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Short-chain fatty acids (SCFAs) includingacetate, formate, propionate, andbutyrate are

the end products of dietary fiber and host glycan fermentation by the human gut

microbiota (HGM). SCFAs produced in the column are of utmost importance for host

physiology and health. Butyrate and propionate improve gut health and play a key role

in the neuroendocrine and immune systems. PredictionofHGMmetabolic potential is

important for understanding the influence of diet andHGM-producedmetabolites on

humanhealth.We conducted a detailedmetabolic reconstruction of pathways for the

synthesis of SCFAs and L- and D-lactate, as additional fermentation products, in a

reference set of 2,856 bacterial genomes representing strains of>800 knownHGM

species. The reconstructed butyrate and propionate pathways included four and

three pathway variants, respectively, that start from different metabolic precursors.

Altogether, we identified 48metabolic enzymes, including five alternative enzymes

in propionate pathways, and propagated their occurrences across all studied

genomes. We established genomic signatures for reconstructed pathways and

classified genomes according to their simplified binary phenotypes encoding the

ability (“1”) or inability (“0”) of a given organism to produce SCFAs. The resulting

binary phenotypes combined into a binary phenotype matrix were used to assess

the SCFA synthesis potential of HGM samples from several public metagenomic

studies. We report baseline and variance for Community Phenotype Indices

calculated for SCFAs production capabilities in 16S metagenomic samples of

intestinal microbiota from two large national cohorts (American Gut Project, UK

twins), the Hadza hunter-gatherers, and the young children cohort of infants with

high-risk for type 1 diabetes. We further linked the predicted SCFA metabolic

capabilities with available SCFA concentrations both for in vivo fecal samples and

in vitro fermentation samples fromprevious studies. Finally, we analyzed differential

representation of individual SCFA pathway genes across several WGS metagenomic

datasets. The obtained collection of SCFA pathway genes and phenotypes enables

the predictive metabolic phenotype profiling of HGM datasets and enhances the in

silico methodology to study cross-feeding interactions in the gut microbiomes.
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1 Introduction

Short-chain fatty acids (SCFAs) are the end products of the

anaerobic fermentation of non-digestible dietary fiber by the

human gut microbiota (HGM). Acetate (C2), propionate (C3),

butyrate (C4), and formate (C1) are major SCFAs that are

produced by HGM and absorbed in the colon (Morrison and

Preston, 2016). Two isoforms of lactate (D-lactate and L-lactate),

although are not SCFAs, are also produced by some HGM

members, such as lactic acid bacteria, bifidobacteria and

others. Due to their large repertoires of carbohydrate-active

enzymes, HGM bacteria are capable to degrade dietary

undigested polysaccharides (i.e., resistant starch, dietary fiber)

and host-produced mucus glycans and produce SCFAs and

lactate as fermentation products (Briggs et al., 2021). These

metabolites are subject to cross-feeding between HGM

members and finally absorbed in the colon or eliminated with

feces (Ríos-Covián et al., 2016). Upon absorption by various

SCFA transporters expressed at different levels in the small

intestine and the column (Ganapathy et al., 2013), HGM-

produced SCFAs modulate key functions of the host including

energy homeostasis, nutrient processing, cell proliferation,

inflammatory response and immune system development

(Martin-Gallausiaux et al., 2021). In particular, butyrate serves

as the main energy substrate for colonocytes (Roediger, 1980).

Experiments with germ free mice that lack their intestinal

microbiomes demonstrate reduced colon cell proliferation,

which is restored by the addition of butyrate ex vivo (Park

et al., 2016). Some of the intestinally absorbed SCFAs also

appear in the bloodstream and metabolized in the liver, at

that propionate and butyrate exert larger positive biological

effects than acetate. Importantly, SCFAs are involved in lipid

and glucose metabolism, regulate appetite through gut hormone

secretion and protect our bodies against the development of

various diseases including diet-induced obesity and type

2 diabetes (Sanna et al., 2019), colorectal cancer (Louis et al.,

2014), kidney disease (Gao et al., 2021), inflammatory bowel

diseases (IBD) and irritable bowel syndrome (Vich Vila et al.,

2018; Sun et al., 2019; Venegas et al., 2019) and nervous system

disorders (Mirzaei et al., 2021).

Acetate is the most abundant SCFA produced by a large

number of HGM species (Rowland et al., 2018). Acetate is

directly synthesized from Acetyl-CoA (a major metabolite

derived from catabolism of carbohydrates, fatty acids and

amino acids) via an ATP-generating pathway involving

phosphotransacetylase and acetate kinase, which is present in

diverse bacterial species. Butyrate and propionate are usually

produced in three to ten times fewer amounts than acetate by

specific taxonomic groups of HGM bacteria via multiple

alternative pathways during carbohydrate and/or amino acid

fermentation (Louis and Flint, 2017). Formate is another by-

product of anaerobic fermentation in many HGM species

encoding pyruvate formate lyase enzyme (Rowland et al.,

2018), however it is almost completely utilized by other HGM

members via the Wood-Ljungdahl pathway resulting in the

production of additional acetate (Laverde Gomez et al., 2019).

