, decision evaluation function plays a key role in three-way decisions
(Cabitza et al. 2017; Liu et al. 2016; Yao and Azam 2015). On the other hand, decision
maker will obtain different decision results through different decision evaluation functions
(Qiao and Hu 2018; Qiao and Hu 2020). Thus, in order to obtain reasonable decision results,
there must be enough decision evaluation functions for decision maker to select. However,
Hu found that a lot of useful functions only satisfy minimum element axiom and mono-
tonicity axiom (Hu 2014; Hu 2016). Meanwhile, it has been pointed out that the comple-
ment axiom is necessary and important for decision evaluation functions in various previous
researches (Liang and Liu 2014; Liang et al. 2015; Liang et al. 2016; Yao 2010, 2011; Zhao
and Hu 2016). Therefore, it arises the following question.

Question 1: How to construct decision evaluation function as much as possible?
In order to response this problem, Hu (2017) introduced the concept of semi-decision

evaluation function, i.e., decision evaluation function without complement axiom (see
Fig. 1). By the transformation methods from semi-decision evaluation functions to decision
evaluation functions proposed by Hu (2017), some useful semi-decision evaluation func-
tions can be transformed to decision evaluation functions.

After that, since the special properties and practicability of aggregation functions, the
research on construction methods of decision evaluation functions on the basis of some
particular binary aggregation functions becomes a research hotspot. In 2018, Qiao and Hu
(2018) studied the construction methods of semi-decision evaluation functions and decision
evaluation functions based on t-norms and t-conorms. And then, in 2020, on the basis of
overlap and grouping functions, Jia and Qiao (2020) researched the transformation methods
from semi-decision evaluation functions to decision evaluation functions and the con-
struction methods of semi-decision evaluation functions. Therefore, it is an effective way to
construct decision evaluation functions by aggregation functions. However, in Hu (2017);
Jia and Qiao (2020); Qiao and Hu (2018), the transformation methods from semi-decision
evaluation functions to decision evaluation functions always assume that the strong negation
NPDðxÞ ¼ 1� x for all x 2 ½0; 1�: It limits the research on decision evaluation functions both
in theory and application. Thus, it arises the following question.

Question 2: Whether there exists a construction method of decision evaluation func-
tions such that the strong negation NPD of partially ordered set PD is different from
NPDðxÞ ¼ 1� x for all x 2 ½0; 1�?

Therefore, in this paper, we mainly consider Questions 1 and 2. Firstly, in Sect. 1.2, it has
been pointed that t-norms and t-conorms are two special cases of uninorms. Thus, in order to
response Question 1, we mainly study how to construct semi-decision evaluation functions
and decision evaluation functions based on uninorms. Representable uninorms, as a special

Fig. 1 The relationship between decision evaluation functions and semi-decision evaluation functions (Hu
2017)
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class of uninorms (see Definition 2.8), is self-dual with respect to (w.r.t., for short) the strong
negation derived from its additive generator (see Lemma 2.2). Therefore, in order to
response Question 2, we study the construction methods of decision evaluation functions
based on representable uninorms in this paper.

The main contributions of this paper are listed as follows.

(1) We propose a transformation method from semi-decision evaluation functions to
decision evaluation functions based on uninorms. We also propose some novel
construction methods of semi-decision evaluation functions based on uninorms.
These methods provide some novel ways to construct decision evaluation functions
and unify some t-norms and t-conorms-based methods proposed in previous works
(Hu 2017; Qiao and Hu 2018).

(2) We propose a transformation method from semi-decision evaluation functions to
decision evaluation functions and some construction methods of decision evaluation
functions based on representable uninorms. These methods not only provide some
novel ways to construct decision evaluation functions, but also extend the strong
negation NPD from NPDðxÞ ¼ 1� x for all x 2 ½0; 1� to the strong negation derived
from the additive generator of representable uninorms.

(3) We research the relationship among different decision evaluation functions.
(4) We analyse two real evaluation problems to illustrate the results obtained in this

paper. Moreover, by a real evaluation problem of credit card applicants, we compare
the uninorms-based transformation method with overlap and grouping functions-
based transformation method. The comparison results show that uninorms-based
transformation method is superior to overlap and grouping functions-based transfor-
mation method under some conditions.

From theoretical viewpoint, on the one hand, this paper is supplement of three-way deci-
sions. On the other hand, the existing t-norms and t-conorms-based transformation methods
and construction methods become the special cases of uniorms-based methods proposed in
this paper. From applied viewpoint, these contributions of this paper can enlarge the
potentiality of three-way decisions in solving some actual application problems, especially
in areas where both uninorms and three-way decisions work together, such as decision
making (Campanella and Ribeiro 2011; Jiang and Hu 2021; Li et al. 2020; Liang et al. 2015;
Liang et al. 2016; Yager 2002; Yager and Rybalov 2011; Yao and Azam 2015), image
processing (Bustince et al. 2007; González-Hidalgo et al. 2015; Yue et al. 2021), neural
networks (Cheng et al. 2021; de Campos Souza and Lughofer 2021; de Campos Souza and
Lughofer 2022a; de Campos Souza and Lughofer 2022b), and so on.

The paper is organized as follows. In Sect. 2, we review some basic notations and
concepts. In Sect. 3, we give two transformation methods from semi-decision evaluation
functions to decision evaluation functions derived from uninorms and representable uni-
norms, respectively. In Sect. 4, on the basis of uninorms, we give some new construction
methods of semi-decision evaluation functions and decision evaluation functions related to
known semi-decision evaluation functions, fuzzy sets, fuzzy relations, interval-valued fuzzy
sets and hesitant fuzzy sets. In Sect. 5, we use two real examples to illustrate our results. In
the last section, we summarize our work and show some future research directions.
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2 Preliminaries

In this section, we recall some basic concepts and notations used in this paper.

Definition 2.1 (Hu 2016) Let ðP; �Þ be a partially ordered set with the maximum element
1P and minimum element 0P. A non-increasing mapping N : P ! P is said to be a negation
if Nð0PÞ ¼ 1P and Nð1PÞ ¼ 0P. In particular, it is called involutive or strong, if
N � N ¼ idP:

In this paper, ðP; � PÞ denotes a partially ordered set with a strong negation NP; the
maximum element 1P and minimum element 0P: We always write it as ðP; � P;NP; 0P; 1PÞ:
In addition, we will use the following partially ordered sets and corresponding operations on
them from Qiao and Hu (2018, 2020):

(1) Let Y ¼ ½0; 1�: Then, for each A 2 MapðX ; ½0; 1�Þ; A is said to be a fuzzy set of X
(Zadeh 1965). For each k 2 ½0; 1�, kX denotes a fuzzy set of X with membership
function kX ðxÞ � k:

(2) Let Y ¼ I ð2Þ where I ð2Þ denotes the family of interval numbers over [0, 1], i.e.,
I ð2Þ ¼ f k�; kþ

� �
: 0� k� � kþ � 1g: Then, for each A 2 MapðX ; I ð2ÞÞ; A is said to be

an interval-valued fuzzy set of X (Hu 2014). Meanwhile, we always write an interval-
valued fuzzy set Awith membership function AðxÞ ¼ A�ðxÞ;AþðxÞ½ � as A ¼ ½A�;Aþ�.
For each interval-valued fuzzy set A ¼ ½A�;Aþ�; AðmÞ denotes a fuzzy set of X with

membership function AðmÞðxÞ ¼ AþðxÞþA�ðxÞ
2 . AðmÞ is said to be the center of interval-

valued fuzzy set A. The order relation on I ð2Þ is defined as ½k�; kþ�� ½l�; lþ� iff
kþ � lþ and k� �l�: Moreover, for all a 2 ½0; 1�, the notation a ¼ ½a; a� is used. Let
N be a strong negation on [0, 1]. Then the operations on I ð2Þ are defined as:
Nð½k�; kþ�Þ ¼ ½NðkþÞ;Nðk�Þ�; ½k�; kþ� _ ½l�; lþ� ¼ ½k� _ l�; kþ _ lþ� and
½k�; kþ� ^ ½l�; lþ� ¼ ½k� ^ l�; kþ ^ lþ�:

(3) Let Y ¼ 2½0;1� � ;: Then, for each H 2 MapðX ; 2½0;1� � ;Þ; H is said to be a hesitant
fuzzy set of X (Hu 2016). Let N be a strong negation on [0, 1]. For each A;B 2
2½0;1� � ;; define the operations on 2½0;1� � ; as: NðAÞ ¼ fNðrÞ : r 2 Ag; A u B ¼
fa ^ b : a 2 A; b 2 Bg and A t B ¼ fa _ b : a 2 A; b 2 Bg: The order relation on
2½0;1� � ; is defined as A � B iff A t B ¼ B and A u B ¼ A:

Let ðP; � P;NP; 0P; 1PÞ be a partially ordered set and U be a universe. Then, for each
A 2 MapðU ;PÞ and x 2 U ; we denote NPðAÞðxÞ ¼ NPðAðxÞÞ: In addition, for P ¼ ½0; 1�, we
denote ACðxÞ ¼ 1� AðxÞ for all x 2 ½0; 1�:

Further, for each A;B 2 MapðU ;PÞ; A �P B is defined as AðxÞ� PBðxÞ for all x 2 U : It
is distinct that ðMapðU ;PÞ;�PÞ is a partially ordered set with a strong negation NP; the
maximum element ð1PÞU and minimum element ð0PÞU where ð0PÞU and ð1PÞU are defined
as ð0PÞU ðxÞ ¼ 0P and ð1PÞU ðxÞ ¼ 1P for each x 2 U : If P ¼ ½0; 1�; for convenience, the
notations �P, NP; ð0PÞU and ð1PÞU are always written as �, N, 0U and 1U , respectively.

Definition 2.2 (Hu 2017) Let V be a condition universe and U be a decision universe. Then
a mapping E : MapðV ;PCÞ ! MapðU ;PDÞ is said to be a semi-decision evaluation function
of U, if it satisfies the axioms as follows:
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(E1) Minimum element axiom

Eðð0PC ÞV Þ ¼ ð0PDÞU :
(E2) Monotonicity axiom

A �PC B ) EðAÞ �PD EðBÞ
for each A;B 2 MapðV ;PCÞ:

For each semi-decision evaluation function E : MapðV ;PCÞ ! MapðU ; ½0; 1�Þ; the notation
1U � Eðð1PC ÞV Þ denotes 1� Eðð1PC ÞV ÞðxÞ for each x 2 U :

Definition 2.3 (Hu 2016) Let ðU ;MapðV ;PCÞ;PD;EÞ be a three-way decision space,
w;x 2 PD; 1PD 	w[x	 0PD and A 2 MapðV ;PCÞ: Then three-way decisions are defined
as follows.

(1) Acceptance region: ACPðw;xÞðE;AÞ ¼ fx 2 U : EðAÞðxÞ	wg:
(2) Rejection region: REJðw;xÞðE;AÞ ¼ fx 2 U : EðAÞðxÞ�xg:
(3) Uncertain region: UNCðw;xÞðE;AÞ ¼ REJðw;xÞðE;AÞ [ ACPðw;xÞðE;AÞ

� �C
:

In the following, we review the concepts of t-norms, t-conorms, overlap functions, grouping
functions and uninorms, respectively.

Definition 2.4 (Klement etal. 2000) A mapping T : ½0; 1�2 ! ½0; 1� (resp.

S : ½0; 1�2 ! ½0; 1�) is said to be a t-norm (resp. t-conorm) if it is commutative, associative,
increasing and having 1 (resp. 0) as neutral element.

Moreover, a t-norm T is said to be positive if Tðu; vÞ ¼ 0, then either u ¼ 0 or v ¼ 0 and
continuous if it is continuous in both arguments at the same time. If we take into account a t-
norm T and a t-conorm S in the meantime, then they are always considered as a dual pair,
that is, Tðx; yÞ ¼ 1� Sð1� x; 1� yÞ for each x; y 2 ½0; 1�: We list some commonly used
t-norms (see Fig. 2) from Klement et al (2000) as follows.

Example 2.1

(1) The minimum t-norm TM : ½0; 1�2 ! ½0; 1� is given, for any u; v 2 ½0; 1�, by
TM ðu; vÞ ¼ minfu; vg:

(2) The product t-norm TP : ½0; 1�2 ! ½0; 1� is given, for any u; v 2 ½0; 1�, by
TPðu; vÞ ¼ uv:

(3) The Łukasiewicz t-norm TL : ½0; 1�2 ! ½0; 1� is given, for any u; v 2 ½0; 1�, by
TLðu; vÞ ¼ maxðuþ v� 1; 0Þ:
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(4) The drastic product t-norm TD : ½0; 1�2 ! ½0; 1� is given, for any u; v 2 ½0; 1�, by

TDðu; vÞ ¼ 0; ðu; vÞ 2 ½0; 1½2;
minðu; vÞ; otherwise:

(

Definition 2.5 (Bustince etal. 2010) A binary function O : ½0; 1�2 ! ½0; 1� is called an
overlap function if, for each u; v 2 ½0; 1�; the following conditions hold:

(1) O is commutative;
(2) Oðu; vÞ ¼ 0 iff uv ¼ 0;
(3) Oðu; vÞ ¼ 1 iff uv ¼ 1;
(4) O is increasing;
(5) O is continuous.

