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Abstract: Fucus vesiculosus is one of the most prominent brown algae in the shallow waters of the
seas of the Arctic region (Barents (BS), White (WS), Norwegian (NS), and Irminger (IS)). The aim of
this study was to determine the biochemical composition of F. vesiculosus from the Arctic at different
reproductive phases, and to evaluate the antioxidant properties of F. vesiculosus extracts. The amounts
of monosaccharides, phlorotannins, flavonoids, and ash and the mineral composition significantly
varied in the algae. A strong correlation was established between monosaccharide, phlorotannin,
and flavonoid accumulation and water salinity (Pearson’s correlation coefficients r = −0.58, 0.83,
and 0.44, respectively; p < 0.05). We noted a negative correlation between the antioxidant activity
and the amount of the structural monosaccharides of fucoidan (r = −0.64). A positive correlation
of phlorotannins and flavonoids with antioxidant power was confirmed for all samples. The ash
accumulation was relatively lower in the sterile phase for the algae from the BS and WS. The
correlation between the Metal Pollution Index (MPI) and the reproductive phases was medium with
high fluctuation. Meanwhile, the MPI strongly correlated with the salinity and sampling site. The
gradient of the MPI values across the sea was in the following ranking order: BS < WS < NS < IS.
Taken together, and based on our data on the elemental contents of F. vesiculosus, we believe that this
alga does not accumulate toxic doses of elements. Therefore, the Arctic F. vesiculosus could be safely
used in food and drug development as a source of active biochemical compounds and as a source of
dietary elements to cover the daily nutritional requirements of humans.

Keywords: Arctic; Fucus vesiculosus; monosaccharides; phlorotannins; flavonoids; reproductive
phase; seaweed; toxic metals

1. Introduction

Brown algae have been attracting more attention from researchers [1–3]. Fucus vesiculo-
sus is one of the most prominent brown algae of the genus Fucus, which currently comprises
66 taxonomically accepted species. These algae prevail in shallow-water macroalgae popu-
lations, at a depth of 0.5–4 m, in sea waters with typically high salinity. Such communities
form wide belts and are the habitat of epiphytic and epibenthic organisms [4]. Fucus species
are consumed by populations of the coastal countries of Western Europe and Alaska [5].
Besides being utilized in food ingredients, F. vesiculosus is used in cosmetics, biofertilizers,
animal feed, and in the pharmaceutical industry [6–11].
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F. vesiculosus is a rich source of health-promoting compounds such as fucoidans,
polyphenols, fucoxanthin, and essential minerals [9,12–17]. Fucoidans are polysaccha-
rides from the Fucan family and are distinguished as bioactive compounds unique to
brown algae [18]. Polysaccharides from F. vesiculosus, with the main monomer unit of
α-1,3 or α-1,4 L-fucopyranosyls, contain approximately 44% fucose, 26% sulfate, and
31% ash [19,20]. Various pharmacological effects, including antioxidant [21,22], anti-
obesity [23], antidiabetic [24], anti-aging, antimicrobial, antitumor, anticoagulant, and
anti-inflammatory [13,25], have been reported for fucoidans. Phlorotannins are a peculiar
group of polyphenolic compounds, which are found only in brown algae. These com-
pounds have a wide range of mass and degree of polymerization [26]. The brown alga
F. vesiculosus may accumulate up to 12% of phlorotannins (based on dry weight) [27].
Phlorotannins show numerous important biological activities such as antioxidant, antibac-
terial, and antidiabetic properties [9,28,29] Recently, Circuncisão et al. (2018) noted the
ability of F. vesiculosus to accumulate relatively high amounts of minerals [30].

The amount of biologically active compounds in algae varies depending on the ge-
ographical origins [31], reproductive phase (sterile versus fertile) [32], environmental
stressors, and the season of collection [33].

To the best of our knowledge, the impact of the reproductive phase and geographic
location (coastal zone of the Arctic—Irminger Sea (IS), Norwegian Sea (NS), Barents Sea
(BS), and White Sea (WS)) on the biochemical composition and antioxidant properties of
the Arctic Fucus vesiculosus has not been reported yet. Therefore, the aim of this study was:
(i) to determine the biochemical composition (fucose, xylose, and phlorotannin content,
total content of flavonoids and ash, and the mineral composition) of F. vesiculosus from
the Arctic regions; and (ii) to evaluate the antioxidant properties of F. vesiculosus extracts
in vitro.

2. Results and Discussion
2.1. Fucose and Xylose Content

Fucose and Xylose are monomers that are always part of the fucoidans of brown
algae, especially F. vesiculosus. The other monosaccharides of fucoidan (glucose, galactose,
mannose, etc.) can be structural units in other polysaccharides and can be found in free
form in algae [34,35]. Fucose is the main monosaccharide, while xylose is one of the minor
monosaccharides of fucoidan from F. vesiculosus. The ratio of fucose to xylose can provide
information about the biological activity of F. vesiculosus [36]. Fucose and xylose and their
ratio were used in this study as an indicator of fucose-containing sulfated polysaccharide,
particularly fucoidan, which is known to be abundant in the Fucus sp. The present study
confirmed that the monosaccharide composition of fucoidans changes with the reproductive
phase, but the magnitude of these changes depends on the collection area. For example, the
fucose content during sporulation increased from 51.2 to 86.2 mg/g dry weight (DW) for
F. vesiculosus from the IS, from 52.0 to 58.4 mg/g DW for the sample from the NS, and from
102.1 to 116.6 mg/g DW for the sample from the BS (Figure 1). Thus, fucose is a prevailing
monosaccharide. The xylose contained in the different samples was approximately equal,
and its amount was approximately 12 mg/g DW. The amount of fucose in F. vesiculosus
was lower in the sterile phase compared with the fertile phase, whereas the xylose content
did not differ significantly between the two reproductive phases (Figure 1).
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Figure 1. The amount of fucose and xylose in F. vesiculosus according to geographical location. 
Irminger Sea (IS), Norwegian Sea (NS), Barents Sea (BS), and White Sea (WS). s, sterile stage; f, fertile 
stage. Values are expressed as the mean ± SD. * p < 0.05 based on a comparison between fertility and 
sterility. 