Other intermediate fermentation products including lactate and

succinate produced by many HGM species also do not

accumulate to high levels in the colon since they are

extensively involved in bacterial cross-feeding, serving as

substrates for butyrate and propionate producers (Ríos-Covián

et al., 2016). For example, in vitro co-culture studies

demonstrated that acetate and lactate produced during

fermentation of poly- and oligosaccharides by Bifidobacterium

adolescentis support the growth of butyrate-producing strains of

Anaerostipes, Roseburia and Eubacterium species with

progressive increase in butyrate formation (Belenguer et al.,

2006).

Diverse and important impacts of SCFAs on host physiology

and health inspired a bulk of epidemiologic research and dietary

intervention studies of healthy populations that measure SCFAs

produced by the gut microbiota and link their metabolic profiles

to health condition or diet [reviewed in (Ríos-Covián et al.,

2016)]. In particular, in vivo dietary intervention studies allow to

identify variable effects of dietary fibers on stimulation of

production of SCFAs, especially butyrate, and link these

effects to HGM composition (Venkataraman et al., 2016;

Baxter et al., 2019; Deehan et al., 2020). On another hand,

experiments on in vitro bacterial fermentation of HGM

inoculum allow to study the effect of individual dietary

compounds on metabolic SCFA profiles and taxonomic

composition under simultaneous control of a few key

parameters of anaerobic fermentation experiments such as

medium composition, temperature, fiber particle size and

glycosidic bond configuration, speed of fermentation

(Reichardt et al., 2014; Harris et al., 2017; Fehlbaum et al.,

2018; Chen M. et al., 2020; Miclotte et al., 2020; Thakkar

et al., 2020; Yao et al., 2020; Teichmann and Cockburn,

2021). Extensive literature searches to identify in vitro batch

fermentation studies of impact of fermentable carbohydrates on

SCFA production, as recently reviewed by Harris et al. (2020),

allowed the authors to classify non-digestible carbohydrate

substrates according to their effect on promoting production

of individual SCFA.

Butyrate-producing bacteria have been extensively studied

largely by cultural studies, however their in vitro growth is a

challenging task requiring both anaerobic conditions and specific

nutrients. Majority of known butyrate producers belong to the

Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and

Peptostreptococcaceae families within the Firmicutes phylum.

In particular, Faecalibacterium prausnitzii, Eubacterium rectale

and Roseburia spp. Are the most abundant HGM species that

produce butyrate from acetate using the acetyl-CoA pathway of

butyrate fermentation (Louis and Flint, 2017). Three other

alternative butyrate production pathways that start from

amino acid substrates (glutamate or lysine) or succinate are
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much less abundant among HGM Firmicutes and also very rare

in other bacterial phyla (Vital et al., 2014). In contrast to butyrate,

two other SCFAs acetate and propionate are mainly produced by

major dietary fiber-degrading HGM species from the

Bacteroidetes phylum, as well as by mucin-degrading bacteria

from the Verrucomicrobia phylum such as Akkermansia

muciniphila (Louis and Flint, 2017). Propionate is produced

by HGM bacteria using three alternative metabolic pathways

that start from succinate, lactate, or propanediol (Reichardt et al.,

2014). The latter intermediate is formed in some HGM bacteria

as a product of catabolism of the deoxy sugars rhamnose and

fucose and can participate in cross-feeding between deoxy sugar

degraders (e.g., Enterobacteria and Bacteroides species) and

propionate producers encoding the propanediol pathway

(such as Roseburia and Blautia species).

Our recent study of vitamin biosynthesis pathways has

established a new approach for predictive functional

characterization of HGM microbial communities from the 16S

rRNA gene amplicon sequencing data using metabolic

reconstructions in reference HGM genomes and the concept

of binary metabolic phenotype that reflects the presence or

absence of functional pathway variant linked to production

(or utilization) of a specific metabolite (Rodionov et al., 2019).

For metabolic reconstruction of target metabolic pathways we

previously developed and used the subsystem-based approach

implemented in SEED genomic analysis platform (Overbeek

et al., 2005, 2014) that combines genomic and functional

context analysis with comparative analysis of enzyme and

pathway variants within the subsystem populated with

genomes and functionally annotated genes (Leyn et al., 2017).

This approach and the obtained genomic collection of

reconstructed pathways and assigned phenotypes for vitamin

biosynthesis were further used by us to assess biosynthetic

potential for B-vitamins over a large collection of 16S HGM

samples from generally healthy cohorts (Rodionov et al., 2019).