In the following, we list some commonly used overlap functions (see Fig. 3) from Bedregal
et al (2013).

Example 2.2

(1) Any positive and continuous t-norm is an overlap function.

(2) For any p[ 0, the function Op : ½0; 1�2 ! ½0; 1� given, for any u; v 2 ½0; 1�, by
Opðu; vÞ ¼ upvp

is an overlap function.

(3) The function OmM : ½0; 1�2 ! ½0; 1� given, for any u; v 2 ½0; 1�; by
OmM ðu; vÞ ¼ minfx; ygmaxfx2; y2g

is an overlap function.

Fig. 2 3D plots of four t-norms
given in Example 2.1
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Definition 2.6 (Bustince etal. 2012) A binary function G : ½0; 1�2 ! ½0; 1� is called a
grouping function if, for each u; v 2 ½0; 1�; the following conditions hold:

(1) G is commutative;
(2) Gðu; vÞ ¼ 0 iff u ¼ v ¼ 0;
(3) Gðu; vÞ ¼ 1 iff u ¼ 1 or v ¼ 1;
(4) G is increasing;
(5) G is continuous.

In the sequel, if we consider an overlap function O and a grouping function G at the same
time, then they always represent a dual pair, that is, Oðx; yÞ ¼ 1� Gð1� x; 1� yÞ for all
x; y 2 ½0; 1�:

Definition 2.7 (Yager and Rybalov 1996) A mapping U : ½0; 1�2 ! ½0; 1� is said to be a
uninorm if it is commutative, associative, increasing and having e 2 ½0; 1� as neutral
element.

In Definition 2.7, if we take the neutral element of uninorm U as e ¼ 1 (resp. e ¼ 0), then U
becomes a t-norm (resp. t-conorm). It is worth noting that Li and Shi (2000) have verified
that Uð1; 0Þ 2 f0; 1g for all uninorms U : In addition, a uninorm U is said to be disjunctive if
Uð1; 0Þ ¼ 1 and conjunctive if Uð1; 0Þ ¼ 0:

Lemma 2.1 (Fodor etal. 1997) Let U be a uninorm with neutral element e 2�0; 1½: Then
there exists a t-norm TU and a t-conorm SU such that

Uðx; yÞ ¼
eTUðxe ;

y

e
Þ; ðx; yÞ 2 ½0; e�2;

eþ ð1� eÞSUðx� e

1� e
;
y� e

1� e
Þ; ðx; yÞ 2 ½e; 1�2:

8><
>:

In addition, for each ðx; yÞ 2 ½0; e½
�e; 1�[�e; 1� 
 ½0; e½; one has that

Fig. 3 3D plots of the overlap
functions given in Example 2.2
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minðx; yÞ�Uðx; yÞ� maxðx; yÞ:

Lemma 2.1 demonstrates the structure of uninorms U (see Fig. 4). For each ðx; yÞ 2 ½0; e�2;
the function of a uninorm likes a t-norm. For each ðx; yÞ 2 ½e; 1�2; the function of a uninorm
likes a t-conorm.

Definition 2.8 (Fodor etal. 1997) Let U be a uninorm with neutral element e 2�0; 1½; if there
exists a continuous strictly increasing function h : ½0; 1� ! ½�1;þ1� with hð0Þ ¼
�1; hðeÞ ¼ 0; hð1Þ ¼ þ1 such that

Uðx; yÞ ¼ h�1ðhðxÞ þ hðyÞÞ
for all ðx; yÞ 2 ½0; 1� 
 ½0; 1� n ð0; 1Þ; ð1; 0Þf g; then U is representable. The function h is said
to be the additive generator of representable uninorm U .

In this paper, the class of the representable uninorms are written as U rep:

Lemma 2.2 (Fodor etal. 1997) Let U be a representable uninorm with neutral element
e 2�0; 1½: Then, for each x 2 ½0; 1�; there exists a strong negation N given by NðxÞ ¼
h�1ð�hðxÞÞ with NðeÞ ¼ e such that

Uðx; yÞ ¼ NðUðNðxÞ;NðyÞÞÞ
for each ðx; yÞ 2 ½0; 1� 
 ½0; 1� n fð0; 1Þ; ð1; 0Þg:

For each U 2 U rep; the strong negation N on [0, 1] derived from the additive generator of U
is always written as Nr: We list some commonly used uninorms (see Fig. 5) from Yager and
Rybalov (1996) and Fodor et al (1997) as follows.

Example 2.3

(1) The uninorm U�
e : ½0; 1�2 ! ½0; 1� with neutral element e 2 ½0; 1� is given, for any

u; v 2 ½0; 1�; by

Fig. 4 The structure of uninorms
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U�
e ðu; vÞ ¼

minfu; vg; ðu; vÞ 2 ½0; e�2;
maxfu; vg; otherwise:

(

(2) The uninorm Ue
� : ½0; 1�2 ! ½0; 1� with neutral element e 2 ½0; 1� is given, for any

u; v 2 ½0; 1�; by

Ue
� ðu; vÞ ¼

maxfu; vg; ðu; vÞ 2 ½e; 1�2;
minfu; vg; otherwise:

(

(3) Take the additive generator as hðxÞ ¼ ln x
1�x

� �
; it follows that

Usðx; yÞ ¼
0; ðx; yÞ 2 fð1; 0Þ; ð0; 1Þg;
xy

ð1� xÞð1� yÞ þ xy
; otherwise:

8<
:

Then Us is a representable uninorm with neutral element e ¼ 0:5 and strong negation
NrðxÞ ¼ 1� x for each x 2 ½0; 1�:

(4) For each b[ 0; take the additive generator as hbðxÞ ¼ ln � 1
b � lnð1� xÞ

� �
; it follows

that

Ubðx; yÞ ¼
1; ðx; yÞ 2 fð1; 0Þ; ð0; 1Þg;

1� exp � 1

b
� lnð1� xÞ � lnð1� yÞ

� 	
; otherwise:

8<
:

Then Ub is a representable uninorm with neutral element e ¼ 1� expð�bÞ and

strong negation NrðxÞ ¼ 1� exp b2

lnð1�xÞ
� �

for each x 2 ½0; 1�:

Fig. 5 3D plots of four uninorms
given in Example 2.3
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3 Transformation methods from semi-decision evaluation functions
to decision evaluation functions on the basis of uninorms

In this section, we give two novel transformation methods from semi-decision evaluation
functions to decision evaluation functions on the basis of uninorms and representable uni-
norms, respectively.

3.1 Transformation method on the basis of uninorms

In this subsection, if partially ordered set P ¼ ½0; 1�; then the corresponding strong negation
N is given by NðxÞ ¼ 1� x for each x 2 ½0; 1�:

Lemma 3.1 (Yager and Rybalov 1996) Let U be a uninorm with neutral element e 2 ½0; 1�,
then Û ; defined such that

Ûðx; yÞ ¼ 1� Uð1� x; 1� yÞ;
is a uninorm with neutral element ê ¼ 1� e:

In this paper, if we consider a uninorm U with neutral element e 2 ½0; 1� and a uninorm Û
with neutral element ê 2 ½0; 1� in the meantime, then they always denote a dual pair, that is,

ê ¼ 1� e and Ûðx; yÞ ¼ 1� Uð1� x; 1� yÞ for each x; y 2 ½0; 1�:

Theorem 3.1 Let V be a condition universe, U be a decision universe, E : MapðV ;PCÞ !
MapðU ; ½0; 1�Þ be a semi-decision evaluation function of U, U and Û be two uninorms with
neutral element e and ê such that 1U � Eðð1PC ÞV Þ � ðeU \ êU Þ: For each A 2 MapðV ;PCÞ
and x 2 U ; take

EðU ;Û ;NPC ÞðAÞðxÞ ¼
Uð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ

2

þ Ûð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

:

Then EðU ;Û ;NPC Þ is a decision evaluation function of U.

Proof

(1) Minimum element axiom

(i) Let e; ê 2 ½0; 1� with e� ê: Then, it follows that

1U � Eðð1PC ÞV Þ � ðeU \ êU Þ ) 1U ðxÞ � Eðð1PC ÞV ÞðxÞ� ðeU \ êU ÞðxÞ
) 1� Eðð1PC ÞV ÞðxÞ� eU ðxÞ ^ êU ðxÞ
) 1� Eðð1PC ÞV ÞðxÞ� e;
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for each x 2 U : Therefore, it follows that

EðU;Û ;NPC
Þðð0PC ÞV ÞðxÞ ¼

Uð1� EðNPC ðð0PC ÞV ÞÞðxÞ;Eðð0PC ÞV ÞðxÞÞ
2

þ Ûð1� EðNPC ðð0PC ÞV ÞÞðxÞ;Eðð0PC ÞV ÞðxÞÞ
2

¼Uð1� Eðð1PC ÞV ÞðxÞ; 0U ðxÞÞ
2

þ Ûð1� Eðð1PC ÞV ÞðxÞ; 0U ðxÞÞ
2

� Uðe; 0Þ þ Ûðe; 0Þ
2

¼0;

for each x 2 U :
(ii) Let e; ê 2 ½0; 1� with e	 ê: Then, it can be verified similarly to above that

EðU;Û;NPC Þðð0PC ÞV ÞðxÞ ¼ 0 for each x 2 U :

Therefore, one obtains that EðU ;Û ;NPC Þðð0PC ÞV Þ ¼ 0U :

(2) Monotonicity axiom
Let A;B 2 MapðV ;PCÞ with A �PC B: Then, one gets that

EðU;Û ;NPC
ÞðAÞðxÞ ¼

Uð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

þ Ûð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

� Uð1� EðNPC ðBÞÞðxÞ;EðBÞðxÞÞ
2

þ Ûð1� EðNPC ðBÞÞðxÞ;EðBÞðxÞÞ
2

¼EðU;Û ;NPC ÞðBÞðxÞ;
for each x 2 U : Therefore, one concludes that EðU ;Û;NPC ÞðAÞ � EðU ;Û ;NPC ÞðBÞ:

(3) Complement axiom
For each A 2 MapðV ;PCÞ and x 2 U ; it follows that
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NðEðU ;Û ;NPC ÞðAÞÞðxÞ ¼1� Uð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

�

þ Ûð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

!

¼ 1� Uð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

þ 1� Ûð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

¼ ÛðEðNPC ðAÞÞðxÞ; 1� EðAÞðxÞÞ
2

þ UðEðNPC ðAÞÞðxÞ; 1� EðAÞðxÞÞ
2

¼EðU ;Û ;NPC
ÞðNPC ðAÞÞðxÞ:

Therefore, one obtains that NðEðU;Û ;NPC
ÞðAÞÞ ¼ EðU;Û ;NPC

ÞðNPC ðAÞÞ:
h

Remark 3.1 In Theorem 3.1, if we take the neutral element of uninorm U as e ¼ 1; then one
concludes that ê ¼ 1� e ¼ 0: Therefore, for each x 2 U ; it follows that

1U � Eðð1PC ÞV Þ � ðeU \ êU Þ ¼) 1U ðxÞ � Eðð1PC ÞV ÞðxÞ� ðeU \ êU ÞðxÞ
¼) 1� Eðð1PC ÞV ÞðxÞ� ð1U ðxÞ ^ 0U ðxÞÞ
¼) Eðð1PC ÞV ÞðxÞ	 1� ð1 ^ 0Þ
¼) Eðð1PC ÞV ÞðxÞ	 1:

Thus, one obtains that Eðð1PC ÞV Þ ¼ 1U : Then

EðU;Û;NPC ÞðAÞðxÞ ¼
Tð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ

2

þ Sð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
2

becomes the transformation method given in Theorem 3.5 of Hu (2017). Therefore, The-
orem 3.5 of Hu (2017) is a special case of Theorem 3.1. Theorem 3.1 generalizes Theo-
rem 3.5 of Hu (2017) and includes more cases. In addition, Theorem 3.1 has the looser
constraint conditions of semi-decision evaluation functions than Theorem 3.5 of Hu (2017).

Lemma 3.2 (Jia and Qiao 2020) Let O be an overlap function, G be a grouping function,
E : MapðV ;PCÞ ! MapðU ; ½0; 1�Þ be a semi-decision evaluation function of U and
Eðð1PC ÞV Þ ¼ 1U : For each x 2 U and A 2 MapðV ;PCÞ; take

EðO;G;NPC ÞðAÞðxÞ ¼
OðEðAÞðxÞ; 1� EðNPC ðAÞÞðxÞÞ

2

þ GðEðAÞðxÞ; 1� EðNPC ðAÞÞðxÞÞ
2

:
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Then EðO;G;NPC Þ is a decision evaluation function of U.