The highest amounts of fucose and xylose were found in the samples from the BS 
(Figure 2). It was found that fucose accumulates more actively in the phase of fertility in 
comparison to that of sterility. The most pronounced difference (by 68%) in the amount 
of fucose in F. vesiculosus, depending on the reproductive phase, is typical for the IS. A 
strong negative correlation between salinity and the accumulation of fucose (Pearson’s 
correlation coefficients r = −0.58, p < 0.05) and xylose (r = −0.60, p < 0.05) was established. 
At the same time, the salinity of the sea water did not affect their ratio (r = 0.09, p < 0.05). 
A small positive correlation between the reproductive phase and the fucose content (Pear-
son’s correlation coefficients r = 0.23, p < 0.05) was detected. 

 
Figure 2. Mean levels of fucose and xylose in F. vesiculosus from different geographical locations. 
Irminger Sea (IS), Norwegian Sea (NS), Barents Sea (BS), and White Sea (WS). 

Figure 1. The amount of fucose and xylose in F. vesiculosus according to geographical location.
Irminger Sea (IS), Norwegian Sea (NS), Barents Sea (BS), and White Sea (WS). s, sterile stage; f, fertile
stage. Values are expressed as the mean ± SD. * p < 0.05 based on a comparison between fertility and
sterility.

The highest amounts of fucose and xylose were found in the samples from the BS
(Figure 2). It was found that fucose accumulates more actively in the phase of fertility in
comparison to that of sterility. The most pronounced difference (by 68%) in the amount of
fucose in F. vesiculosus, depending on the reproductive phase, is typical for the IS. A strong
negative correlation between salinity and the accumulation of fucose (Pearson’s correlation
coefficients r = −0.58, p < 0.05) and xylose (r = −0.60, p < 0.05) was established. At the
same time, the salinity of the sea water did not affect their ratio (r = 0.09, p < 0.05). A small
positive correlation between the reproductive phase and the fucose content (Pearson’s
correlation coefficients r = 0.23, p < 0.05) was detected.
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Irminger Sea (IS), Norwegian Sea (NS), Barents Sea (BS), and White Sea (WS).

The amount of biologically active compounds contained in algae is altered according to
the season and related reproductive phase. According to the literature data, the maximum
amount of polysaccharides accumulated in Far Eastern brown macroalgae was observed
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during sporulation and was accompanied by monosaccharide variation [32,37,38]. Thus,
during the development of spores in Undaria pinnatifida, the ratio between the structural
units of fucoidan changes. The proportion of galactose significantly increases and the
amount of mannose decreases against the background of a constant fucose content [38].
On the contrary, galactose varies insignificantly in the polysaccharide extracted from the
fertile or sterile C. costata, while the fraction of fucose significantly increases and mannose
decreases during sporulation [37]. An increase in fucose in polysaccharides during the
reproductive phase has also been noted for Laminaria japonica [39]. Both the sterile and
fertile individuals of F. evanescens and S. babingtonii synthesize a relatively homogeneous
fucoidan with a predominance of fucose, the proportion of which changes insignificantly
during the development of the generative phase. The molar ratio of galactose and fucose
in C. costata has been found to be similar in fucoidans extracted from sterile and fertile
algae [32].

2.2. Phlorotannin Content

Significant variations were found in the phlorotannins content (PhTC) of the sam-
ples of F. vesiculosus from different geographic locations, ranging from 72.4 to 158.1 mg
phloroglucinol equivalent (PhE) per gram of DW algae (Figure 3). F. vesiculosus from the BS
showed a lower value of 77.7 mg/g DW for the samples in the sterile phase when compared
with the values of 122.3 and 140.5 mg/g DW for the samples in the same reproductive
phase from the IS and NS, respectively. A similar trend was observed for F. vesiculosus in
the fertile phase. The PhTC in the algae from the BS was lower (78.8 mg/g DW) when
compared to the PhTC values of 101.9 and 103.9 mg/g DW in the algae from the IS and NS,
respectively. A statistically significant difference in PhTC for the samples collected in the
WS (St. 6 and 9 vs. St. 7 and 8) was noted (p < 0.01).
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After analyzing the reproductive phases of F. vesiculosus from three different localities
(St. 1 from the IS, St. 3 from the NS, and St. 4 from the BS), it was found that the
accumulation of phenolic compounds depended on the sea water salinity of the sampling
stations (Figure 4). A strong positive correlation between salinity and the accumulation of
phlorotannins (Pearson’s correlation coefficients r = 0.83, p < 0.05) and flavonoids (r = 0.44,
p < 0.05) was observed. Our data support the previous results of Pedersen (1984), who
reported an increase in the phenolic content in F. vesiculosus according to the salinity of the
algal habitats [40]. At the same time, the water temperature also affected the phlorotannin
and flavonoid content (r = −0.22 and −0.32, respectively; p < 0.05).
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Brown algae generally contain higher amounts of polyphenols than red and green
algae [41]. Brown algae are a valuable source of polyphenols, among which phlorotannins
represent their principal phenolic constituents in Fucaceae [42]. Fucaceae polyphenols are
very susceptible to inter-species variations as well as differences in collection site, season,
water salinity, water depth, etc. [43,44]. The highest amount of phenolics (approximately
58 mg/g DW) was observed in A. nodosum and F. vesiculosus growing in the mid-tide zone,
while a lower phenolic content (43 mg/g DW) was observed in F. serratus, growing in
the lower intertidal level. Other species such as F. spiralis and P. canaliculata, growing in
the upper level of the intertidal zone, had the lowest phenolic content (39 and 34 mg/g
DW) [45]. According to Ragan and Jensen (1978), the polyphenol content of F. vesiculosus
collected in Trondheimsfjord (Norwegian Sea) was minimal (80–100 mg/g DW) at the
end of spring, during the period of fertility, and was at a maximum (110–130 mg/g DW)
during the winter [46]. These data are in agreement with ours for the samples collected in
the Norwegian and Irminger Seas (Figure 3). This phenomenon could be associated with
the protective role of polyphenols during the winter season. Later, Connan et al. (2004)
investigated phlorotannins in Fucaceae spp. (including F. vesiculosus) collected from the
northern coast of Brittany (France, North Sea). For these southern species, the phlorotannin
peak was observed during the summer, matching the higher solar exposure period. The
production of phlorotannins by seaweeds is positively correlated with UV radiation [43,47].
This fact supports the UV-protective functions invoked for phlorotannins [48].