The obtained distributions of Community Phenotype Indices

(CPI) for vitamin prototrophy allow us to formulate vitamin

sharing hypothesis, which was further validated in follow-up

experimental study of the effect of vitamin supplementation on

HGM composition and CPI values in gnotobiotic mice model

(Sharma et al., 2019). The metabolic phenotype profiling

approach was used in multiple subsequent studies to assess

functional potential of HGM samples from fecal samples from

various cohorts of participants (Delannoy-Bruno et al., 2021;

Jiang et al., 2021), or in vitro fermentation studies to measure the

influence of prebiotics and other compounds on HGM samples

(Peterson et al., 2019a, 2019b, 2021; Elmén et al., 2020). In our

recent paper we used machine learning techniques to show that

the amount of butyrate and propionate producers represents an

interpretable feature, which is stable across different datasets and,

hence, can be used for distinguishing between healthy and

unhealthy (Crown’s disease) groups (Iablokov S. N. et al.,

2021). It was observed that higher amounts of butyrate

producers are associated with healthy patients, with the

opposite being true for the propionate producing bacteria.

Thus, the indirect determination of SCFAs using taxonomic

profiling has already been encountered in earlier studies.

In the current study, we established the bioinformatics

approach for assessing the metabolic potential for SCFA

synthesis in HGM metagenomic samples in both 16S rRNA

gene sequencing format and whole genome sequencing (WGS)

datasets. For this purpose, a detailed analysis and reconstruction

of the SCFA synthesis pathways was carried out in the reference

set of HGM microbial genomes. Genomic signatures were

established for many variants of enzymatic pathways and

bacterial species were classified according to their ability (or

inability) to produce SCFAs using a simplified binary matrix of

phenotypes. We also reconstructed reference metabolic pathways

for production of D- and L-lactate as an additional end product

of microbial fermentation. The obtained matrix of binary

phenotype values for SCFAs and lactate was used for the

predictive phenotype profiling of the human gut microbiome

with the publicly available 16S and WGS metagenomic datasets.

As result, we compared the distribution of distinct pathway

variants in HGM metagenomics datasets, compared the

predicted metabolic potentials with metabolomics data for

butyrate and propionate and demostrated the age-dependent

increase of butyrate producers in childrens microbiomes. The

observed correlations and dependencies are expected to guide the

development of personalized nutritional supplements and health

food products.

2 Materials and methods

2.1 Selection of reference HGM genomes

The initial reference set of 2,228 human gut bacterial

genomes from our previous study of vitamin metabolism

(Rodionov et al., 2019) was expanded by about 450 genomes

of intestinal bacteria from the PATRIC database (Wattam et al.,

2017), and also included ~150 newly sequenced HGM isolates

(Gehrig et al., 2019; Chen R. Y. et al., 2020; Feng et al., 2020). The

obtained genomic collection included 2,856 genomes

representing eleven phyla, 43 orders, 104 families, 296 genera,

823 distinct species and 278 genomes without taxonomically

defined species names (Supplementary Table S1). The largest

number of selected reference genomes belong to the Firmicutes

(1,331 genomes), Proteobacteria (636 genomes), Actinobacteria

(504 genomes) and Bacteroidetes (303 genomes) phyla. The

Fusobacteria and Tenericutes phyla are represented by 44 and

25 genomes, respectively. The remaining five phyla

(Verrucomicrobia, Synergistetes, Spirochaetes, Lentisphaerae,

and Planctomycetes) contain from one to six reference

genomes. Phylogenetic tree of representative genomes for each

genus was constructed using RaxML using concatenated
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alignment of ribosomal proteins as previously described

(Rodionov et al., 2019) and further visualized with predicted

metabolic phenotypes using iTOL (Letunic and Bork, 2021).

2.2 Metabolic reconstruction in reference
HGM genomes

We used a subsystem-based comparative genomic approach

implemented in the SEED genomic platform/database (Overbeek

et al., 2005, 2014) for genomic reconstruction of metabolic

pathways for production of short-chain fatty acids (formate,

acetate, propionate, butyrate) and lactate in the reference set

of HGM bacterial genomes (Supplementary Figure S1). For

metabolic reconstruction of SCFA and lactate production

pathways we collected the existing knowledge on participating

biochemical reactions and Enzyme Commission (EC) numbers

from literature (Vital et al., 2014; Gonzalez-Garcia et al., 2017;

Louis and Flint, 2017), as well as from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2014) and

MetaCyc (Caspi et al., 2016) databases. The identified

metabolic enzymes were mapped to the analyzed reference set

of bacterial genomes and are captured in the corresponding

subsystems in the web-based mcSEED (microbial community

SEED) environment, a local copy of the publicly available SEED

database (Overbeek et al., 2005, 2014). The mcSEED subsystems

were further extensively curated and expanded to identify and

functionally annotate: 1) distantly related homologs of known

SCFA pathway enzymes, and 2) novel enzymes that substitute

missing functional roles in subsets of genomes with incomplete

SCFA production pathways. Previously uncharacterized

metabolic enzymes including candidates for non-orthologous

gene displacements in the analyzed SCFA production pathways

were initially described by analyzing their protein families in the

Pfam database (El-Gebali et al., 2019), and by BLASTP similarity

searches against UniProt database (Bateman, 2019) and literature

using PaperBLAST (Price and Arkin, 2017). In addition to

homology-based methods, we used genomic context

techniques for functional gene annotation, including: 1)

clustering of functionally related genes on the chromosome,

and 2) patterns of occurrence of genes from the same

metabolic pathway across the analyzed genomes.