Remark 3.2 From Remark 3.1 and item (1) of Example 2.1, if we take uninorm U as a
positive and continuous t-norm T, then the transformation method given in Theorem 3.1
becomes the transformation method given in Lemma 3.2. In addition, Theorem 3.1 has the
looser constraint conditions of semi-decision evaluation functions than Lemma 3.2.

3.2 Transformation method on the basis of representable uninorms

Theorem 3.2 Let V be a condition universe, U be a decision universe and E :
MapðV ;PCÞ ! MapðU ; ½0; 1�Þ be a semi-decision evaluation function of U satisfying the
following conditions:

(1) EðAÞðxÞ[ 0 if A 6¼ ð0PC ÞV for each x 2 U ;

(2) EðAÞðxÞ\1 for each x 2 U and A 2 MapðV ;PCÞ:
Moreover, let U be a representable uninorm with neutral element e 2�0; 1½ and strong
negation Nr such that NrðEðð1PC ÞV ÞÞ � eU : For each A 2 MapðV ;PCÞ and x 2 U ; take

EðUrep ;NPC ÞðAÞðxÞ ¼ UðNr EðNPC ðAÞÞðxÞð Þ;EðAÞðxÞÞ:
Then EðU rep;NPC Þ is a decision evaluation function of U.

Proof

(1) Minimum element axiom
Since NrðEðð1PC ÞV ÞÞ � eU ; it follows that

EðUrep;NPC Þ ð0PC ÞV
� �ðxÞ ¼ U Nr EðNPC ðð0PC ÞV ÞÞðxÞ

� �
;E ð0PC ÞV

� �ðxÞ� �
¼ UðNrðEðð1PC ÞV ÞðxÞÞ; 0U ðxÞÞ
�UðeU ðxÞ; 0Þ
¼ 0;

for each x 2 U : Therefore, one obtains that EðU rep;NPC Þðð0PC ÞV Þ ¼ 0U :

(2) Monotonicity axiom
Let A;B 2 MapðV ;PCÞ with A �PC B: Then, one gets that

EðU rep;NPC ÞðAÞðxÞ ¼ UðNrðEðNPC ðAÞÞðxÞÞ;EðAÞðxÞÞ
�UðNrðEðNPC ðBÞÞðxÞÞ;EðBÞðxÞÞ
¼ EðU rep;NPC ÞðBÞðxÞ;

for each x 2 U : Therefore, one concludes that EðU rep;NPC ÞðAÞ � EðU rep;NPC ÞðBÞ:
(3) Complement axiom

Firstly, for each x 2 U and A 2 MapðV ;PCÞ; consider the following four cases.
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(i) Let EðAÞðxÞ ¼ 0: Then one has that A ¼ ð0PC ÞV . Thus it follows that
NrðEðNPC ðAÞÞðxÞÞ ¼NrðEðNPC ðð0PC ÞV ÞÞðxÞÞ

¼NrðEðð1PC ÞV ÞðxÞÞ
� eU ðxÞ
\1:

Thus, one obtains that NrðEðNPC ðAÞÞðxÞÞ 6¼ 1:
(ii) Let Nr EðNPC ðAÞÞðxÞð Þ ¼ 0: Then one has that EðNPC ðAÞÞðxÞ ¼ 1 which

conflicts with the assumption.
(iii) Let EðNPC ðAÞÞðxÞ ¼ 0: Then one has that NPC ðAÞ ¼ ð0PC ÞV : Thus it follows

that A ¼ ð1PC ÞV : Thus, one gets that

NrðEðAÞðxÞÞ ¼ NrðEðð1PC ÞV ÞðxÞÞ� eU ðxÞ\1:

Thus, one obtains that NrðEðAÞðxÞÞ 6¼ 1:
(iv) Let NrðEðAÞðxÞÞ ¼ 0: Then one has that EðAÞðxÞ ¼ 1 which conflicts with

the assumption.

According to above discussions, one concludes that
fðNr EðNPC ðAÞÞðxÞð Þ;EðAÞðxÞÞ; ðEðNPC ðAÞÞðxÞ; NrðEðAÞðxÞÞÞg � ½0; 1� 
 ½0; 1� n
fð0; 1Þ; ð1; 0Þg: Then, it follows that

NrðEðUrep ;NPC ÞðAÞÞðxÞ ¼ NrðUðNrðEðNPC ðAÞÞðxÞÞ;EðAÞðxÞÞÞ
¼ UðEðNPC ðAÞÞðxÞ;NrðEðAÞðxÞÞÞ
¼ EðU rep;NPC ÞðNPC ðAÞÞðxÞ:

Therefore, one obtains that NrðEðUrep ;NPC ÞðAÞÞ ¼ EðUrep ;NPC ÞðNPC ðAÞÞ:
h

4 Construction methods of semi-decision evaluation functions
and decision evaluation functions based on uninorms

On the basis of the transformation methods from semi-decision evaluation functions to
decision evaluation functions given in previous works (Hu 2017; Jia and Qiao 2020; Qiao
and Hu 2018) and Sect. 3, a decision evaluation function can be obtained from known semi-
decision evaluation functions. Therefore, in this section, in order to get more decision
evaluation functions, we give some novel construction methods of semi-decision evaluation
function related to known semi-decision evaluation functions, fuzzy sets, fuzzy relations,
interval-valued fuzzy sets and hesitant fuzzy sets, respectively. At the same time, we give
some novel construction methods of decision evaluation function based on repre-
sentable uninorms. We also research the relationship between t-norms and t-conorms-based
construction methods of semi-decision evaluation functions given in Qiao and Hu (2018)
with uninorms-based construction methods of semi-decision evaluation functions proposed
in this section.
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4.1 Construction methods related to known semi-decision evaluation functions

Proposition 4.1 Let V be a condition universe, U be a decision universe, E1;E2 :
MapðV ;PCÞ ! MapðU ; ½0; 1�Þ be two semi-decision evaluation functions of U and U be a
uninorm with neutral element e 2 ½0; 1�: For each A 2 MapðV ;PCÞ and x 2 U ; take

EUðAÞðxÞ ¼ UðE1ðAÞðxÞ;E2ðAÞðxÞÞ:
Then EU is a semi-decision evaluation function of U.

Proof It can be checked in a similar way as that of Proposition 3.1 of Qiao and Hu (2018).
h

Remark 4.1

(1) In Proposition 4.1, take the neutral element of uninorm U as e ¼ 1: Then

EUðAÞðxÞ ¼ TðE1ðAÞðxÞ;E2ðAÞðxÞÞ
becomes the construction method given in Proposition 3.1 of Qiao and Hu (2018).

(2) In Proposition 4.1, take the neutral element of uninorm U as e ¼ 0: Then

EUðAÞðxÞ ¼ SðE1ðAÞðxÞ;E2ðAÞðxÞÞ
becomes the construction method given in Proposition 3.2 of Qiao and Hu (2018).

(3) According to items (1) and (2), Propositions 3.1 and 3.2 of Qiao and Hu (2018) are
special cases of Proposition 4.1 and unified by Proposition 4.1. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.1.

Proposition 4.2 Let V be a condition universe, U be a decision universe, E1;E2 :
MapðV ;PCÞ ! MapðU ; ½0; 1�Þ be two semi-decision evaluation functions of U, U i be a
uninorm with neutral element ei 2 ½0; 1� for i ¼ 1; 2; � � � ; n and ki 2 ½0; 1� for i ¼ 1; 2; � � � ; n
with

Pn
i¼1 ki ¼ 1. For each A 2 MapðV ;PCÞ and x 2 U ; take

E U ;kð ÞðAÞðxÞ ¼
Xn
i¼1

kiU iðE1ðAÞðxÞ;E2ðAÞðxÞÞ:

Then E U ;kð Þ is a semi-decision evaluation function of U.

Proof It can be immediately derived from Proposition 4.1 . h

Remark 4.2 In Proposition 4.2, take n ¼ 2 and the neutral element of uninorm U1 and U2 as
e1 ¼ 1 and e2 ¼ 0, respectively. Then

E U ;kð ÞðAÞðxÞ ¼ k1TðE1ðAÞðxÞ;E2ðAÞðxÞÞ þ k2SðE1ðAÞðxÞ;E2ðAÞðxÞÞ
becomes the construction method given in Proposition 3.3 of Qiao and Hu (2018).
Therefore, Proposition 3.3 of Qiao and Hu (2018) is a special case of Proposition 4.2. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.2.
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Proposition 4.3 Let V be a condition universe, U be a decision universe, E :

MapðV ;PCÞ ! MapðU ; ½0; 1�Þ be a semi-decision evaluation functions of U, NF be a
negation on [0, 1] and U be a uninorm with neutral element e 2 ½0; 1� such that
NFðEðð1PC ÞV ÞÞ � eU : For each A 2 MapðV ;PCÞ and x 2 U ; take

EðU ;NPC ÞðAÞðxÞ ¼ UðNFðEðNPC ðAÞÞðxÞÞ;EðAÞðxÞÞ:
Then EðU ;NPC Þ is a semi-decision evaluation function of U.

Proof

(1) Minimum element axiom
Since NFðEðð1PC ÞV ÞÞ � eU ; it follows that

EðU;NPC Þðð0PC ÞV ÞðxÞ ¼ UðNFðEðNPC ðð0PC ÞV ÞÞðxÞÞ;Eðð0PC ÞV ÞðxÞÞ
¼ UðNFðEðð1PC ÞV ÞðxÞÞ; ð0PDÞU ðxÞÞ
�UðeU ðxÞ; 0Þ
¼ 0;

for each x 2 U : Therefore, one obtains that EðU ;NPC Þðð0PC ÞV Þ ¼ 0U :

(2) Monotonicity axiom
Let A;B 2 MapðV ;PCÞ with A �PC B: Then, one gets that

EðU ;NPC ÞðAÞðxÞ ¼ UðNFðEðNPC ðAÞÞðxÞÞ;EðAÞðxÞÞ
�UðNFðEðNPC ðBÞÞðxÞÞ;EðBÞðxÞÞ
¼ EðU ;NPC ÞðBÞðxÞ;

for each x 2 U : Therefore, one concludes that EðU ;NPC ÞðAÞ � EðU;NPC ÞðBÞ:
h

Remark 4.3

(1) In Proposition 4.3, take the neutral element of uninorm U as e ¼ 1 and the negation
NF as NFðxÞ ¼ 1� x for all x 2 ½0; 1�. Then

EðU;NPC ÞðAÞðxÞ ¼ Tð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
becomes the construction method given in Proposition 3.4 of Qiao and Hu (2018).

(2) In Proposition 4.3, take the neutral element of uninorm U as e ¼ 0 and the negation
NF as NFðxÞ ¼ 1� x for all x 2 ½0; 1�. Then, one gets that

1 ¼ 1U ðxÞ � 0U ðxÞ ¼ 1U ðxÞ � eU ðxÞ�Eðð1PC ÞV ÞðxÞ� 1;

for each x 2 U : Therefore, one obtains that Eðð1PC ÞV Þ ¼ 1U : Then

EðU ;NPC ÞðAÞðxÞ ¼ Sð1� EðNPC ðAÞÞðxÞ;EðAÞðxÞÞ
becomes the construction method given in Proposition 3.5 of Qiao and Hu (2018).
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(3) According to items (1) and (2), Propositions 3.4 and 3.5 of Qiao and Hu (2018) are
special cases of Proposition 4.3 and unified by Proposition 4.3. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.3.

4.2 Construction methods related to fuzzy sets

Let X ¼ fx1; x2; :::; xmg and Y ¼ fy1; y2; :::; yng be two nonempty finite sets. In the fol-
lowing, we always denote ðm
 nÞ-dimensional fuzzy matrix R ¼ ðrijÞ given by rij ¼
Rðxi; yiÞ as the fuzzy relation R under the X 
 Y (Fan 2000).

Proposition 4.4 Let U be a condition universe and also be a decision universe, U be a
uninorm with neutral element e 2 ½0; 1� and PC ¼ PD ¼ ½0; 1�: For each A 2 MapðU ; ½0; 1�Þ
and x 2 U ; take EðU ;IÞ : MapðU ; ½0; 1�Þ ! MapðU ; ½0; 1�Þ as:

EðU;IÞðAÞðxÞ ¼ UðAðxÞ;AðxÞÞ:
Then EðU ;IÞ is a semi-decision evaluation function of U.