Flavonoids represent another group of active compounds in Fucaceae spp. [27]. Differ-
ent biological activities are attributed to algal flavonoids, including antioxidant properties,
scavenging of reactive oxygen species, and inhibition of lipid peroxidation [49]. The total
flavonoid content (TFC) in the F. vesiculosus samples was quantified as quercetin equivalents
(QE), and the results are illustrated in Figure 3. Depending on the geographical regions and
reproductive phase, the TFC in F. vesiculosus varied from 15.6 to 26.4 mg QE/g DW. Our
results are similar to the data of Cox et al. (2010), who reported the TFC in six Irish edible
seaweeds being in the diapason of 7.6–42.5 mg QE/g DW. The samples of F. vesiculosus
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from the IS and NS had a higher TFC in the sterile phase compared to that in the fertile
phase (Figure 3). Previously, a higher TFC was found in Saccharina latissima, cultivated in
the NS (inner Danish waters) during the period of November–January (sterile phase) [50].
The TFC in algae collected in the BS was less susceptible to variations, depending on the
reproductive phase (17.2 and 20.3 mg QE/g DW for the fertile and sterile phases, respec-
tively). Differences in the PhTC levels between the fertile and sterile algae from the BS were
statistically insignificant (Figure 3).

2.3. Antioxidant Activity

The antioxidant activity for the alga extracts is expressed as the antiradical power
(ARP). The ARP is the reciprocal of the IC50, which defines the concentration of the extract
required to scavenge 50% of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.

The ARPs ranged from 1.2 to 2.3 (Figure 5), with the highest ARP value being found in
the alga sample (St. 3s) from the NS collected in the sterile phase, and the lowest value in
the sample (St. 4s) from the BS, also collected in the sterile phase (Figure 5A). An increase
in the ARP in the fertile phase by 15–24% compared to the sterile phase was observed for
algae from the IS and BS, while for the samples from the NS, the situation was the opposite.
The increase in the ARP was 34% more prominent in the sterile phase (3s) compared to the
fertile phase (3f). A strong positive correlation of ARP and PhTC (Pearson’s correlation
coefficients r = 0.64, p < 0.05) (Figure 5A) was noted. Our results are consistent with
previous studies that reported a direct correlation between the DPPH scavenging activity
and the polyphenolic compounds of algal extracts [50–52]. Flavonoids positively contribute
to the ARP. A correlation between the ARP and TFC of a similar fashion (r = 0.66, p < 0.05)
was noted (Figure 5B).

The structural units of fucoidan, fucose, and xylose negatively correlated with the
ARP (Pearson’s correlation coefficients r = −0.42 and −0.58, respectively), which suggests
a negative impact of the fucoidan content on the radical scavenging activity of extracts of
F. vesiculosus. However, fucoidan has been reported to have radical scavenging activity in
several studies [24,53,54]. In previous studies, fucoidan was extracted from different algae
and was not purified. It is likely that other compounds in crude fucoidan such as specific
phenolic compounds, ascorbic acid, and proteins may contribute to the radical scavenging
activity. We believe that future studies with highly purified fucoidan are required to clarify
the impact of this polysaccharide on radical scavenging activity.
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2.4. Ash Contennt

According to previous studies [30,55–57], the ash content of macroalgae varies sig-
nificantly, depending on the species, geographic location, and reproductive phase. In our
study, the ash content (DW) in the F. vesiculosus samples (Table 1) showed average values
of 23.3% and 21.9% for the IS in the sterile and fertile phases; 20.2% and 18.5% at Cape
Sudspissen for the NS in the sterile and fertile phases; 21.2%. and 28.5% for the BS in the
sterile and fertile phases, respectively; and 19.1–20.3% for the WS in the fertile phase, which
is within the previously reported range for algae and algal food (8–44% DW) [58–60]. The
ash content in the F. vesiculosus samples collected from the IS and NS was higher in the
sterile than in the fertile phase, while the ash in the samples from the BS was higher in the
fertile than in the sterile phase. In a previous study, the ash content of F. vesiculosus from the
Baltic Sea ranged from 14.2% to 21.4% and did not have a statistically significant correlation
with the reproductive phase [61]. Other seasonal studies of Phaeophyceae algae [62] have
not revealed a general trend in the ash content, since in some species, the percentage of
ash is significantly higher in the sterile phase, while in others, it is higher in the fertile
phase. Interesting results were reported by Paiva et al. (2018) for F. spiralis collected around
the Azorean Islands. The maximum ash value was found in the sterile phase (29.6% DW)
and the minimum (22.4% DW) in the fertile phase for algae around Santa Maria Island,
while for the São Miguel Island samples, a maximum ash value was found in the fertile
phase (25.4% DW) and a minimum (22.7% DW) in the sterile phase [55]. Although the high
variability in the ash content of algae could be explained, at least in part, by spatial and
temporal fluctuations in the mineral content of seawater in the Arctic and North Atlantic
regions, the impact of the reproductive phase on the accumulation of ash requires future
investigations.
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Table 1. The concentrations of elements (mg/kg DW) in the samples of Fucus vesiculosus (mean ± SD, n = 3).