2.3 Phenotype rules and binary phenotype
matrix

The reconstructed SCFA and lactate production pathways

(Figure 1) were further analyzed across 2,856 reference genomes

to establish specific phenotype rules bridging the patterns of

functionally annotated genes with corresponding binary

metabolic phenotypes. For each analyzed metabolic pathway

including alternative biochemical routes for propionate and

butyrate synthesis we deduced generalized genomic signatures

(subsets of metabolic enzymes) and then assigned individual

pathway variant (such as P1, P2, etc.) or a combination of

variants (e.g., P12) if a genome encodes two or more pathway

variants for the same SCFA product (Table 1, Supplementary

Table S1). For further quantitative analysis, we translated the

identified pathway variants to binary phenotypes corresponding

to SCFA producers (“1”) or non-producers (“0”). The obtained

binary values are summarized in the form of a Binary Phenotype

Matrix (BPM) capturing inferred 1/0 values for six fermentation

products (butyrate, propionate, acetate, formate, L-lactate and

D-lactate) derived from reconstructed metabolic subsystems

across all reference genomes. This reference BPM was further

used to assess the metabolic potential for SCFA synthesis in

HGM metagenomic samples.

2.4 Metabolic phenotype profiling of 16S
microbiome datasets

For predictive profiling of SCFA production capabilities in

HGM metagenomics samples, we analyzed raw 16S rRNA gene

sequencing data from two large studies of broad Western

populations obtained in the framework of the American Gut

Project (AGP, 2868 samples) (McDonald et al., 2018) and the

UK twins (UKT, 3,288 samples) study (Goodrich et al., 2016), as

well as the Sweden cohort of young children (3,558 samples)

from the Environmental Determinants of Diabetes in the

Young (TEDDY) dataset (Stewart et al., 2018) containing

longitudinal stool samples from children between 3 and

46 months of age (Stewart et al., 2018). We also analyzed the

Hadza 16S metagenomics dataset representing 222 HGM

samples collected from a rural community of the Hadza

hunter-gatherers from Tanzania (Schnorr et al., 2014). To

analyze Spearman correlation between measured SCFA

concentrations and predicted production capabilities, we also

analyzed 16S datasets from published in vivo and in vitro

fermentation studies of HGM microbiota (Chen M. et al.,

2020; Deehan et al., 2020; Elmén et al., 2020). The 16S

amplicon sequencing data from all of these datasets were

analyzed using the dada2 plugin in QIIME2 (Caporaso et al.,

2010). Briefly, 16S sequences were quality-filtered, chimeric

reads were removed, and the resulting reads were dereplicated

into amplicon sequence variants (ASV) with default

dada2 parameters. Taxonomic classification of the obtained

ASV sequences was carried out using the multi-taxonomic

assignment (MTA) approach (Iablokov S. et al., 2021) using

the joined reference NCBI 16S and RDP (Cole et al., 2014)

databases, with taxonomic names in RDP updated according

the NCBI Taxonomy database. Finally, we renormalized the

original relative abundances of ASVs by 16S rRNA gene copy

numbers derived from the rrndb (version 5.6) database

(Stoddard et al., 2015).
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We used a development version of the Phenotype Profiler

tool provided by PhenoBiome Inc (Walnut Creek, CA,

United States) to assess the metabolic potential for SCFA

production (see Supplementary Figure S1, part II for the

workflow scheme). As previously described (Rodionov

et al., 2019), we mapped ASVs to the reference organisms

in BPM to assign Phenotype Indices (PI) of each ASV on the

scale from 0 to 1, reflecting the probability for a given ASV to

be a particular metabolic phenotype carrier. Community

Phenotype Indices (CPI) were calculated for each

metagenomic sample as a sum of abundance-weighted PI

values, thus representing the expected fraction of

community’s bacterial cells with a given metabolic

capability (phenotype).

CPI � ∑
i
AiPIi

where Ai and PIi are relative abundance and phenotype index for

each ASV.

A prediction error for CPI values (reflecting imprecise

mapping and phenotype microheterogeneity) was calculated as:

σ �
���������������∑

i
A2

i (1 − PIi)PIi
√

FIGURE 1
Reconstructed metabolic pathways of SCFA synthesis in reference HGM genomes. (A) Butyrate synthesis, (B) Propionate synthesis, (C) Acetate,
Formate and Lactate synthesis. Enzymes are shown by colored boxes with indicated Enzyme Commission (EC) numbers with detailed functional
roles described in Supplementary Table S1. Alternative biochemical pathways for butyrate and propionate synthesis are highlighted by different
colors. Shared biochemical routes for conversion of crotonoyl-CoA to butyrate are in dark brown boxes. Central carbon metabolism
metabolites and amino acids serving as substrates for acid fermentation pathways are circled; final fermentation products are in red..
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For ASV mapping to the HGM reference genomes, we used

the threshold for nucleotide identity 90% that roughly

corresponds to the taxonomic resolution on the family level.