Proof

(1) Minimum element axiom
Since Uð0; 0Þ ¼ 0; it follows that

EðU ;IÞð0U ÞðxÞ ¼ Uð0U ðxÞ; 0U ðxÞÞ ¼ 0;

for each x 2 U : Therefore, one obtains that EðU ;IÞð0U Þ ¼ 0U :
(2) Monotonicity axiom

Let A;B 2 MapðU ; ½0; 1�Þ with A � B: Then, one gets that

EðU ;IÞðAÞðxÞ ¼ UðAðxÞ;AðxÞÞ�UðBðxÞ;BðxÞÞ ¼ EðU ;IÞðBÞðxÞ;
for each x 2 U : Therefore, one concludes that EðU ;IÞðAÞ � EðU;IÞðBÞ:

h

Remark 4.4

(1) In Proposition 4.4, take the neutral element of uninorm U as e ¼ 1: Then

EðU;IÞðAÞðxÞ ¼ TðAðxÞ;AðxÞÞ
becomes the construction method given in Sect. 3 of Qiao and Hu (2018).

(2) In Proposition 4.4, take the neutral element of uninorm U as e ¼ 0: Then

EðU ;IÞðAÞðxÞ ¼ SðAðxÞ;AðxÞÞ
becomes the construction method given in Sect. 3 of Qiao and Hu (2018).

(3) The construction methods given in items (1) and (2) are special cases of Proposition
4.4 and unified by Proposition 4.4. In addition, more novel semi-decision evaluation
functions can be obtained from Proposition 4.4.
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Theorem 4.1 Let U be a condition universe and also be a decision universe, U be a
representable uninorm with neutral element e 2�0; 1½ and PC ¼ PD ¼ ½0; 1�: For each A 2
MapðU ; ½0; 1�Þ and x 2 U ; take EðUrep ;IÞ : MapðU ; ½0; 1�Þ ! MapðU ; ½0; 1�Þ as:

EðU rep;IÞðAÞðxÞ ¼ UðAðxÞ;AðxÞÞ:
Then EðU rep;IÞ is a decision evaluation function of U.

Proof Items (E1) and (E2) of Definition 1.1 can be immediately verified from Proposition
4.4. We only verify item (E3) of Definition 1.1 as follows.

For each x 2 U and A 2 MapðU ; ½0; 1�Þ; it follows that
NrðEðUrep;IÞðAÞÞðxÞ ¼ NrðUðAðxÞ;AðxÞÞÞ

¼ UðNrðAðxÞÞ;NrðAðxÞÞÞ
¼ EðU rep;IÞðNrðAÞÞðxÞ:

Therefore, one obtains that NrðEðUrep ;IÞðAÞÞ ¼ EðUrep;IÞðNrðAÞÞ: h

Example 4.1 Let U ¼ ½0; 1� and A be a fuzzy set of U with membership function AðxÞ ¼ x:
If we consider the additive generator hðxÞ ¼ lnð x

1�xÞ; from the construction method dis-
cussed in Theorem 4.1, then we obtain a decision evaluation function EðU rep;IÞðAÞ of U (see
Fig. 6) as follows:

EðUrep ;IÞðAÞðxÞ ¼
x2

2x2 � 2xþ 1
:

If we take w ¼ 0:8 and x ¼ 0:2; then three-way decision is given as follows.

(1) Acceptance region: ACPð0:8;0:2ÞðEðU rep;IÞ;AÞ ¼ fxj 23 � x� 1g:
(2) Rejection region: REJð0:8;0:2ÞðEðU rep;IÞ;AÞ ¼ fxj0� x� 1

3g:

Fig. 6 Decision evaluation
function EðUrep ;IÞðAÞ and fuzzy set
A
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(3) Uncertain region: UNCð0:8;0:2ÞðEðU rep;IÞ;AÞ ¼ fxj 13\x\ 2
3g:

Lemma 4.1 Let U be a uninorm with neutral element e 2 ½0; 1�; X be a universe and
k 2 ½0; 1�. For each A 2 MapðX ; ½0; e�Þ and x 2 X ; one has that

UðAðxÞ; kÞ� k:

Proof Since A 2 MapðX ; ½0; e�Þ; it follows that
UðAðxÞ; kÞ�Uðe; kÞ ¼ k;

for each x 2 X : Therefore, one concludes that UðAðxÞ; kÞ� k: h

Proposition 4.5 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e 2�0; 1�; PC ¼ ½0; e�; PD ¼ ½0; 1� and R 2 MapðU 

V ; ½0; e�Þ such that

P
y2V Rðx; yÞ 6¼ 0 for each x 2 U. For each A 2 MapðV ; ½0; e�Þ and

x 2 U ; take EðU ;RÞ : MapðV ; ½0; e�Þ ! MapðU ; ½0; 1�Þ as:

EðU ;RÞðAÞðxÞ ¼
P

y2V UðRðx; yÞ;AðyÞÞP
y2V Rðx; yÞ :

Then EðU ;RÞ is a semi-decision evaluation function of U.

Proof Firstly, from Lemma 4.1, one obtains that EðU;RÞ is well defined.

(1) Minimum element axiom
Since R 2 MapðU 
 V ; ½0; e�Þ; it follows that

EðU;RÞðð0PC ÞV ÞðxÞ ¼
P

y2V UðRðx; yÞ; ð0PC ÞV ðyÞÞP
y2V Rðx; yÞ

�
P

y2V Uðe; 0ÞP
y2V Rðx; yÞ

¼ 0;

for each x 2 U : Therefore, one obtains that EðU ;RÞðð0PC ÞV Þ ¼ 0U :
(2) Monotonicity axiom

Let A;B 2 MapðV ; ½0; e�Þ with A �PC B: Then, one gets that

EðU ;RÞðAÞðxÞ ¼
P

y2V UðRðx; yÞ;AðyÞÞP
y2V Rðx; yÞ

�
P

y2V UðRðx; yÞ;BðyÞÞP
y2V Rðx; yÞ

¼ EðU;RÞðBÞðxÞ;
for each x 2 U : Therefore, one concludes that EðU ;RÞðAÞ � EðU;RÞðBÞ:

h
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Remark 4.5 In Proposition 4.5, take the neutral element of uninorm U as e ¼ 1: Thus, one
has that PC ¼ ½0; 1� and R 2 MapðU 
 V ; ½0; 1�Þ: Then

EðU ;RÞðAÞðxÞ ¼
P

y2V TðRðx; yÞ;AðyÞÞP
y2V Rðx; yÞ

becomes the construction method given in Proposition 4.2 of Qiao and Hu (2018).
Therefore, Proposition 4.2 of Qiao and Hu (2018) is a special case of Proposition 4.5. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.5.

Proposition 4.6 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e 2 ½0; 1�; PC ¼ PD ¼ ½0; 1� and R 2 MapðU 
 V ; ½0; e�Þ. For
each A 2 MapðV ; ½0; 1�Þ and x 2 U ; take E

0
ðU;RÞ : MapðV ; ½0; 1�Þ ! MapðU ; ½0; 1�Þ as:

E
0
ðU ;RÞðAÞðxÞ ¼

P
y2V UðRðx; yÞ;AðyÞÞ

jV j :

Then E
0
ðU ;RÞ is a semi-decision evaluation function of U.

Proof It can be checked in a similar way as that of Proposition 4.5. h

Proposition 4.7 Let V be a finite condition universe, U be a finite decision universe, U1;U2

be two uninorms with neutral element e1; e2 2 ½0; 1�; e ¼ e1 ^ e2; PC ¼ PD ¼ ½0; 1� and
R 2 MapðU 
 V ; ½0; e�Þ. For each A 2 MapðV ; ½0; 1�Þ and x 2 U ; take EðU1;U2;RÞ :
MapðV ; ½0; 1�Þ ! MapðU ; ½0; 1�Þ as:

EðU1;U2;RÞðAÞðxÞ ¼
P

y2V U1ðU2ðRðx; yÞ;AðyÞÞ;AðyÞÞ
jV j :

Then EðU1;U2;RÞ is a semi-decision evaluation function of U.

Proof

(1) Minimum element axiom

(i) Let e1; e2 2 ½0; 1� with e1 � e2; then one obtains that e ¼ e1 ^ e2 ¼ e1 and
Rðx; yÞ� e� e2 for each ðx; yÞ 2 U 
 V . Thus, it follows that

EðU1;U2;RÞðð0PC ÞV ÞðxÞ ¼
P

y2V U1ðU2ðRðx; yÞ; ð0PC ÞV ðyÞÞ; ð0PC ÞV ðyÞÞ
jV j

�
P

y2V U1ðU2ðe2; 0Þ; 0Þ
jV j

¼ 0;

for each x 2 U :
(ii) Let e1; e2 2 ½0; 1� with e1 � e2; then it can be verified similarly to above that

EðU1;U2;RÞðð0PC ÞV ÞðxÞ ¼ 0 for each x 2 U :

Therefore, one obtains that EðU1;U2;RÞðð0PC ÞV Þ ¼ 0U :
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(2) Monotonicity axiom
Let A;B 2 MapðV ; ½0; 1�Þ with A � B: Then, one gets that

EðU1;U2;RÞðAÞðxÞ ¼
P

y2V U1ðU2ðRðx; yÞ;AðyÞÞ;AðyÞÞ
jV j

�
P

y2V U1ðU2ðRðx; yÞ;BðyÞÞ;BðyÞÞ
jV j

¼ EðU1;U2;RÞðBÞðxÞ;
for each x 2 U : Therefore, one concludes that EðU1;U2;RÞðAÞ � EðU1;U2;RÞðBÞ:

h

Remark 4.6 In Propositions 4.5–4.7, if we take each uninorm U as a conjunctive uninorm,
then the condition R 2 MapðU 
 V ; ½0; e�Þ can be relaxed to R 2 MapðU 
 V ; ½0; 1�Þ.

4.3 Construction methods related to interval-valued fuzzy sets

Proposition 4.8 Let U be a condition universe and also be a decision universe, U be a
uninorm with neutral element e 2 ½0; 1�; PC ¼ I ð2Þ and PD ¼ ½0; 1�: Take EðU ;~Þ :
MapðU ; I ð2ÞÞ ! MapðU ; ½0; 1�Þ as:

EðU;~ÞðAÞðxÞ ¼ UðAþðxÞ;A�ðxÞÞ
for each x 2 U and A 2 MapðU ; I ð2ÞÞ; then EðU;~Þ is a semi-decision evaluation function of
U.

Proof It can be checked in a similar way as that of Proposition 4.3 of Qiao and Hu (2018).
h

Remark 4.7

(1) In Proposition 4.8, take the neutral element of uninorm U as e ¼ 1: Then

EðU ;~ÞðAÞðxÞ ¼ TðAþðxÞ;A�ðxÞÞ
becomes the construction method given in Proposition 4.3 of Qiao and Hu (2018).

(2) In Proposition 4.8, take the neutral element of uninorm U as e ¼ 0: Then

EðU;~ÞðAÞðxÞ ¼ SðAþðxÞ;A�ðxÞÞ
becomes the construction method given in Proposition 4.4 of Qiao and Hu (2018).

(3) According to items (1) and (2), Propositions 4.3 and 4.4 of Qiao and Hu (2018) are
special cases of Proposition 4.8 and unified by Proposition 4.8. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.8.

Theorem 4.2 Let U be a condition universe and also be a decision universe, U be a
representable uninorm with neutral element e 2�0; 1½; PC ¼ I ð2Þ n f½0; 1�g and PD ¼ ½0; 1�:
Take EðU rep;~Þ : MapðU ;PCÞ ! MapðU ; ½0; 1�Þ as:
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EðU rep;~ÞðAÞðxÞ ¼ UðAþðxÞ;A�ðxÞÞ
for each x 2 U and A 2 MapðU ;PCÞ; then EðU rep;~Þ is a decision evaluation function of U.

Proof Items (E1) and (E2) of Definition 1.1 can be immediately verified from Proposition
4.8. We only verify item (E3) of Definition 1.1 as follows.

For any A 2 PC ; it follows that

0 ¼ ½0; 0� �A� ½1; 1� ¼ 1:

Therefore, 0 is the minimum element of PC and 1 is the maximum element of PC: Let
B ¼ ½0; 1�; then one has that

NrðBÞ ¼ Nrð1Þ;Nrð0Þ½ � ¼ ½0; 1�:
Therefore, NrðAÞ ¼ NrðAþÞ;NrðA�Þ½ � is strong negation on PC:

For each A 2 MapðV ;PCÞ and x 2 U , consider the following two cases.