Element LOQ Range
St. 1 St. 1a St. 2 St. 3 St. 4 St. 5 St. 6 St. 7 St. 8 St. 9

s/f ∆ s s s/f ∆ s/f ∆ f f f f f

Al 1.6 28–724
423 ± 40 *

183 ± 36 688 ± 124
54 ± 8 * 45 ± 1 *

54 ± 12 95 ± 6 88 ± 5 42 ± 9 57 ± 3
724 ± 27 ↑ 28 ± 3 ↓ 62 ± 3 ↑

As 6.3 23–58
35 ± 2

30 ± 4 28 ± 2
39 ± 1 * 58 ± 2 *

40 ± 1 30 ± 3 31 ± 2 36 ± 1 22 ± 1
32 ± 1 ↓ 48 ± 2 ↑ 44 ± 1 ↓

Ba 0.016 10–24
13 ± 0.1

13.8 ± 0.8 12 ± 0.2
10.2 ± 0.1 11.0 ± 0.2

10.6 ± 0.2 18 ± 1 20 ± 0.3 16 ± 0.2 24 ± 2
10 ± 0.3 ↓ 9.7 ± 0.1 ↓ 10.2 ± 0.1 ↓

Ca 1.9
9756–
30,093

30,093 ± 100 * 15,228 ± 230 18,278 ± 210 20,832 ± 315 * 11,430 ± 188 *
9890 ± 20 11,922 ± 205 11,666 ± 290 20,065 ± 260 11,592 ± 470

18,436 ± 265 ↓ 9756 ± 113 ↓ 12,015 ± 389 ↑

Co 0.12 0.4–2.0
1.73 ± 0.03

1.56 ± 0.09 1.95 ± 0.38
1.38 ± 0.02 1.09 ± 0.01 *

0.59 ± 0.05 0.61 ± 0.03 0.92 ± 0.10 0.39 ± 0.03 2.01 ± 0.20
1.49 ± 0.10 ↓ 1.46 ± 0.95 ↑ 0.60 ± 0.02 ↓

Cu 0.37 0–16.6
3.63 ± 0.06

2.79 ± 0.15 16.60 ± 0.25
1.22 ± 0.01 * <LOQ *

1.67 ± 0.02 0 0 0 1.11 ± 0.2
4.44 ± 0.30 ↑ 0.42 ± 0.10 ↓ 0.91 ± 0.10 ↑

Fe 0.098 52–2217
946 ± 10

258 ± 17 2217 ± 123
93 ± 4 * 86 ± 1 *

273 ± 18 325 ± 29 385 ± 30 216 ± 70 202 ± 6
1007 ± 43 ↑ 52 ± 4 ↓ 128 ± 2 ↑

Mg 1.7
7518–
11,571

9793 ± 40 *
8985 ± 120 11,474 ± 338 8277 ± 34 * 7634 ± 61 *

8148 ± 112 10,152 ± 25 9535 ± 80 8442 ± 55 9871 ± 58
11,571 ± 166 ↑ 7518 ± 9 ↓ 9821 ± 258 ↑

Mn 0.058 58–176
125 ± 2 *

118 ± 8 88 ± 3
84 ± 1 * 81 ± 1 *

68 ± 2 91 ± 3 156 ± 4 58 ± 3 142 ± 9
142 ± 3 ↑ 70 ± 3 ↓ 75 ± 2 ↓

Rb 0.55 5–29
24 ± 0.1 *

22 ± 1.0 20 ± 0.3
19 ± 0.2 * 4.7 ± 0.4 *

20 ± 0.4 25 ± 1.0 22 ± 0.6 29 ± 0.3 29 ± 1.0
29 ± 0.8 ↑ 25 ± 0.9 ↑ 19 ± 1.3 ↑

Sr 0.026 802–1365
1247 ± 14 *

1365 ± 29 1048 ± 11
1002 ± 18 * 909 ± 13 *

804 ± 5 714 ± 8 862 ± 11 828 ± 19 912 ± 12
1137 ± 19 ↓ 830 ± 3 ↓ 802 ± 40 ↓

Zn 0.17 14–107
61 ± 1.0 *

36 ± 2.7 107 ± 4.3
35 ± 1.3 * 34.0 ± 1.0 *

35.2 ± 1.1 14.6 ± 0.6 16.6 ± 0.8 14.4 ± 0.3 15.2 ± 0.4
48 ± 1.2 ↓ 41 ± 1.6 ↑ 25.4 ± 2.1 ↓

Ash, - 19–28
23.3 ± 0.2

20.9 ± 0.3 25.1 ± 2.1
20.2 ± 5.1 21.2 ± 2.5

28.2 ± 0.4 19.1 ± 0.9 20.1 ± 0.3 20.1 ± 1.0 20.3 ± 0.8
% DW 21.9 ± 0.3 ↓ 18.5 ± 0.5 ↑ 28.5 ± 0.3 ↑

LOQ, limit of quantification; ∆, concentration change; ↑, increase in concentration in the fertile reproductive phase compared to the sterile phase; ↓, decrease in concentration in the fertile
reproductive phase compared to the sterile phase; St. 1–St. 9, the sampling stations (details in Section 3.2). * p < 0.05 based on a comparison between fertility and sterility.
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2.5. Elemental Concentrations

The measured elemental concentrations (mg/kg DW), the range (minimum and max-
imum concentration) for the elements, and the LOQ of the method are summarized in
Table 1 for each alga sample. The elemental concentrations varied according to the seaweed
sampling stations and reproductive phase. The Al, Fe, Ca, Cu, Mg, and Zn levels in F. vesicu-
losus from the IS (St. 1 and St. 2) were significantly higher than those found in the alga
samples collected in the other regions. The highest content of Co was found in the samples
from the NS and WS. F. vesiculosus from the BS contained the highest concentrations of total
As. The Sr concentration in F. vesiculosus from the BS and WS was slightly lower than that in
the samples from the IS and NS. High Sr levels were also found in F. vesiculosus from the IS
and WS (St. 1a and St. 9). The levels of Ba and Rb were not markedly different between the
sampling stations. In our study, we did not detect Pb, Cd, Cr, or Ni in F. vesiculosus collected
at different stations. These elements were under the limit of quantification (LOQ), which
corresponds to a natural background. Similar results for the Pb content in the F. vesiculosus
samples from the Barents and White Seas were obtained previously [63]. The data on
the accumulation of toxic metals calculated as the Metal Pollution Index (MPI) versus the
sampling stations and the reproductive phase are shown in Figure 6.
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Figure 6. The accumulation of toxic metals calculated as MPI vs. the reproductive phase and the
sampling sites of F. vesiculosus. Irminger Sea (IS), Norwegian Sea (NS), Barents Sea (BS), and White
Sea (WS).