ASVs with identity to the HGM reference organisms below this

threshold were discarded. According to our previous analyses, PI

values were calculated by phenotype averaging across all

genomes mapped with 90% threshold, resulting in PI

predictions of sufficient accuracy for the majority of

phenotypes, including SCFAs (Iablokov S. et al., 2021).

Metagenomic samples with less than 75% abundance

coverage to the HGM reference genomes were discarded from

further analysis due to higher prediction error for CPI values.

The choice of this threshold is a trade-off between 1) keeping a

large fraction of initial samples for better statistical significance

and 2) using CPI predictions with the smallest CPI error values.

For all analyzed 16S datasets except Hadza, application of 75%

threshold for the abundance of “mapped” ASVs has resulted in

filtering out no more than 10% of samples (see summary in

Supplementary Table S4J). The Hadza dataset was characterized

by the smallest mean abundance coverge by our reference HGM

genomic collection (67.5%), thus resulting in only ~1/3 of the

analyzed samples retained for the phenotype profiling.

2.5 Functional and taxonomic profiling of
WGS metagenomic samples

We analyzed shotgun metagenomic sequencing samples

from two large studies: 1) the Integrative Human Microbiome

Project (iHMP) that includes WGS and other multi-omics data

on functional dysbiosis in the gut microbiome during IBD

activity (Lloyd-Price et al., 2019); 2) and the German cohort

of young children from the TEDDY dataset (Stewart et al., 2018)

(1,048 samples). At first, we filtered the analyzed WGS fastq files

to remove host-specific reads using Bowtie2 (Langmead and

Salzberg, 2012), and the hg38 human genome assembly. We

TABLE 1 The distribution of SCFA production pathways in the HGM reference genomes.

Fermentation
product

Pathway
variantsa

#
Genomes

#
Species

Top taxonomic groups

Butyrate P1 186 84 Clostridiaceae, Eubacteriaceae, Lachnospiraceae, Streptococcaceae

P1+P2 41 17 Clostridiales

P1+P3 35 22 Clostridiales, Acidaminococcaceae, Peptoniphilaceae

P1+P4 28 19 Clostridiales, Butyricimonas, Odoribacter

P1+P2+P3 8 2 Clostridium, Lachnoclostridium

P1+P2+P4 16 10 Porphyromonas, Clostridiales

P2+P4 2 1 Paraclostridium

P1+P3+P4 28 5 Fusobacterium

P1+P2+P3+P4 8 2 Fusobacterium

P2 5 5 Lachnoclostridium, Porphyromonas, Tannerella

P4 2 2 Alistipes, Micromonospora

Total P1 or P2 or P3 or P4 359 164

Propionate P1 447 131 Bacteroidetes, Firmicutes, Akkermansia, Enterobacteria, Actinobacteria (Propionibacteria/
Corynebacteria)

P1+P2 6 3 Peptostreptococcaceae

P1+P3 96 30 Enterobacteria, Veillonellaceae

P1+P2+P3 2 1 Intestinimonas

P2 64 20 Clostridiaceae, Lachnospiraceae, Peptostreptococcaceae

P2+P3 18 9 Clostridiaceae, Eubacteriaceae, Peptostreptococcaceae

P3 193 63 Diverse Clostridia, Peptoniphilus, Veillonella, Lactobacillus, Enterococcus, Listeria,
Enterobacteria, Fusobacterium

Total P1 or P2 or P3 826 247

Acetate A 2,481 686 All taxa

Formate F 2041 534 Actinobacteria, Bacteroidales, Enterobacteria, Firmicutes

Lactate L 1,153 280 Actinobacteria, Firmicutes

D 632 190 Bacteroidales, Gammaproteobacteria

L + D 655 200 Fusobacterium, Firmicutes, Gammaproteobacteria

Total L or D 2,438 654

aButyrate producing pathways: P1, Acetyl-CoA; P2, succinate; P3, glutamate; P4, lysine; Propionate producing pathways: P1, succinate; P2, lactate; P3, propanediol; Lactate producing

pathways: L, L-lactate; D, D-lactate.
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further performed quality filtering of WGS reads using the

Kneaddata package (McIver et al., 2021) to enable adapter

removal, trimming and filtering by quality. To obtain

taxonomic profiles of WGS samples we used Kraken 2 (Wood

et al., 2019) and Bracken (Lu et al., 2017) and our custom

genomic database containing 2,856 reference HGM bacteria

with taxonomic assignments according to the NCBI

Taxonomy database. To assess the metabolic potential for

SCFA production in WGS samples, we used the Phenotype

Profiler tool with the relative taxonomy abundance profiles

provided as an input and a taxonomy-based approach to map

the respective taxonomic assignments to the reference BPM

organisms (for details, see (Iablokov S. et al., 2021)). WGS

entries with taxonomic similarity to the BPM worse than on

family level were marked as “non-mapped” and discarded, with

the respective relative abundances of “mapped” entries

renormalized to sum to 1. As result, the predicted metabolic

phenotype profiles included CPI values calculated for each WGS

sample and each analyzed SCFA phenotype.