(1) Let NrðA�ðxÞÞ ¼ 0: Then one has that A�ðxÞ ¼ 1: Therefore, one concludes that
AþðxÞ ¼ 1: Then one obtains that NrðAþðxÞÞ ¼ 0 6¼ 1:

(2) Let NrðAþðxÞÞ ¼ 0: Then one has that AþðxÞ ¼ 1: Since ½0; 1� 62 PC; one obtains that
NrðA�ðxÞÞ 6¼ Nrð0Þ ¼ 1:

According to above discussions, one concludes that
fðAþðxÞ;A�ðxÞÞ; ðNrðAþðxÞÞ;NrðA�ðxÞÞÞg � ½0; 1� 
 ½0; 1� n fð0; 1Þ; ð0; 1Þg: Then, it fol-
lows that

NrðEðU rep;~ÞðAÞÞðxÞ ¼ NrðUðAþðxÞ;A�ðxÞÞÞ
¼ UðNrðAþðxÞÞ;NrðA�ðxÞÞÞ
¼ EðUrep ;~ÞðNrðAÞÞðxÞ:

Therefore, one obtains that NrðEðUrep ;~ÞðAÞÞ ¼ EðU rep;~ÞðNrðAÞÞ: h

Example 4.2 Let U ¼ ½0; 1�; A be a interval-valued fuzzy set of U with membership
function AðxÞ ¼ ½0:1þ 0:8x; 0:9�. If we consider the additive generator h1ðxÞ ¼ lnð� lnð1�
xÞÞ; from the construction method discussed in Theorem 4.2, we obtain a decision evalu-
ation function EðU rep;~ÞðAÞ of U (see Fig. 7) as follows:

EðU rep;~ÞðAÞðxÞ ¼ 1� exp � lnð0:1Þ � lnð0:9� 0:8xÞð Þ:
If we take w ¼ 0:6 and x ¼ 0:4; then three-way decision is given as follows.

(1) Acceptance region: ACPð0:6;0:4ÞðEðU rep;~Þ;AÞ ¼ fxj 98 � 5
4 exp � lnð0:4Þ

lnð0:1Þ
� �

� x� 1g:
(2) Rejection region: REJð0:6;0:4ÞðEðU rep;~Þ;AÞ ¼ fxj0� x� 9

8 � 5
4 exp � lnð0:6Þ

lnð0:1Þ
� �

g:
(3) Uncertain region:

UNCð0:6;0:4ÞðEðU rep;~Þ;AÞ ¼ fxj 98 � 5
4 exp � lnð0:6Þ

lnð0:1Þ
� �

\x\ 9
8 � 5

4 exp � lnð0:4Þ
lnð0:1Þ

� �
g:
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Let X be a universe and l 2 ½0; 1�. In the following, we define lð2Þ as the family of interval
numbers over ½0; l�; i.e., lð2Þ ¼ f½k�; kþ� : 0� k� � kþ �lg: Then, for each A 2
MapðX ; lð2ÞÞ; A is also a interval-valued fuzzy set. For each A 2 MapðX ; lð2ÞÞ, there exists
a fuzzy set AðmÞ 2 MapðX ; ½0; l�Þ with membership function AðmÞðxÞ ¼ A�ðxÞþAþðxÞ

2 for each
x 2 X :

Proposition 4.9 Let V be a finite condition universe, U be a finite decision universe, U be a
uninorm with neutral element e 2�0; 1�; PC ¼ eð2Þ; PD ¼ ½0; 1� and R 2 MapðU 
 V ; ½0; e�Þ
such that

P
y2V Rðx; yÞ 6¼ 0 for each x 2 U. Take EðU;}Þ : MapðV ; eð2ÞÞ ! MapðU ; ½0; 1�Þ

as:

EðU;}ÞðAÞðxÞ ¼
P

y2V UðRðx; yÞ;AðmÞðyÞÞP
y2V Rðx; yÞ

for each x 2 U and A 2 MapðV ; eð2ÞÞ; then EðU;}Þ is a semi-decision evaluation function of
U.

Proof Firstly, from Lemma 4.1, one obtains that EðU;}Þ is well defined.

(1) Minimum element axiom
Since R 2 MapðU 
 V ; ½0; e�Þ; it follows that

EðU ;}Þð0V ÞðxÞ ¼
P

y2V UðRðx; yÞ; 0ðmÞV ðyÞÞP
y2V Rðx; yÞ

�
P

y2V Uðe; 0ÞP
y2V Rðx; yÞ

¼ 0;

for each x 2 U : Therefore, one obtains that EðU ;}Þð0V Þ ¼ 0U :

Fig. 7 Decision evaluation
function EðUrep ;~ÞðAÞ and interval-
valued fuzzy set A
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(2) Monotonicity axiom
Let A;B 2 MapðV ; eð2ÞÞ with A �PC B: Then, one gets that

EðU ;}ÞðAÞðxÞ ¼
P

y2V UðRðx; yÞ;AðmÞðyÞÞP
y2V Rðx; yÞ

�
P

y2V UðRðx; yÞ;BðmÞðyÞÞP
y2V Rðx; yÞ

¼ EðU ;}ÞðBÞðxÞ;
for each x 2 U : Therefore, one concludes that EðU ;}ÞðAÞ � EðU ;}ÞðBÞ:

h

Remark 4.8 In Proposition 4.9, take the neutral element of uninorm U as e ¼ 1: Then one
obtains that PC ¼ I ð2Þ and R 2 MapðU 
 V ; ½0; 1�Þ: Then

EðU ;}ÞðAÞðxÞ ¼
P

y2V TðRðx; yÞ;AðmÞðyÞÞP
y2V Rðx; yÞ

becomes construction method given by Proposition 4.5 of Qiao and Hu (2018). Therefore,
Proposition 4.5 of Qiao and Hu (2018) is a special case of Proposition 4.9. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.9.

Proposition 4.10 Let V be a finite condition universe, U be a finite decision universe, U be
a uninorm with neutral element e 2 ½0; 1�; PC ¼ I ð2Þ; PD ¼ ½0; 1� and
R 2 MapðU 
 V ; ½0; e�Þ. Take EðU ;€Þ : MapðV ; I ð2ÞÞ ! MapðU ; ½0; 1�Þ as:

EðU;€ÞðAÞðxÞ ¼
P

y2V UðAðmÞðyÞ;Rðx; yÞÞ
jV j

for each x 2 U and A 2 MapðV ; I ð2ÞÞ; then EðU;€Þ is a semi-decision evaluation function of
U.

Proof It can be checked in a similar way as that of Proposition 4.9. h

Proposition 4.11 Let V be a finite condition universe, U be a finite decision universe, U be
a uninorm with neutral element e 2�0; 1�; PC ¼ eð2Þ; PD ¼ I ð2Þ and R 2 MapðU 
 V ; ½0; e�Þ
such that

P
y2V Rðx; yÞ 6¼ 0 for each x 2 U : Take E]

U : MapðV ; eð2ÞÞ ! MapðU ; I ð2ÞÞ as:

E]
UðAÞðxÞ ¼

P
y2V UðRðx; yÞ;A�ðyÞÞP

y2V Rðx; yÞ ;

P
y2V UðRðx; yÞ;AþðyÞÞP

y2V Rðx; yÞ

" #

for each x 2 U and A 2 MapðV ; eð2ÞÞ, then E]
U is a semi-decision evaluation function of U.

Proof Firstly, from Lemma 4.1, one obtains that E]
U is well defined.

(1) Minimum element axiom
Since R 2 MapðU 
 V ; ½0; e�Þ; it follows that
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E]
Uð0V ÞðxÞ ¼

P
y2V UðRðx; yÞ; 0�V ðyÞÞP

y2V Rðx; yÞ ;

P
y2V UðRðx; yÞ; 0þV ðyÞÞP

y2V Rðx; yÞ

" #

�
P

y2V Uðe; 0ÞP
y2V Rðx; yÞ ;

P
y2V Uðe; 0ÞP
y2V Rðx; yÞ

" #

¼ 0;

for each x 2 U : Therefore, one obtains that E]
Uð0V Þ ¼ 0U :

(2) Monotonicity axiom
Let A;B 2 MapðV ; eð2ÞÞ with A �PC B: Then, one gets that

E]
UðAÞðxÞ ¼

P
y2V UðRðx; yÞ;A�ðyÞÞP

y2V Rðx; yÞ ;

P
y2V UðRðx; yÞ;AþðyÞÞP

y2V Rðx; yÞ

" #

�
P

y2V UðRðx; yÞ;B�ðyÞÞP
y2V Rðx; yÞ ;

P
y2V UðRðx; yÞ;BþðyÞÞP

y2V Rðx; yÞ

" #

¼ E]
UðBÞðxÞ;

for each x 2 U : Therefore, one concludes that E]
UðAÞ �PD E]

UðBÞ:
h

Remark 4.9 In Proposition 4.11, take the neutral element of uninorm U as e ¼ 1: Then, one
concludes that PC ¼ I ð2Þ and R 2 MapðU 
 V ; ½0; 1�Þ: Then

E]
UðAÞðxÞ ¼

P
y2V TðRðx; yÞ;A�ðyÞÞP

y2V Rðx; yÞ ;

P
y2V TðRðx; yÞ;AþðyÞÞP

y2V Rðx; yÞ

" #

becomes the construction method given by Proposition 4.6 of Qiao and Hu (2018).
Therefore, Proposition 4.6 of Qiao and Hu (2018) is a special case of Proposition 4.11. In
addition, more novel semi-decision evaluation functions can be obtained from Proposition
4.11.

Remark 4.10 In Propositions 4.9 and 4.11, if take each uninorm U as a conjunctive uni-
norm, then the condition R 2 MapðU 
 V ; ½0; e�Þ can be relaxed to R 2 MapðU 
 V ; ½0; 1�Þ:

Proposition 4.12 Let V be a finite condition universe, U be a finite decision universe,
U1;U2 be two uninorms with neutral elements e1; e2 2 ½0; 1�; e ¼ e1 ^ e2; PC ¼ PD ¼ I ð2Þ

and R 2 MapðU 
 V ; ½0; e�Þ. Take E]
ðU1;U2Þ : MapðV ; I ð2ÞÞ ! MapðU ; I ð2ÞÞ as:

E]
ðU1;U2ÞðAÞðxÞ ¼

P
y2V U1ðU2ðRðx; yÞ;A�ðyÞÞ;A�ðyÞÞ

jV j ;



P

y2V U1ðU2ðRðx; yÞ;AþðyÞÞ;AþðyÞÞ
jV j

�
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for each x 2 U and A 2 MapðV ; I ð2ÞÞ, then E]
ðU1;U2Þ is a semi-decision evaluation function of

U.

Proof It can be immediately derived from Propositions 4.7 and 4.11. h

4.4 Construction methods related to fuzzy relations

Proposition 4.13 Let U be a nonempty finite universe, U 
 U be a condition universe and
also be a decision universe, U be a uninorm with neutral element e 2 ½0; 1� and PC ¼
PD ¼ ½0; 1�: For each R 2 MapðU 
 U ; ½0; 1�Þ and ðx; yÞ 2 U 
 U ; take EðR;UÞ : MapðU 

U ; ½0; 1�Þ ! MapðU 
 U ; ½0; 1�Þ as:

EðR;UÞðRÞðx; yÞ ¼ UðRðx; yÞ;Rðy; xÞÞ:
Then EðR;UÞ is a semi-decision evaluation function of U 
 U .

Proof It can be checked in a similar way as that of Proposition 4.7 of Qiao and Hu (2018).
h

Remark 4.11

(1) In Proposition 4.13, take the neutral element of uninorm U as e ¼ 1: Then

EðR;UÞðRÞðx; yÞ ¼ TðRðx; yÞ;Rðy; xÞÞ
becomes the construction method given in Proposition 4.7 of Qiao and Hu (2018).

(2) In Proposition 4.13, take the neutral element of uninorm U as e ¼ 0. Then

EðR;UÞðRÞðx; yÞ ¼ SðRðx; yÞ;Rðy; xÞÞ
becomes the construction method given in Proposition 4.8 of Qiao and Hu (2018).

(3) According to items (1) and (2), Propositions 4.7 and 4.8 of Qiao and Hu (2018) are
special cases of Proposition 4.13 and unified by Proposition 4.13. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.13.

Theorem 4.3 Let U be a nonempty finite universe, U 
 U be a condition universe and also
be a decision universe, PC ¼ PD ¼ ½0; 1�, U be a representable uninorms with element
e 2�0; 1½. For each ðx; yÞ 2 U 
 U and R 2 MapðU 
 U ; ½0; 1�Þ; take EðR;U repÞ : MapðU 

U ; ½0; 1�Þ ! MapðU 
 U ; ½0; 1�Þ as:

EðR;U repÞðRÞðx; yÞ ¼ UðRðx; yÞ;Rðx; yÞÞ:
Then EðR;U repÞ is a decision evaluation function of U 
 U :

Proof It can be checked in a similar way as that of Theorem 4.1. h

Proposition 4.14 Let U be a finite decision universe, U 
 U be a condition universe, U be
a uninorm with neutral element e 2 ½0; 1� and PC ¼ PD ¼ ½0; 1�. For each x 2 U and
R 2 MapðU 
 U ; ½0; 1�Þ; take EðR;U ;}Þ : MapðU 
 U ; ½0; 1�Þ ! MapðU ; ½0; 1�Þ as:
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EðR;U ;}ÞðRÞðxÞ ¼
P

y2U UðRðx; yÞ;Rðy; xÞÞ
jU j :

Then EðR;U ;}Þ is a semi-decision evaluation function of U.