The MPI values ranged from 13.8 to 37.5, showing differences in content across the
sampling sites and reproductive phases. The lowest mean MPI (15.3) was found in the
samples from the BS, while the highest mean MPI (29.7) as well as the greatest dispersion
of data was found in the samples from the IS, indicating the most significant fluctuations
of metal concentration in the samples (Figure 6). A gradient of MPI values across the sea
was established, ranked in the following order: BS < WS < NS < IS. A strong Pearson’s
correlation was found for the MPI value versus the sampling site (r = 0.79, p <0.05), while a
medium Pearson’s correlation was found for the MPI value versus the reproductive phase
(r = 0.42, p < 0.05).

The Pearson’s correlation coefficients (r), calculated for individual metals, are pre-
sented in Table 2. A strong positive correlation (r > 0.9) was identified between Cu and Fe
and between Cu and Zn. Positive correlations (0.9 > r > 0.5) were noted for Al versus Cu,
Fe, Mg, Sr, and Zn; Cu versus Mg; Fe versus Mg and Zn; Ba versus Mn; Co versus Cu, Sr,
and Zn; and Mg versus Mn. Similarly, negative correlations (−0.8 > r > −0.5) occurred only
for As versus Ba, Mg, Mn, and Rb.
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Table 2. Pearson’s correlation matrix for the different trace metals in the F. vesiculosus samples from
the Arctic region. Significant correlations (p < 0.5) are marked in bold.

Elements Al As Ba Ca Co Cu Fe Mg Mn Rb Sr Zn

Al 1
As −0.375 1
Ba −0.242 −0.650 1
Ca 0.508 −0.222 −0.183 1
Co 0.517 −0.348 0.074 0.315 1
Cu 0.789 −0.349 −0.202 0.315 0.538 1
Fe 0.889 −0.420 −0.114 0.431 0.482 0.947 1
Mg 0.793 −0.685 0.204 0.282 0.338 0.618 0.741 1
Mn 0.361 −0.583 0.532 0.151 0.495 0.043 0.197 0.519 1
Rb 0.201 −0.701 0.394 0.216 0.110 −0.018 0.088 0.402 0.307 1
Sr 0.559 −0.293 −0.200 0.577 0.586 0.383 0.380 0.270 0.424 0.066 1
Zn 0.775 −0.073 −0.459 0.414 0.578 0.922 0.877 0.423 −0.038 −0.169 0.466 1

Algae consumption enriches the daily diet with proteins, fatty acids, vitamins, and min-
erals and has become increasingly popular in Western countries [64]. The increased metal
pollution in the marine environment has put a significant burden on the ecosystem and
has become a risk factor for the accumulation of toxic elements in algae. Some countries
have implemented limits for heavy metals in algae dietary food. Thus, in France, a special
list of algae for human consumption specifies the upper limits for the amounts of Pb, Cd,
Sr, Hg, As, and I [65]. The amount of some metals such as Pb, As, Cd, and Hg in food
algae is limited in Russia [66]. Provisional tolerable weekly and monthly intakes (PTWI
and PTWM) for several elements are recommended by the Joint FAO/WHO Expert Com-
mittee on Food Additives [67–69]. The upper intake level (UL) of the elements approved
by the European Food Safety Authority (EFSA) is calculated for the average adult body
weight (BW) of 70 kg [70]. In particular, the FAO/WHO Joint Expert Committee on Food
Additives has defined the PTWI for Al from all sources as 70 mg [67]. The WHO indicates
a PTWI of 1.05 mg for inorganic As [68]. EFSA has established a UL of 2500, 25, and 5 for
Ca, Zn, and Cu, respectively [70]. The Federal Center for Hygiene and Epidemiology of
Rospotrebnadzor of Russia also has a UL for certain elements [71].

To understand the benefits or risks of the consumption of F. vesiculosus collected from
different stations, we calculated the amount of certain elements in a daily dietary dose of
algae. A dose of 3.3 g (DW) of algae was considered as the average daily consumption,
and the maximum amount of algae in a single serving was 12.5 g (DW) [72]. In Table 3, we
summarize the data on the sampling stations and reproductive phases at which the maximal
concentration of a particular element was detected in the algae. Then, we calculated the
maximal amount of elements consumed with 3.3 g and 12.5 g of algae and subsequently
compared this with the risk estimations for a 70 kg man [67–70] and with the nutritional
requirements [70,71].

The comparison between intake and relevant UL reported by EFSA [70] shows that a
3.3–12.5 g daily consumption of F. vesiculosus in the sterile phase from the IS (St. 1), with
the highest Ca level (30 g/kg DW), corresponds to a daily intake of 0.099–0.38 g of this
metal. This intake alone is equal to approximately 4–15% of the tolerable daily dose (2.5 g)
for Ca (Table 3). The daily consumption of 3.3–12.5 g of F. vesiculosus with the highest Cu
(16.6 mg/kg DW) in the sterile phase from the IS (St. 2) corresponds to a daily intake of
0.05–0.21 mg of this metal. With this dose of algae, approximately 1.1–4.1% of the tolerated
daily intake (5 mg) of Cu is consumed. In this case, the daily consumption of 12.5 g of
F. vesiculosus in the sterile phase from the IS (St. 2) with the highest Zn concentration
(107 mg/kg DW) will lead to a daily intake of 1.33 mg of this element. This corresponds to
approximately 5.3% of the tolerable daily dose (25 mg) for Zn. The daily consumption of
3.3–12.5 g of F. vesiculosus in the fertile phase from the IS (St. 1), with the highest Al level
(723 mg/kg DW), corresponds to a daily intake of 2.4–9.0 mg of this metal. This amount of
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Al represents approximately 24%–90% of the tolerable daily dose (10 mg) [67]. A daily dose
of 3.3–12.5 g of F. vesiculosus from the BS (St. 4) in the sterile phase contains 0.19–0.72 mg
of total As. Such doses of algae correspond to 127%–478% of the tolerable daily dose for
inorganic As.