For gene-based functional profiling of trimmed and filtered

WGS data files we implemented a pipeline including the

following public domain tools: a metagenome assembly with

MEGAHIT (Li et al., 2015); gene prediction with Prokka (v1.14,

metagenomic mode) (Seemann, 2014); functional annotation by

protein similarity search with DIAMOND (Buchfink et al., 2015);

and mapping of WGS reads to the functionally annotated genes

using Bowtie2 (Langmead and Salzberg, 2012). For functional

annotation we used complete proteomes of 2,856 reference HGM

genomes that include both functionally annotated proteins from

the reconstructed metabolic pathways and representative

sequences of all other proteins from these genomes. Finally,

we sum up the number of mapped reads for genes with the

same functional role from the reconstructed metabolic pathways

using Bedtools (Patwardhan et al., 2019). At the final step, we

performed gene count normalization using the trimmed mean of

M-values (TMM) approach (Robinson and Oshlack, 2010)

implemented in the edgeR (Robinson et al., 2010) package.

For TMM-normalization, we used a core gene set that is a set

of universal single-copy genes that are present in all genomes in

our reference database. The gene count matrix included only

genes that either belong to a set of the functionally annotated

genes from the studied SCFA production pathways or genes from

the core gene set. As result, the predicted functional gene profiles

included TMM-normalized total abundances of genes encoding

pathway-specific reactions in each SCFA production pathway

variant.

2.6 Comparison of predicted phenotype
profiles with PICRUSt2

To compare the CPI-based phenotype profiling approach

with a state of the art predictive metabolic pathway abundance

approach we used ASV sequences and abundance tables obtained

for the AGP and UKT datasets and run PICRUSt2 with default

parameters (Douglas et al., 2020). The default use case for

PICRUSt2 allows one to predict: 1) abundance of KEGG

ortholog (KO) families, and 2) abundance of known metabolic

pathways from the MetaCyc database (Caspi et al., 2016) using

KO functional annotations and the Minimal Set of Pathways

(MinPath) (Ye and Doak, 2009). The predicted abundances of

MetaCyc metabolic pathways for propionate and butyrate

production were normalized by a number of reads in each

sample. We further used the PICRUSt2 algorithm to predict

abundances of binary metabolic phenotypes in the UKT and

AGP datasets using the obtained BPM for SCFA production in

2,856 reference genomes. First, we mapped genomes from the

PICRUSt2 reference tree to the BPM genomes using their NCBI

TaxIDs and thus prepared a custom traits table for 2,607 leaves.

Then, we use dthis SCFA BPM trait table with the

PICRUSt2 pipeline to calculate cumulative phenotype

abundances in 16S samples and finally normalize them by a

number of reads.

2.7 Statistical analysis

The trimmed mean M (TMM) approach (Robinson and

Oshlack, 2010) implemented in the edgeR package (Robinson

et al., 2010) was used to normalize the number of genes for gene

function prediction analysis in WGS datasets.

To detect changes of bacterial species in the butyrate-

producing communities at different stages of child

development in the TEDDY 16S dataset, it was performed

linear discriminant analysis with effect size (LEfSe) (Segata

et al., 2011). For LEfSe, the nonparametric factorial

Kruskal–Wallis sum-rank test were implemented to identify

taxa with significant differential abundance, the effect size was

calculated by next linear discriminant analysis.

Alpha diversity (AD) and beta diversity (BD) metrics for

16S metagenomic samples were calcucated by QIIME2

(Caporaso et al., 2010) as the Faith’s phylogenetic diversity

(Faith, 1992) and weighted UniFrac (Lozupone and Knight,

2005) metrics, respectively. To investigate the impact of

metabolic phenotypes on BD, we used the binary SCFA

production phenotypes assigned to ASVs in each sample

and calculated Phenotype Beta Diversity (PBD) for the sub-

communities of carriers of a particular phenotype (e.g.,

butyrate producers) as previously described (Iablokov S.

et al., 2021). Additionally, we calculated relative PBD

(rPBD) as a ratio between PBD for a given phenotype and

the total BD in order to account for the possible diversity scale

inheritance.

All correlation analyzes were performed using Spearman’s

rank correlation by R software 4.1.2. Statistical significance was

set at p < 0.05.
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3 Results

3.1 Genomic reconstruction of SCFA
synthesis pathways

We used a subsystem-based comparative genomics approach

implemented in the SEED genomic database and analysis

platform (Overbeek et al., 2005; Osterman et al., 2010) to

reconstruct metabolic pathways for SCFA synthesis (Figure 1)

in the reference collection of 2,856 bacterial genomes

representing the human gut microbiome (see Supplementary

Figure S1 for overall workflow scheme and Methods for details).

We created three metabolic subsystem tables, corresponding to

functional roles involved in the fermentation pathways of central

metabolic intermediates producing butyrate, propionate and

three other metabolic products, namely acetate, formate and

lactate (Supplementary Table S1). Each metabolic subsystem was

populated by occurrence of specific functional roles in the

analyzed set of 2,856 bacterial genomes. As the result of

genomic reconstruction, the three metabolic subsystems were

populated by 77 functional roles including 48 biosynthetic

enzymes catalyzing 38 distinct biochemical reactions (each

corresponds to a unique EC number). The reconstructed

metabolic pathways included several alternative pathway

variants (Table 1 and Figure 1) including four pathways for

synthesis of butyrate and three distinct propionate pathways, as

well as alternative enzymes represented by non-orthologous gene

displacements that catalyze five biochemical reactions in the

propionate pathways. Additional details on the reconstructed

pathways are provided below.