Proof

(1) Minimum element axiom
Since Uð0; 0Þ ¼ 0; it follows that

EðR;U ;}Þð0U
U ÞðxÞ ¼
P

y2U Uð0U
U ðx; yÞ; 0U
U ðy; xÞÞ
jU j ¼ 0;

for each x 2 U : Therefore, one obtains that EðR;U ;}Þð0U
U Þ ¼ 0U :
(2) Monotonicity axiom

Let R1;R2 2 MapðU 
 U ; ½0; 1�Þ with R1 � R2: Then, one gets that

EðR;U ;}ÞðR1ÞðxÞ ¼
P

y2U UðR1ðx; yÞ;R1ðy; xÞÞ
jU j

�
P

y2U UðR2ðx; yÞ;R2ðy; xÞÞ
jU j

¼ EðR;U ;}ÞðR2ÞðxÞ;
for each x 2 U : Therefore, one concludes that EðR;U ;}ÞðR1Þ � EðR;U ;}ÞðR2Þ:

4.5 Construction methods related to hesitant fuzzy sets

Proposition 4.15 Let U be a condition universe and also be a decision universe, PC ¼
2½0;1� � ;; PD ¼ ½0; 1� and U be a uninorm with neutral element of e 2 ½0; 1�: For each
H 2 MapðU ; 2½0;1� � ;Þ; x 2 U and k; l 2 ½0; 1�; take EðH ;UÞ : MapðU ; 2½0;1� � ;Þ !
MapðU ; ½0; 1�Þ as:

EðH ;UÞðHÞðxÞ ¼ Uðk supHðxÞ; l inf HðxÞÞ:
Then EðH ;UÞ is a semi-decision evaluation function of U.

Proof It can be checked in a similar way as that of Proposition 4.9 of Qiao and Hu (2018).
h

Remark 4.12

(1) In Proposition 4.15, take the neutral element of uninorm U as e ¼ 1: Then

EðH ;UÞðHÞðxÞ ¼ Tðk supHðxÞ; l inf HðxÞÞ
becomes the construction method given in Proposition 4.9 of Qiao and Hu (2018).
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(2) In Proposition 4.15, take the neutral element of uninorm U as e ¼ 0: Then

EðH ;UÞðHÞðxÞ ¼ Sðk supHðxÞ; l inf HðxÞÞ
becomes the construction method given in Proposition 4.10 of Qiao and Hu (2018).

(3) According to items (1) and (2), Propositions 4.9 and 4.10 of Qiao and Hu (2018) are
special cases of Proposition 4.15 and unified by Proposition 4.15. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.15.

In this paper, we define the set M as

M ¼ m 2 2½0;1� � ; : inf m ¼ 0; supm ¼ 1
n o

:

Theorem 4.4 Let U be a condition universe and also be a decision universe, PC ¼
ð2½0;1� � ;Þ nM; PD ¼ ½0; 1� and U be a representable uninorm with neutral element of
e 2�0; 1½: For each H 2 PC and x 2 U ; take EðH ;U repÞ : MapðU ;PCÞ ! MapðU ; ½0; 1�Þ as:

EðH ;U repÞðHÞðxÞ ¼ UðsupHðxÞ; inf HðxÞÞ:
Then EðH ;U repÞ is a decision evaluation function of U.

Proof Items (E1) and (E2) of Definition 1.1 can be verified from Proposition 4.15. We only
verify item (E3) of Definition 1.1 as follows.

For each H 2 PC; it follows that

f0gU �H �f1gU :
Therefore, f0gU is the minimum element of PC and f1gU is the maximum element of PC:

Suppose K 2 M; then, for each x 2 U ; one has hat

inf NrðKðxÞÞ ¼ NrðsupKðxÞÞ ¼ Nrð1Þ ¼ 0;

and

supNrðKðxÞÞ ¼ Nrðinf KðxÞÞ ¼ Nrð0Þ ¼ 1;

respectively. Thus, NrðHÞ ¼ fNrðhÞ : h 2 Hg is strong negation on PC:
For each H 2 PC and x 2 U ; consider the following two cases.

(1) Let inf NrðHðxÞÞ ¼ 0 and supNrðHðxÞÞ ¼ 1; then one has that

inf NrðHðxÞÞ ¼ NrðsupHðxÞÞ ¼ 0

and

supNrðHðxÞÞ ¼ Nrðinf HðxÞÞ ¼ 1;

respectively. Therefore, one concludes that supHðxÞ ¼ 1 and inf HðxÞ ¼ 0: It con-
flicts with assumptions.

(2) Let inf NrðHðxÞÞ ¼ 1 and supNrðHðxÞÞ ¼ 0; then one has that

inf NrðHðxÞÞ ¼ NrðsupHðxÞÞ ¼ 1
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and

supNrðHðxÞÞ ¼ Nrðinf HðxÞÞ ¼ 0:

Therefore, one concludes that supHðxÞ ¼ 0 and inf HðxÞ ¼ 1: However,
supHðxÞ	 inf HðxÞ: Thus, there not exist inf NrðHðxÞÞ ¼ 1 and supNrðHðxÞÞ ¼ 0:

According to above discussions, it follows that

EðH ;U repÞðNrðHÞÞðxÞ ¼ UðsupNrðHðxÞÞ; inf NrðHðxÞÞÞ
¼ Uðsuph2HðxÞ N

rðhÞ; inf h2HðxÞ NrðhÞÞ
¼ UðNrðinf h2HðxÞ hÞ;Nrðsuph2HðxÞ hÞÞ
¼ NrðUðinf HðxÞ; supHðxÞÞÞ
¼ NrðEðH ;UrepÞðHÞÞðxÞ:

Therefore, one obtains that EðH ;U repÞðNrðHÞÞ ¼ NrðEðH ;U repÞðHÞÞ: h

Example 4.3 Suppose U ¼ f/1;/2;/3;/4;/5;/6;/7g and H ¼ f0:2;0:3;0:4g
/1

þ f0:4;0:5;0:7g
/2

þ
f0:9g
/3

þ f0:2;0:5g
/4

þ f0:8;0:9g
/5

þ f0:45;0:5;0:53g
/6

þ f0:31;0:51;0:87g
/7

is a hesitant fuzzy set of U. If we

consider the additive generator hðxÞ ¼ ln x
1�x

� �
; from construction method discussed in

Theorem 4.4, we have decision evaluation function EðH ;U repÞðHÞ of U (see Fig. 8) as:

EðH ;UrepÞðHÞ ¼ 0:143

/1
þ 0:609

/2
þ 0:988

/3
þ 0:200

/4
þ 0:973

/5
þ 0:480

/6
þ 0:750

/7
:

If we take w ¼ 0:65 and x ¼ 0:35; then three-way decision is given as follows:

(1) Acceptance region: ACPð0:65;0:35ÞðEðH ;UrepÞ;HÞ ¼ f/3;/5;/7g:
(2) Rejection region: REJð0:65;0:35ÞðEðH ;U repÞ;HÞ ¼ f/1;/4g:
(3) Uncertain region: UNCð0:65;0:35ÞðEðH ;U repÞ;HÞ ¼ f/2;/6g:

Fig. 8 Decision evaluation function EðH ;UrepÞðHÞ and hesitant fuzzy set H
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In this paper, we define the set L as L ¼ l 2 2½0;1� � ; : inf l þ sup l ¼ 1
� 

:

Theorem 4.5 Let U be a condition universe and also be a decision universe, PC ¼
ð2½0;1� � ;Þ n L; PD ¼ ½0; 1� and U be a representable uninorm with neutral element of
e 2�0; 1½ and strong negation NrðxÞ ¼ 1� x on [0,1]. For each H 2 MapðU ;PCÞ; x 2 U
and k; l 2 ½0; 1� with kþ l ¼ 1; take E0

ðH ;UrepÞ : MapðU ;PCÞ ! MapðU ; ½0; 1�Þ as:

E0
ðH ;U repÞðHÞðxÞ ¼ Uðk supHðxÞ þ l inf HðxÞ; k inf HðxÞ þ l supHðxÞÞ:

Then E0
ðH ;U repÞ is a decision evaluation function of U.

Proof For each H 2 PC ; it follows that

f0gU �H �f1gU :
Therefore, f0gU is the minimum element of PC and f1gU is the maximum element of PC:

Suppose H 2 PC ; then it follows that

inf NrðHðxÞÞ þ supNrðHðxÞÞ ¼ inf
h2HðxÞ

NrðhÞ þ sup
h2HðxÞ

NrðhÞ

¼1� sup
h2HðxÞ

hþ 1� inf
h2HðxÞ

h

¼2� ðsupHðxÞ þ inf HðxÞÞ
6¼1;

for each x 2 U : Thus, NrðHÞ ¼ f1� h : h 2 Hg is strong negation on PC:

(1) Minimum element axiom
Since Uð0; 0Þ ¼ 0; it follows that

E0
ðH ;UÞðf0gU ÞðxÞ

¼Uðk sup f0gU ðxÞ þ l inf f0gU ðxÞ; k inf f0gU ðxÞ þ l sup f0gU ðxÞÞ
¼0;

for each x 2 U and k; l 2 ½0; 1� with kþ l ¼ 1: Therefore, one obtains that
E0
ðH ;UÞðf0gU Þ ¼ 0U :

(2) Monotonicity axiom
Let K;H 2 MapðU ;PCÞ with K �PC H : Then, one gets that

inf KðxÞ� inf HðxÞ
and

supKðxÞ� supHðxÞ;
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for each x 2 U : Thus, it follows that

E0
ðH ;UrepÞðKÞðxÞ ¼ Uðk supKðxÞ þ l inf KðxÞ; k inf KðxÞ þ l supKðxÞÞ

�Uðk supHðxÞ þ l inf HðxÞ; k inf HðxÞ þ l supHðxÞÞ
¼ E0

ðH ;U repÞðHÞðxÞ;
for each x 2 U : Therefore, one concludes that E0

ðH ;UrepÞðKÞ � E0
ðH ;UrepÞðHÞ:

(3) Complement axiom
Consider the following two cases.

(i) k supHðxÞ þ l inf HðxÞ ¼ 0 and k inf HðxÞ þ l supHðxÞ ¼ 1:
(ii) k supHðxÞ þ l inf HðxÞ ¼ 1 and k inf HðxÞ þ l supHðxÞ ¼ 0:

These two cases can be unified by following expressions.

k supHðxÞ þ l supHðxÞ þ l inf HðxÞ þ k inf HðxÞ ¼ 1

¼)ðkþ lÞ supHðxÞ þ ðlþ kÞ inf HðxÞ ¼ 1

¼) supHðxÞ þ inf HðxÞ ¼ 1;

which is contradiction with H 2 MapðU ;PCÞ.
According to above discussions, it follows that

E0
ðH ;U repÞðNrðHÞÞðxÞ

¼Uðk supNrðHÞðxÞ þ l inf NrðHÞðxÞ; k inf NrðHÞðxÞ þ l supNrðHÞðxÞÞ
¼Uð1� k inf r2HðxÞ r � l supr2HðxÞ r; 1� k supr2HðxÞ r � l inf r2HðxÞ rÞ
¼1� Uðk inf r2HðxÞ r þ l supr2HðxÞ r; k supr2HðxÞ r þ l inf r2HðxÞ rÞ
¼1� Uðk inf HðxÞ þ l supHðxÞ; k supHðxÞ þ l inf HðxÞÞ
¼NrðE0

ðH ;U repÞðHÞÞðxÞ:
Therefore, one obtains that E0

ðH ;U repÞðNðHÞÞ ¼ NðE0
ðH ;U repÞðHÞÞ:

h

Proposition 4.16 Let U be a condition universe and also be a decision universe, PC ¼
Finiteð2½0;1� � ;Þ; PD ¼ ½0; 1� and U be a uninorm with neutral element of e 2 ½0; 1�: For
each H 2 MapðU ;Finiteð2½0;1� � ;ÞÞ and x 2 U ; take

EðH ;U ;sÞðHÞðxÞ ¼
P

y2HðxÞ Uðy; yÞ
jHðxÞj :

Then EðH ;U ;sÞ is a semi-decision evaluation function of U.