Table 3. Maximum concentration (mg/kg) and the daily dose (mg/day) of elements found in
F. vesiculosus from different sampling sites, and a comparison with daily dose risk estimators for a
70 kg man and with the nutritional requirements.

Element

Sampling
Site with a
Maximum
Concentra-

tion

Reproductive
Phase

Maximum
Concentra-

tion

Daily Dose
for 3.3 g Con-

sumption

Daily Dose
for 12.5 g
Consump-

tion

Daily Dose
from Risk
Estimators

Daily
Nutritional

Require-
ments

Al IS, St. 1 Fertile 724 2.39 9.03 10 1

As total BS, St. 4 Sterile 58 0.19 0.72 0.15
1(inorganic)

Ca IS, St. 1 Sterile 30,093 99 375 2500 2 1000 3

Co WS, St. 9 Fertile 2.0 0.007 0.025 30 5 10 5

Cu IS, St. 2 Sterile 16.6 0.05 0.21 5 2,5 0.9 4/1.0 5

Fe IS, St. 2 Sterile 2217 7.3 27.7 45 5 10 3,5

Mg IS, St. 1 Fertile 11,571 38 144 800 5 400 5

Mn WS, St. 7 Fertile 156 0.52 1.95 11 5 2.7 3/2.0 5

Zn IS, St. 2 Sterile 107 0.35 1.33 25 2 12 3,5

1 PTWI, provisional tolerable weekly intake; 2 UL, tolerable upper intake level; 3 PRI, population reference intake;
4 AI, adequate intake; 5 [71].

Worthy of note is the fact that in this study, As was measured as total As. High As
levels have been reported in the literature for several algae [73–75]. It is necessary to note
that As is found in marine biota mainly in the form of organic compounds (in particular,
As sugars). Although inorganic forms of tri- (AsIII) and pentavalent (AsV) are toxic, their
organic derivatives (arsenobentaine (AsB), arsenosugar (As sugar), arsenocholine (AsC),
arsenolipids, methylarsinate (MMA), and dimethylarsinate (DMA)) are of low toxicity.
The toxicity of arsenic compounds, according to the LD50, decreases from inorganic to
organic: AsIII (14) > AsV (20) > MMA (700–1800) > DMA (700–2600) > AsC (>6500) >
AsB > As sugar (>10,000) [76]. While the toxicity of arsenolipids has not been established,
arsenobetaine and other organic arsenic compounds belong to group 3 (substances not
classified for carcinogenicity) according to the classification of the International Agency for
Research on Cancer [77].

Thus, summarizing our data on the elemental content of F. vesiculosus collected from
different regions, we can suggest this alga as non-toxic and as a source of dietary elements
that cover daily nutritional requirements.

3. Materials and Methods
3.1. Alga Sample Collection

Alga samples were collected in the coastal zone of the Artic, including the Irminger
Sea, Norwegian Sea, Barents Sea, and White Sea (Figure 1), according to standard pro-
tocols [33,78]. Alga samples were taken at low tide, at a 0.6–1.0 m depth, in the fertile
and sterile phases in 2019. The number, size, or fresh mass of the receptacles of the alga
samples was used as a proxy for Fucus fertility [79,80]. The reproductive phases of the algae
were determined by the presence of receptacles (reproductive organs): all alga samples
collected in the summer period retained mature receptacles. The autumn samples did
not contain receptacles. The temperature and salinity were measured with a thermometer
TL-4 (Thermopribor JSC, Klin, Russia) and a refractometer RHS-10ATC (Kelilong Electron
Co., Ltd., Fuan, China), respectively. Freshly collected algae were washed thoroughly in
seawater and transported to the laboratory immediately. The alga samples were identified
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by Dr. E. Obluchinskaya, and the voucher specimens were deposited in the Collection of
the Zoobentos Laboratory (MMBI RAS). The alga samples were dried at 20 ◦C, ground
up to a 1 mm particle size using a non-metallic mill (CT 293 Cyclotec, Foss, Hilleroed,
Denmark), and then kept at room temperature until analyses.

3.2. Sampling Stations

The sampling areas and stations are shown in Figure 7. Samples of F. vesiculosus from
different geographical locations around Iceland, Norway, and Russia were collected for
the study: The Irminger Sea, Fossvogur Bay, and Seltjarnarnes Peninsula (Stations 1 and
2; Figure 7A); the Norwegian Sea, Cape Sudspissen (St. 3; Figure 7B); the Barents Sea,
Teriberskaya and Zelenetskaya bays (St. 4 and 5, Figure 7C); the White Sea, Kandalaksha
Bay Islands (St. 6–9; Figure 7D and Table 4). In the sampling areas, there were no industrial
enterprises or visible pollution with garbage or oil products. An anthropogenic load at the
stations of the Barents Sea and the White Sea was practically absent (St. 4–9). Stations St. 1,
1a, 2, and 3 are located near cities.
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Table 4. Characterization of the sampling stations.