3.1.1 Butyrate synthesis pathways

The reconstructed butyrate synthesis pathways in reference

HGM bacteria are represented by four pathway variants (further

denoted as P1-P4) that start from acetyl-CoA (derived from

pyruvate), succinyl-CoA (derived from succinate), 2-

oxoglutarate (derived from L-glutamate), and L-lysine,

respectively (Figure 1A). Despite different metabolic origins,

all four butyrate pathways merge at a common intermediate,

crotonyl-CoA, which is converted to butyryl-CoA via the

universal reaction by the butyryl-CoA dehydrogenase

electron-transferring flavoprotein complex Bcd-EtfAB (Vital

et al., 2014; Louis and Flint, 2017). P1 pathway is closely

related to the beta-oxidation of fatty acids; here crotonyl-CoA

is synthesized in a three-step process, where two molecules of

acetyl-CoA are converted into acetoacetyl-CoA via thiolase Thl,

and it is further reduced and dehydrated by dehydrogenase Hbd

and dehydratase Crt, respectively. In P2 pathway, succinyl-CoA

is reduced to 4-hydroxybutyrate via CoA-dependent succinate-

semialdehyde dehydrogenase AldD and NAD-dependent 4-

hydroxybutyrate dehydrogenase AbfH, which is further

transformed to crotonyl-CoA by transferase Cat and

dehydratase AbfD. In P3 pathway, 2-oxoglutarate is reduced

to 2-hydroxyglutarate and then to corresponding CoA-

intermediate by glutaconate CoA-transferase GctAB, and

further transformed into crotonyl-CoA via the 2-

hydroxyglutaryl-CoA dehydratase HgdABC and glutaconyl-

CoA decarboxylase GcdABC, respectively. P4 pathway

includes transformation of L-lysine via the KamA and

KamDE mutases into an intermediate, which is further

deaminated and oxidized by dehydrogenase KDD, cleaved by

KCE, and deaminated via lyase KAL, yielding crotonyl-CoA. The

final conversion of butyryl-CoA to butyrate is carried out either

directly by various butyryl-CoA transferases, such as CtfAB or

But, or through butyryl-phosphate via transferase Ptb and

kinase Buk.

Out of 2,856 studied genomes, complete pathways of butyrate

synthesis were identified only in 359 genomes, with the most

common P1 pathway variant present in 350 of them (Table 1). In

about half of genomes with P1 pathway, it was found

concurrently with the other variants of butyrate synthesis in

different combinations. Only nine studied genomes encoded the

P2 and/or P4 pathway variants in the absence of the P1 variant,

while the P3 pathway variant always co-occurs with P1.

Combinations of three or four pathway variants for butyrate

synthesis in a single genome are quite rare, the most prominent

example being the Fusobacterium species. Taxonomically,

pathways of butyrate synthesis are most widely distributed

among the Firmicutes (mainly from the Clostridia class), and,

to a much lesser extent, among a few genera from the

Bacteroidetes, Fusobacteria, and Spirochaetes phyla

(Supplementary Figure S2), while are almost completely (apart

from a few species) absent in the Actinobacteria and

Proteobacteria phyla. These observations are in agreement

with previously published data [(Vital et al., 2014; Louis and

Flint, 2017) and see below].

3.1.2 Propionate synthesis pathways

The reconstructed propionate production pathways in

reference HGM bacteria include three previously described

variants (P1-P3) that make propionate from either succinate,

lactate, or propanediol metabolic precursors, respectively

(Figure 1B). Lactate and succinate are produced from

pyruvate and oxaloacetate during catabolism of many

carbohydrates and amino acids (Vital et al., 2014; Gonzalez-

Garcia et al., 2017; Louis and Flint, 2017), while propanediol is a

product of anaerobic catabolism of two methyl-pentoses,

L-fucose and L-rhamnose (Baldomà and Aguilar, 1988). In the

P1 pathway, succinate is converted to succinyl-CoA via either

AarC or PST transferases that concurrently transform propionyl-

CoA to propionate. Succinyl-CoA is converted to propionyl-CoA

in three further steps using vitamin B12-dependent
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methylmalonyl-CoA mutase MutAB, epimerase Mce, and

methylmalonyl-CoA decarboxylase (a single-subunit enzyme

Mmd or multisubunit complex MmdABCD). Alternatively,

S-methylmalonyl-CoA can be converted into propionyl-CoA

using pyruvate-dependent transcarboxylase MMCT that

contains two subunits (5S, 12S). In P2 pathway, lactate is

converted through lactoyl-CoA into acryloyl-CoA via CoA-

transferase Pct and dehydratase LcdABC, and it is further

reduced to propionyl-CoA by reductase Acr. Final release of

propionate from propionyl-CoA is catalyzed by the same

upstream pathway CoA-transferases both in P1 and

P2 pathways (PST, AarC, Pct). P3 pathway includes propane-

1,2-diol dehydration to propionaldehyde via B12-dependent

dehydratase PduCDE, next step carried out by dehydrogenase

PduP yields propionyl-CoA, which is converted to propionate by

consecutive actions of transferase PduL and kinase PduW.