Proof It can be checked in a similar way as that of Proposition 4.11 of Qiao and Hu (2018).
h

Remark 4.13
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(1) In Proposition 4.16, take the neutral element of uninorm U as e ¼ 1. Then

EðH ;U ;sÞðHÞðxÞ ¼
P

y2HðxÞ Tðy; yÞ
jHðxÞj

becomes the construction method given in Proposition 4.11 of Qiao and Hu (2018).
(2) In Proposition 4.16, take the neutral element of uninorm U as e ¼ 0. Then

EðH ;U;sÞðHÞðxÞ ¼
P

y2HðxÞ Sðy; yÞ
jHðxÞj

becomes the construction method given in Proposition 4.12 of Qiao and Hu (2018).
(3) According to items (1) and (2), Propositions 4.11 and 4.12 of Qiao and Hu (2018) are

special cases of Proposition 4.16 and unified by Proposition 4.16. In addition, more
novel semi-decision evaluation functions can be obtained from Proposition 4.16.

4.6 Summary of construction methods of decision evaluation functions

In Sect. 3, we show two novel construction methods of decision evaluation functions
derived from different semi-decision evaluation functions (see Theorems 3.1 and 3.2).
Furthermore, in Sects. 4.1–4.5, we show some novel construction methods of decision
evaluations function (see Theorems 4.1–4.5) and semi-decision evaluation functions (see
Propositions 4.1–4.16) related to existing semi-decision evaluation functions, fuzzy sets,
interval-valued fuzzy sets, fuzzy relations and hesitant fuzzy sets, respectively.

In Remarks 3.1, 4.1–4.5, 4.7–4.9 and 4.11–4.13, we have pointed out that some existing
construction methods of decision evaluation functions and semi-decision evaluation func-
tions are special cases of the methods proposed in this paper. In addition, more novel
decision evaluation functions and semi-decision evaluation functions can be obtained from
these uninorms-based construction methods. Therefore, on the basis of uninorms, Sects. 3
and 4.1–4.5 fully answer the Question 1 proposed in Sect. 1.3.

Meanwhile, since representable uninorms are self-dual w.r.t. strong negation Nr; the
construction methods of decision evaluation functions given in Theorems 3.2 and 4.1–4.4
extend strong negation NPD of partially ordered set PD from NPDðxÞ ¼ 1� x to Nr:
Therefore, Theorems 3.2 and 4.1–4.4 answer the Question 2 proposed in Sect. 1.3.

5 Two illustrative examples

In this section, in order to illustrate the results obtained in this paper, we consider two real
evaluation problems. Firstly, we propose an algorithm to describe the three-way decision
process based on three-way decision space (see Algorithm 1). Secondly, we show the
specific steps of three-way decisions based on three-way decision space derived from semi-
decision evaluation functions. Thirdly, in Sect. 5.2, we consider an evaluation problem of
investment projects. Finally, in Sect. 5.3, we compare different transformation methods by
discussing an evaluation problem of credit card applicants.
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5.1 The three-way decision methodology

Firstly, on the basis of three-way decision space, the three-way decision process of decision
universe U can be simply described as Algorithm 1.

Algorithm 1 The algorithm of three-way decision based on three-way decision
space.
Input A three-way decision space (U,Map(V, PC), PD, E); A ∈

Map(V, PC); two parameters ψ and ω.
Output The decision evaluation values and three-way decision results of

decision universe U.
1: for all x in U do
2: calculate: the decision evaluation value of x as E(A)(x).
3: end for
4: for all x in U do
5: if E(A)(x) ≥ ψ then x ∈ ACP(ψ,ω)(E,A).
6: else if E(A)(x) ≤ ω then x ∈ REJ(ψ,ω)(E,A).
7: else x ∈ UNC(ψ,ω)(E,A).
8: end if
9: end for

10: return The decision evaluation values and three-way decision result of
decision universe U.

In Sect. 1.3, it has been pointed that a lot of useful functions are semi-decision evaluation
functions. Therefore, in the following, we show the specific steps of three-way decision
based on three-way decision space which is derived from semi-decision evaluation
functions.

Input: A decision universe U; a condition universe V; partially ordered sets PC; A∈Map
(V, PC).

Output: The three-way decision result of decision universe U.
Step 1: Select a semi-decision evaluation function Esemi related to partially ordered set

Map(V, PC).
Step 2: Select a transformation method from semi-decision evaluation functions to

decision evaluation function and obtain the partially ordered set PD.
Moreover, if Esemi satisfies the constraint conditions of the transformation method,
then go to Step 3. Otherwise, repeat Step 2.

Step 3: Obtain a decision evaluation function E of U by transformation method and semi-
decision evaluation function Esemi.

Step 4: Establish a three-way decision space (U, Map(V, PC), PD, E).
Step 5: Give two parameters ψ and ω for three-way decision.
Step 6: Obtain the decision evaluation values and three-way decision results of decision

universe U by Algorithm 1.

5.2 An evaluation problem of investment projects

In this subsection, we consider an real evaluation problem of investment projects (Qian
and Shu 2018; Zhan et al. 2021). Let U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g be a set of ten

123

New constructions of decision evaluation functions...



investment projects which are considering by venture capital company, AT ¼
fC1;C2;C3;C4;FDg be a set of attributes where C1 denotes market venture, C2 denotes
management venture, C3 denotes environment venture, C4 denotes production venture and
FD denotes the degree of preference for investment projects given by decision maker. The
evaluation results of ten projects are listed in Table 1 where the symbol � denotes that the
venture factor of this project is unknown. The decision maker prefers to choose the
investment project with higher value of attribute FD. The venture of investment project is
higher if the value of venture factor attribute Ck ðk ¼ 1; 2; 3; 4Þ is greater.

To begin with, we complete Table 1 by a pessimistic strategy, i.e., let the unknown values
of venture factor � ¼ 4: Then, for each investment project xi ði ¼ 1; 2; � � � ; 10Þ; we denote

the value of venture attribute Ck ðk ¼ 1; 2; 3; 4Þ of xi as xðkÞi : Then, by applying the formula

Rðxi; xjÞ ¼ 1� 1

16

X4
k¼1

jxðkÞi � xðkÞj j;

we get the fuzzy similarity relation of U on venture attributes C1;C2;C3 and C4 as:

Rv ¼
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:

In the following, by the three-way decision steps given in Sect. 5.1, we use two decision
evaluation functions derived from semi-decision evaluation functions to analyse this eval-
uation problem.

Firstly, by the construction method of semi-decision evaluation functions given in
Proposition 4.6, we select two semi-decision evaluation functions as

Eðsemi;TMÞðFDÞðxÞ ¼
P

y2U minfRvðx; yÞ;FDðyÞg
jU j

and
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Eðsemi;TPÞðFDÞðxÞ ¼
P

y2U Rvðx; yÞ � FDðyÞ
jU j

where NPC ðAÞ ¼ AC : Then, we select the transformation method given by Theorem 3.2
where the representable uninorm is Us and obtain the partially ordered set PD ¼ ½0; 1�: It can
be verified that Eðsemi;TMÞ and Eðsemi;TPÞ satisfy the constraint conditions of Theorem 3.2.
Therefore, we obtain two decision evaluation function of U as EðUs ;TM Þ and EðUs;TPÞ;
respectively. After that, two corresponding three-way decision spaces are established.
Further, we consider two parameters w ¼ 0:82 and x ¼ 0:80: Finally, by Algorithm 1, we
obtain the decision evaluation values of U (see Fig. 9) as:

EðUs ;TM ÞðFDÞ ¼ 0:7660

x1
þ 0:8468

x2
þ 0:8213

x3
þ 0:8171

x4
þ 0:8000

x5
þ 0:8173

x6

þ 0:8155

x7
þ 0:7660

x8
þ 0:8269

x9
þ 0:8377

x10

and

EðUs;TPÞðFDÞ ¼
0:7747

x1
þ 0:8303

x2
þ 0:8179

x3
þ 0:8173

x4
þ 0:7978

x5
þ 0:8120

x6

þ 0:8207

x7
þ 0:7747

x8
þ 0:8173

x9
þ 0:8313

x10
;

respectively. We also obtain the three-way decisions results of ten investment projects (see
Table 2). In this following, on the basis of Table 2, we show some analyses of decision
results.

(1) Investment projects x2 and x10 are evaluated “acceptation” in two evaluation functions
since x2 and x10 have the highest degree of preference given by decision maker and
lower venture compared with x6:

(2) For investment projects x1; x5 and x8; on the one hand, decision maker have lower
degree of preference than others. On the other hand, we completed the incomplete
values of Table 1 through a pessimistic strategy. Therefore, x1; x5 and x8 are evaluated
“rejection” in two evaluation functions.

Table 1 A consistent incomplete
ordered information system with
fuzzy decision (Qian and Shu
2018)

U C1 C2 C3 C4 FD

x1 � 1 � 2 0.5

x2 2 4 3 2 0.9

x3 2 3 1 3 0.6

x4 2 4 1 1 0.8

x5 3 2 � 1 0.6

x6 4 3 4 4 0.9

x7 2 3 1 4 0.7

x8 4 1 � 2 0.5

x9 3 3 3 1 0.8

x10 2 4 4 4 0.9
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5.3 An evaluation problem of credit card applicants

In this subsection, we compare different transformation methods from semi-decision eval-
uation functions to decision evaluation functions. On the one hand, in Remark 3.1, we have
pointed out that t-norms and t-conorms-based transformation method proposed in Hu (2017)
is a special case of uninorm-based transformation method given in Theorem 3.1. On the
other hand, the constraint conditions of semi-decision evaluation function of the transfor-
mation method given in Theorem 3.2 is more complex than others. Therefore, we only
compare the overlap and grouping functions-based transformation method given in Jia and
Qiao (2020) with the uninorms-based transformation method given in Theorem 3.1 by a real
evaluation problem of credit card applicants (Hu 2017; Lin et al. 2012; Qiao and Hu 2018;
Qiao and Hu 2020).

Suppose that U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g is a set of nine credit card applicants.
In this evaluation problem, we consider two condition attributes of applicants, that is,
education and salary. The values of attribute salary are flow;middle; highg and the values of
attribute education are fgood; better; bestg: The values of attributes of nine applicants are
given by three specialists. We denote yi ði ¼ 1; 2; 3Þ and ni ði ¼ 1; 2; 3Þ as evaluation results
given by specialists 1, 2 and 3, respectively. In addition, yi denotes yes and ni denotes no.
The evaluation results of nine applicants are listed as Table 3. From Table 3, for the
attributes “salary” and “education”, three specialists give evaluation results, corresponding

to attributive mean value, in Table 4. Moreover, the xðkÞi ðk ¼ 1; 2; 3Þ denotes the attributive
mean values in Table 4 for all applicants xi ði ¼ 1; 2; � � � ; 9Þ: Then, by applying the formula

Fig. 9 The decision evaluation values of investment projects based on EðUs ;TM Þ and EðUs ;TPÞ

Table 2 Three-way decision results of ten investment projects

Acceptance region Rejection region Uncertain region

EðUs ;TM Þ fx2; x3; x9; x10g fx1; x5; x8g fx4; x6; x7g
EðUs ;TPÞ fx2; x7; x10g fx1; x5; x8g fx3; x4; x6; x9g
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Rðxi; xjÞ ¼ exp �
X3
k¼1

jxðkÞi � xðkÞj j
( )

;

we obtain fuzzy similarity relations of U on salary attribute and education attribute,
respectively, as:

Table 3 An evaluation information system (Hu 2017; Lin et al. 2012; Qiao and Hu 2018; Qiao and Hu 2020)

U AT

Attributive value Education Salary

Best Better Good High Middle Low

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

x1 y1 y2 n3 n1 n2 n3 n1 n2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3

x2 n1 y2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 n2 n3

x3 n1 n2 n3 n1 n2 n3 y1 y2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3
x4 y1 y2 y3 n1 n2 n3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3

x5 y1 y2 n3 n1 y2 n3 n1 y2 y3 n1 n2 n3 y1 y2 y3 y1 n2 n3

x6 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3

x7 y1 y2 y3 n1 n2 n3 n1 n2 y3 n1 n2 n3 y1 y2 n3 n1 n2 y3
x8 n1 y2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 y2 n3

x9 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3

Table 4 The corresponding attributive mean value of evaluation information system (Hu 2017; Qiao and Hu
2018; Qiao and Hu 2020)