Sea Area Sampling Site Coordinates Reproductive
Phase

Station (No. on
the Map;
Figure 7)

Mean Water
Temperature,

◦C

Range of
Salinity, ‰

Irminger Sea Fossvogur Bay 64.120887 N
21.930663 W Fertile 1 13.9 29.8 ± 0.3

Irminger Sea Fossvogur Bay 64.120978 N
21.929122 W Sterile 1a 4.0 34.9 ± 0.1

Irminger Sea Fossvogur Bay 64.120887 N
21.930663 W Sterile 1 4.0 35.2 ± 0.3

Irminger Sea Seltjarnarnes
Peninsula

64.15035 N
21.97255 W Sterile 2 3.9 34.5 ± 0.6

Norwegian Sea Sudspissen
Cape

69.627168 N
18.912621 E Fertile 3 9.1 33.1 ± 0.3

Norwegian Sea Sudspissen
Cape

69.627168 N
18.912621 E Sterile 3 6.3 35.0 ± 0.2

Barents Sea Teriberskaya
Bay

69.184068 N
35.259487 E Fertile 4 9.1 20.3 ± 0.4

Barents Sea Teriberskaya
Bay

69.184068 N
35.259487 E Sterile 4 4.2 25.4 ± 0.6

Barents Sea Teriberskaya
Bay

69.173088 N
35.168468 E Fertile 4 11.2 15.1 ± 0.4

Barents Sea Zelenetskaya
Bay

69.117150 N
36.070790 E Fertile 5 10.3 31.5 ± 0.5

White Sea Bolshoy Gorely
island

66.31376 N
33.612736 E Fertile 6 12.8 22.8 ± 0.7

White Sea Matrenin Island 66.30945 N
33.631920 E Fertile 7 14.1 15.3 ± 0.2

White Sea
Malyy

Andronin
Island

66.333374 N
33.766743 E Fertile 8 13.0 25.9 ± 0.4

White Sea Pezhostrov
Island

66.273315 N
33.934406 E Fertile 9 17.2 22.2 ± 0.1

3.3. Chemicals

Nitric acid solutions were prepared by the dilution of 65% stock solution (PanReac,
Darmstadt, Germany). Multi-element standard solutions were prepared by the dilution
of 1000 µg mL−1 of Multi-Element Calibration Standard 3 (concentration 10 µg/mL)
(PerkinElmer, Waltham, MA, USA) in the range of 0.1–1.0 mg/L. All glassware pieces
were previously decontaminated with 10% v/v HNO3 for 24 h.

The Folin–Ciocalteu reagent, quercetin, phloroglucinol, fucose, xylose, and 2,2-diphenyl-
1-picrylhydrazyl (DPPH) were from Sigma-Aldrich (St. Louis, MO, USA). The other
analytical-grade chemicals and solvents used for the extraction and assay were purchased
from local chemical suppliers. All reagent solutions were prepared using ultrapure water
(resistivity of 18.2 MΩ cm) obtained from a Milli-Q purification system (Millipore, Bedford,
MA, USA).

3.4. Fucose–Xylose Composition

The amounts of fucose and xylose were determined after hydrolysis of the dried
seaweed samples [16]. The hydrolysate was cooled in an ice water bath and centrifuged
at 2300× g (3500 rpm) for 15 min at 25 ◦C using a medical laboratory centrifuge (CM-6M,
Elmi Ltd., Riga, Latvia). The supernatant was neutralized to pH 7 with 2 M NaOH. The
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resulting samples were analyzed by HPLC using an LC-10A chromatograph with an RID-
10A detector (Shimadzu Corp., Kyoto, Japan) according to the method in [81]. Samples
were separated on a Shodex Asahipak NH2P-50 4E 250 × 4.6 mm column (Showa Denko
Co., Tokyo, Japan) at 50 ◦C. A mixture of 0.25 M orthophosphoric acid and acetonitrile
(20:80) was used as the mobile phase, at a flow rate of 1.0 mL/min. Fucose and xylose were
used as the reference compounds.

3.5. Determination of the Phlorotannin Content, Total Flavonoids, and Antioxidant Activity

The samples of F. vesiculosus were extracted following the method of [82], with some
modifications. The powdered sample (2 g) was macerated three times with 50 mL of
aqueous methanol (60% v/v), in a dark place and at room temperature, for 24 h under
continuous stirring at 200 rpm using the Multi Bio RS-24 (Biosan, Riga, Latvia). The mixture
was centrifuged (3500 rpm, 10 min), filtered, and combined. The filtrate was concentrated
to dryness under vacuum on a rotary evaporator IR-1m (PJSC Khimlaborpribor, Klin,
Russia), and the residue was dissolved in 25 mL volumetric flasks with 60% v/v aqueous
methanol. The phlorotannin content (PhTC), the total flavonoid content (TFC), and the
DPPH scavenging activity were analyzed in triplicate.

The amount of PhTC was determined with the Folin–Ciocalteau reagent according
to [83]. Briefly, 0.5 mL of the solution of Fucus extracts was mixed with 2 mL of the
Na2CO3 solution (200 mg/mL) and 10 mL of ultrapure water; after 5 min, 0.5 mL of
the Folin–Ciocalteau reagent was added. The solutions were mixed and incubated at
room temperature in dark conditions for 2 h. The precipitate formed was removed by
centrifugation (PE-6900, Ekros-Analytica LLC, St. Petersburg, Russia) at 3500 rpm for
10 min. Finally, the absorbance was measured at 750 nm (Shimadzu UV 1800, Shimadzu,
Kyoto, Japan) and compared to a phloroglucinol calibration curve spectrophotometer.
The results are expressed as milligrams of phloroglucinol equivalent per gram (PhE/g)
of F. vesiculosus DW. The TFC was measured by a colorimetric assay [84], with some
modifications. Briefly, a 0.5 mL aliquot of the alga extract was added to a volumetric
flask containing 2 mL of water and 0.15 mL of an aqueous NaNO2 solution (5 g/100 mL).
After 5 min, 0.15 mL of an aqueous AlCl3 solution (10 g/100 mL) was added. After a
further 6 min, 1 mL of M NaOH was added, and the mixture in the reaction flask was
diluted to volume with the addition of 1.2 mL of ddH2O and then thoroughly mixed. The
absorbance of the mixture was measured at 415 nm after 30 min against a blank using a
UV-Vis spectrophotometer Shimadzu UV 1800 (Shimadzu, Kyoto, Japan). The TFC was
expressed as milligrams of quercetin equivalent per gram (QE/g) of F. vesiculosus DW. A
blank was prepared, as described above, except that aluminum chloride was replaced with
aqueous methanol.

The DPPH scavenging activity was analyzed according to Brand-Williams et al.
(1995) [85], with some modifications [51]. Briefly, 1 mL of the extract or standard was
mixed well with 1.5 mL of H2O and 0.5 mL of a 100 µM DPPH methanolic solution in a
test tube. L-ascorbic acid was used as the reference standard. The same concentration of
methanol and DPPH was used as the control without extract solution. The reactive solu-
tions were left in the dark at room temperature for 30 min. Then, the absorbance at 517 nm
was taken using a Shimadzu UV 1800 UV–Vis spectrophotometer (Shimadzu, Kyoto, Japan).
The percent of remaining DPPH (%DPPH·R) of different samples was calculated as follows:

%DPPH·R =
DPPH·T
DPPH·0

× 100 (1)

where DPPH·0 is the concentration of DPPH at time zero (initial concentration), and DPPH·T
is the concentration of DPPH after 30 min.

The percentage of remaining DPPH was plotted against the sample/standard con-
centration to obtain the IC50 value, which represents the concentration of the extract or
standard antioxidant (mg/mL) required to scavenge 50% of the DPPH radical in the reac-
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tion mixture. Its reciprocal, the antiradical power (ARP, ARP = 1/IC50), was also calculated
for each of the sample extracts [51].

3.6. Ash Content

Samples (0.5–1.5 mm) were dried at 105 ◦C for 24 h for complete drying, and then
desiccated during cooling. After cooling, 1 g of the dried samples was placed in a crucible
and transferred to a muffle furnace for 24 h at 575 ◦C to ensure complete combustion. The
sample crucibles were cooled in a desiccator and weighed after cooling.

3.7. Elemental Analysis

A PerkinElmer® Optima™ 8000 Model inductively coupled plasma optical emission
spectrophotometer (ICP-OES) (PerkinElmer, Inc., Shelton, CT, USA) was used to quantify
the metal ions in the alga tissue samples [86]. The instrument was optimized daily before
the measurements and operated as recommended by the manufacturer. The instrumental
parameters were: Plasma gas flow, 10 L/min; auxiliary argon flow rate, 0.2 L/min; nebulizer
gas flow rate, 0.7 L/min; plasma power, 1300 W; sample flow rate, 1.5 mL/min. The mi-
crowave digestion unit Speedwave Entry Two (Berghof, Eningen unter Achalm, Germany)
was used for the decomposition of the plant samples before analyses by ICP-OES [87]. All
measurements were performed using argon gas to form plasma. The wavelengths (nm)
were: Al 396.153; As 188.979; Ba 455.403; Bi 223.061; Ca 317.933; Cd 214.440; Co 238.892; Cr
267.716; Cu 327.393; Fe 238.204; Mg 279.077; Mn 257.610; Ni 231.604; Pb 220.353; Rb 780.023;
Sr 407.771; Zn 213.857.

Sample aliquots of approximately 400 mg were digested using 5 mL of HNO3. Blank
solutions were prepared by applying the same procedure and reagent solutions without
sample. The digestion program consisted of three steps: Room temperature to 150 ◦C in
5 min; 150–190 ◦C in 10 min; 190–75 ◦C in 15 min. After cooling to room temperature, the
digested material was transferred to a 50 mL volumetric flask, and the volume was set with
ultrapure water. Analytical signals were measured as emission intensity values.

3.8. Metal Pollution Index

The Metal Pollution Index (MPI) [78,88] is a mathematical model that summarizes the
values for all toxic metals, calculated as the mean of values for the metals considered and
expressed as follows:

MPI = (M1 ×M2 × . . . ×Mn)1/n (2)

where Mn is the concentration of the metal, n, in the sample in milligrams per kilogram of
DW.

The nutrimental importance of essential elements was assessed on the basis of nutri-
tional requirements (European Food Safety Authority) [70]. The health risk due to the toxic
elements present in seaweeds was estimated using risk estimators [67–71].

3.9. Statistical Analysis

All statistical analyses were performed with STATGRAPHICS Centurion XV (StatPoint
Technologies Inc., Warrenton, VA, USA). The data are expressed as the mean ± standard
deviation (±SD), and the error bars in the figures indicate the standard deviation. The
differences between the means were analyzed by ANOVA, followed by Tukey’s post hoc
test. A significant difference was considered at a level of p < 0.05. Pearson’s correlation
coefficients were used to establish the relationship between the content of representative
compounds and antioxidant capacity. Multiple regression and multivariate data analysis
such as the partial least squares coefficient method were carried out.

4. Conclusions

To the best of our knowledge, this is the first study in which the impact of the re-
productive phase and geographic location (coastal zone of the Arctic—Irminger Sea (IS),
Norwegian Sea (NS), Barents Sea (BS), and White Sea (WS)) on the biochemical composition
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and antioxidant properties of the Arctic Fucus vesiculosus was evaluated. The biochemical
composition of F. vesiculosus significantly varied. The highest amounts of fucose and xylose
were found in the algae from the BS collected in the fertile phase. A strong correlation
was established for monosaccharide, phlorotannin, and flavonoid accumulation and water
salinity (Pearson’s correlation coefficients r = −0.58, 0.83, and 0.44, respectively; p < 0.05).
We noted a negative correlation between radical scavenging activity and the amount of
structural monosaccharides of fucoidan. However, future studies with purified fucoidan
are necessary to clarify this observation. The positive correlation of phlorotannins and
flavonoids with ARP was confirmed for all samples. The ash accumulation was relatively
lower in the sterile phase for the algae from the BS and WS. The correlation between the
MPI and reproductive phases was medium with a high fluctuation. Meanwhile, the MPI
was strongly correlated with the salinity and sampling site. The gradient of MPI values
across the seas was ranked in the following order: BS < WS < NS < IS. We noted a correla-
tion between the accumulation of several individual metals as well. Taken together, based
on our data on the elemental content of F. vesiculosus collected from different seas of the
Arctic region, we believe that this alga does not accumulate toxic doses of elements. Thus,
F. vesiculosus could be used safely in food and drug development, as a source of active
biochemical compounds and as a source of dietary elements, to cover the daily nutritional
requirements of humans.
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