U AT

Attributive mean value Education Salary

Best Better Good High Middle Low

x1 2
3

0 1
3

1 0 0

x2 1
3

1 0 1 0 1
3

x3 0 0 1 1 0 0

x4 1 0 0 0 1 0

x5 2
3

1
3

2
3

0 1 1
3

x6 0 0 1 0 1 0

x7 1 0 1
3

0 2
3

1
3

x8 1
3

1 0 0 1 1
3

x9 0 0 1 0 0 1
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Rs ¼

1 0:72 1 0:14 0:10 0:14 0:14 0:10 0:14

0:72 1 0:72 0:10 0:14 0:10 0:19 0:14 0:19

1 0:72 1 0:14 0:10 0:14 0:14 0:10 0:14

0:14 0:10 0:14 1 0:72 1 0:51 0:72 0:14

0:10 0:14 0:10 0:72 1 0:72 0:72 1 0:19

0:14 0:10 0:14 1 0:72 1 0:51 0:72 0:14

0:14 0:19 0:14 0:51 0:72 0:51 1 0:72 0:26

0:10 0:14 0:10 0:72 1 0:72 0:72 1 0:19

0:14 0:19 0:14 0:14 0:19 0:14 0:26 0:19 1

2
66666666666666664

3
77777777777777775

and

Re ¼

1 0:19 0:26 0:51 0:51 0:26 0:72 0:19 0:26

0:19 1 0:10 0:19 0:19 0:10 0:14 1 0:10

0:26 0:10 1 0:14 0:26 1 0:19 0:10 1

0:51 0:19 0:14 1 0:26 0:14 0:72 0:19 0:14

0:51 0:19 0:26 0:26 1 0:26 0:37 0:19 0:26

0:26 0:10 1 0:14 0:26 1 0:19 0:10 1

0:72 0:14 0:19 0:72 0:37 0:19 1 0:14 0:19

0:19 1 0:10 0:19 0:19 0:10 0:14 1 0:10

0:26 0:10 1 0:14 0:26 1 0:19 0:10 1

2
66666666666666664

3
77777777777777775

:

To begin with, let A ¼ 0:9
x1
þ 0:5

x2
þ 1

x3
þ 0:8

x4
þ 1

x5
þ 0:2

x6
þ 0:7

x7
þ 0:3

x8
þ 0

x9
be a fuzzy set of U. Fuzzy

set A denotes the middle-aged peoples of U. Then, by the construction method of semi-
decision evaluation function given in Proposition 4.5, we select two semi-decision evalu-
ation functions

Esalary
semi ðAÞðxÞ ¼

P
y2V TðRsðx; yÞ;AðyÞÞP

y2V Rsðx; yÞ
and

Eeducation
semi ðAÞðxÞ ¼

P
y2V TðReðx; yÞ;AðyÞÞP

y2V Reðx; yÞ

where T is the Łukasiewicz t-norm and NPC ðAÞ ¼ AC : In the following, in order to obtain
decision evaluation functions, we use two transformation methods from semi-decision
evaluation functions to decision evaluation functions given in Theorem 3.1 and Lemma 3.2,

respectively. It can be verified that Esalary
semi and Eeducation

semi satisfies the constraint condition of
these two transformation methods.

Firstly, by the transformation method given in Theorem 3.1, we take uninorm U as U�
0:7

U�
0:4 and the product t-norm TP; respectively. Then, from semi decision evaluations Esalary

semi

and Eeducation
semi we obtain six decision evaluation functions as Esalary

ðU�
0:7;U

0:3
� ;CÞ; Esalary

ðU�
0:4;U

0:6
� ;CÞ;
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Esalary
ðTP ;SP ;CÞ; E

education
ðU�

0:7;U
0:3
� ;CÞ; E

education
ðU�

0:4;U
0:6
� ;CÞ and Eeducation

ðTP ;SP ;CÞ; respectively. It is worth noting that t-norm

TP is a special case of overlap function OP:
Then, by the transformation method given in Lemma 3.2, we take overlap function O as

O2; O3 and OmM ; respectively. Then, from semi decision evaluations Esalary
semi and Eeducation

semi ;

we obtain six decision evaluation functions as Esalary
ðO2;G2;CÞ; E

salary
ðO3;G3;CÞ; E

salary
ðOmM ;GmM ;CÞ; E

education
ðO2;G2;CÞ;

Eeducation
ðO3;G3;CÞ and Eeducation

ðOmM ;GmM ;CÞ; respectively.
Then, if we consider two parameters w ¼ 0:75 and x ¼ 0:48; by Algorithm 1, we obtain

the decision evaluation values of U (see Table 5) and the three-way decisions results of U
(see Table 6). In the following, on the basis of Tables 5 and 6, we show some analyses of
these two transformation methods.

(1) For salary attribute, on the basis of semi-decision evaluation function Esalary
semi , we

obtain six decision evaluation functions (see Fig. 10). Applicant x9 are evaluated
rejection in these six decision evaluation functions. This accords with his low salary
evaluated by three specialists. Applicants x4; x5; x6; x7 and x8 are evaluated uncertain
in six decision evaluation function. However, applicants x1 and x3; as two middle-
aged and high salary evaluated by three specialists people, are evaluated uncertain by

decision evaluation functions Esalary
ðO2;G2;CÞ; E

salary
ðO3;G3;CÞ and Esalary

ðOmM ;GmM ;CÞ. It is not rea-

sonable. Meanwhile, applicants x1 and x3 are evaluated acceptance by decision

evaluation functions Esalary
ðU�

0:7;U
0:3
� ;CÞ; E

salary
ðU�

0:4;U
0:6
� ;CÞ and Esalary

ðTP ;SP ;CÞ: Therefore, under such

conditions, the uninorms-based transformation method is superior to overlap and
grouping functions-based transformation method.

(2) For education attribute, on the basis of semi-decision evaluation function Eeducation
semi ,

we obtain six decision evaluation functions (see Fig. 11). It is worth noting that all
applicants are evaluated uncertain by decision evaluation functions Eeducation

ðO2;G2;CÞ;

Table 5 Decision evaluation values of attribute A of credit card applicants

x1 x2 x3 x4 x5 x6 x7 x8 x9

Esalary
ðU�

0:7;U
0:3
� ;CÞ

0.869 0.790 0.869 0.564 0.597 0.564 0.575 0.597 0.152

Esalary
ðU�

0:4;U
0:6
� ;CÞ

0.869 0.790 0.869 0.564 0.597 0.564 0.575 0.597 0.365

Esalary
ðTP ;SP ;CÞ

0.755 0.695 0.755 0.564 0.597 0.564 0.575 0.597 0.365

Esalary
ðO2;G2;CÞ

0.654 0.609 0.654 0.531 0.549 0.531 0.536 0.549 0.440

Esalary
ðO3;G3;CÞ

0.586 0.553 0.586 0.512 0.519 0.512 0.514 0.519 0.477

Esalary
ðOmM ;GmM ;CÞ 0.734 0.671 0.734 0.553 0.582 0.553 0.564 0.582 0.374

Eeducation
ðU�

0:7;U
0:3
� ;CÞ 0.887 0.480 0.479 0.893 0.901 0.479 0.866 0.480 0.479

Eeducation
ðU�

0:4;U
0:6
� ;CÞ 0.887 0.480 0.479 0.893 0.724 0.479 0.866 0.480 0.479

Eeducation
ðTP ;SP ;CÞ 0.751 0.480 0.479 0.756 0.724 0.479 0.761 0.480 0.479

Eeducation
ðO2;G2;CÞ 0.648 0.490 0.490 0.652 0.620 0.490 0.661 0.490 0.490

Eeducation
ðO3;G3;CÞ 0.581 0.496 0.496 0.584 0.559 0.496 0.592 0.496 0.496

Eeducation
ðOmM ;GmM ;CÞ 0.733 0.483 0.482 0.739 0.711 0.482 0.738 0.483 0.482
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Eeducation
ðO3;G3;CÞ and Eeducation

ðOmM ;GmM ;CÞ: Decision maker can not obtain any useful information

from the three-way decision results derived from Eeducation
ðO2;G2;CÞ; Eeducation

ðO3;G3;CÞ and

Eeducation
ðOmM ;GmM ;CÞ. On the other hand, decision maker can obtain reasonable three-way

decision results (see Table 6) from decision evaluation functions Eeducation
ðU�

0:7;U
0:3
� ;CÞ;

Eeducation
ðU�

0:4;U
0:6
� ;CÞ and Eeducation

ðTP ;SP ;CÞ which are derived from uninorms-based transformation

method. Therefore, under such conditions, the uninorms-based transformation
method is superior to overlap and grouping functions-based transformation method.

Table 6 Three-way decisions results of attribute A for evaluation of credit card applicants

Acceptance region Rejection region Uncertain region

Esalary
ðU�

0:7;U
0:3
� ;CÞ

fx1; x2; x3g fx9g fx4; x5; x6; x7; x8g

Esalary
ðU�

0:4;U
0:6
� ;CÞ

fx1; x2; x3g fx9g fx4; x5; x6; x7; x8g

Esalary
ðTP ;SP ;CÞ

fx1; x3g fx9g fx2; x4; x5; x6; x7; x8g

Esalary
ðO2;G2;CÞ

; fx9g fx1; x2; x3; x4; x5; x6; x7; x8g

Esalary
ðO3;G3;CÞ

; fx9g fx1; x2; x3; x4; x5; x6; x7; x8g

Esalary
ðOmM ;GmM ;CÞ ; fx9g fx1; x2; x3; x4; x5; x6; x7; x8g

Eeducation
ðU�

0:7;U
0:3
� ;CÞ fx1; x4; x5; x7g fx2; x3; x6; x8; x9g ;

Eeducation
ðU�

0:4;U
0:6
� ;CÞ fx1; x4; x7g fx2; x3; x6; x8; x9g fx5g

Eeducation
ðTP ;SP ;CÞ fx1; x4; x7g fx2; x3; x6; x8; x9g fx5g

Eeducation
ðO2;G2;CÞ ; ; U

Eeducation
ðO3;G3;CÞ ; ; U

Eeducation
ðOmM ;GmM ;CÞ ; ; U

Fig. 10 Six decision evaluation functions for salary attribute
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According to above discussions, by using commonly used uninorms and overlap and
grouping functions, the uninorms-based transformation method has better performance than
overlap and grouping functions-based transformation method under some conditions.
Meanwhile, in Remark 3.2, it has been pointed out that the uninorms-based transformation
method has the looser constraint of semi-decision evaluation functions than overlap and
grouping functions-based transformation method. Therefore, under some conditions, the
uninorms-based transformation method is superior to overlap and grouping functions-based
transformation method.

6 Conclusion

This article continues the work given by Jia and Qiao (2020) and Qiao and Hu (2018)
and mainly discusses the construction methods of decision evaluation functions based on
uninoms. For convenience, the uninorms-based construction methods of semi-decision
evaluation functions and decision evaluation functions proposed in this paper can be called
uni-construction methods. To be precise, this article obtains the following results:

● In order to construct more decision evaluation functions, this paper proposes two novel
transformation methods from semi-decision evaluation functions to decision evaluation
functions based on uninorms and representable uninorms, respectively. Meanwhile, on
the basis of uninorms, this paper proposes some novel construction methods of semi-
decision evaluation function and decision evaluation functions related to known semi-
decision evaluation functions, fuzzy sets, interval-valued fuzzy sets, fuzzy relations and
hesitant fuzzy sets, respectively.

● The representable uninorms-based construction methods of decision evaluation functions
(see Theorems 3.2 and 4.1–4.4) generalize the strong negation NPD of partially ordered
set PD from NPDðxÞ ¼ 1� x to the strong negation derived from the additive generator of
representable uninorms.

Fig. 11 Six decision evaluation functions for education attribute
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● The relationship among different decision evaluation functions are discussed in this
paper (see Remarks 3.1,3.2, 4.1–4.5, 4.7–4.9 and 4.11–4.13). The Fig. 12 shows the
relationship among different decision evaluation functions.

● This paper analyses two real evaluation problems to illustrate the results obtained in this
paper. The corresponding three-way decision results are reasonable. Meanwhile, we
compare the overlap and grouping functions-based transformation method with the
uninorms-based transformation method. The comparison result shows that the uninorms-
based transformation method is superior to the overlap and grouping functions based-
transformation method under some conditions.

It is worth noting that this paper shows lots of methods to construct different decision
evaluation functions for different partially ordered sets. Therefore, for different decision-
making problems, the decision maker can choose corresponding methods to construct
enough decision evaluation functions according to their decision-making environment.
Furthermore, according to actual situation, decision maker can choose specific and appro-
priate decision evaluation functions to solve decision-making problems. For example,
overlap functions have been successfully applied to fuzzy community detection problems
(Gómez et al. 2016) and power quality diagnosis system (Nolasco et al. 2019). Therefore,
for these problems, decision maker can preferentially choose overlap and grouping func-
tions-based decision evaluation functions. Meanwhile, uninorms have been successfully
used to neural networks (de Campos Souza and Lughofer 2021, 2022a, b) and classification

Fig. 12 The relationship among different decision evaluation functions
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of COVID-19 markers (Roy et al. 2020). Thus, uninorms-based decision evaluation func-
tions can be given priority to solve these problems.

In the later research, on the one hand, we will further research the application of decision
evaluation functions in practical problems. On the other hand, from the theoretical view-
point, there are still some unsolved problems about decision evaluation functions, such as:

● How to construct decision evaluation functions through other commonly used
aggregation functions? For example, nullnorms, uni-nullnorms, and so on.

● The algebraic properties of decision evaluation functions have not been researched.

● In Theorem 3.2, the constraint conditions of semi-decision evaluation function are
strong. Can the constraint conditions be relaxed?
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