Among 2,856 reference genomes, complete pathways of

propionate synthesis were found in 826 genomes (Table 1,

Supplementary Table S1). The succinate pathway P1 is the

most common variant, present in more than half of

propionate producers as the only propionate synthesis

pathway, and in a hundred more genomes—in combination

with two other pathway variants. The P1 pathway is typical

for a large number of species from the Firmicutes, Bacteroides,

Proteobacteria and Actinobacteria phyla. The propanediol

pathway P3 is the second most abundant variant found in

over 300 genomes represented by ~100 taxonomically diverse

species from the Firmicutes phylum (including representatives of

Bacillales, Clostridiales, Lactobacillales, Tissierellales, and

Veillonellales orders), Proteobacteria (25 species from the

Enterobacteriales order), and Fusobacteria. In addition, the

pdu gene locus encoding the P3 pathway was found in a

single representative from the Bacteroidetes phylum,

Bacteroides xylanolyticus, suggesting it was a subject to a

horizontal transfer from Firmicutes. The lactate (acrylate)

pathway P2 was identified in 90 genomes corresponding to

30 species from the Firmicutes phylum (mostly from the

Clostridia class), as well as in a single Fusobacterium species.

3.1.3 Alternative enzymes in propionate
synthesis pathways

The succinate pathway P1 is the most common pathway for

propionate synthesis identified in 551 HGM genomes. With the

exception of Mce, all other biochemical steps in the P1 pathway

were represented by two or more alternative enzymes encoded by

non-orthologous genes (Figure 1B). The prevailing, multi-

subunit form of methylmalonyl-CoA decarboxylase,

MmdABCDE, was found in 290 genomes representing diverse

bacterial phyla, while 153 genomes from the Proteobacteria

phylum (mostly Enterobacteria) have a non-orthologous form

of a single-subunit enzyme Mmd (Benning et al., 2000). An

alternative two-subunit enzyme for the synthesis of propionyl-

CoA from S-methylmalonyl-CoA, MMCT, was identified in

108 genomes from two genera of Actinobacteria

(Propionibacterium, Corynebacterium). Noteworthy, all three

alternative enzymes do not co-exist in any studied HGM

genome. Two alternative forms of methylmalonyl-CoA mutase

were identified: 1) MutAB, where both alpha and beta subunits

contain fused catalytic and B12-binding domains, i.e., MutAB

from Propionibacterium shermanii (McKie et al., 1990), and 2)

FIGURE 2
Distribution of Community Phenotype Indices (CPI) for SCFAs and lactate in HGM 16S samples from AGP, UKT and Hadza datasets. Box plots
with the median values show distribution of CPI values calculated for each 16S sample. Each CPI value corresponds to the relative abundance of
bacterial 16S reads possessing predicted metabolic capability to produce a SCFA.
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MutA2-MutC, where each subunit corresponds to catalytic and

B12-binding domain, respectively, as represented by a two-

subunit methylmalonyl-CoA mutase from Pyrococcus

horikoshii (Yabuta et al., 2015). We also identified an

accessory GTPase protein from COG1703 family (termed

MutB2) encoded in the same gene cluster with mutA2 in

many Proteobacteria and Firmicutes possessing the

P1 pathway variant. The most common CoA-transferase from

the P1 pathway, PST, was identified in over 400 genomes

representing the Bacteroidetes, Proteobacteria and

Actinobacteria phyla, while a non-orthologous alternative

form of CoA-transferase, AarC, is present in 57 genomes

from the Firmicutes phylum, as well as in Akkermansia

spp. Interestingly, both PST and AarC isozymes were not

found in ~80 analyzed genomes possessing all other

components of the P1 pathway including known propionate

producers such as Alistipes spp. And Prevotella ruminicola

(Strobel, 1992; Parker et al., 2020), suggesting the existence of

yet unidentified succinate:propionyl-CoA transferase in their

genomes.

The lactate pathway P2 contains two alternative forms of

lactoyl-CoA dehydratases, LcdABC and LcdX. The previously

characterized three-subunit enzyme LcdABC is present in

62 genomes possessing P2 pathway, whereas the novel

predicted dehydratase LcdX was found in 43 genomes

(Firmicutes, mostly Clostridia), including 18 genomes

possessing both alternative isozymes (Supplementary Table

S1). LcdX belongs to the COG1024 family from the

crotonase/enoyl-CoA hydratase superfamily (cl23717), which

includes 3-hydroxybutyryl-CoA dehydratase from the

P1 pathways of butyrate synthesis. Analysis of genomic

context suggests that lcdX orthologs always co-occur and co-

localize with acr and/or pct genes encoding two other enzymes

from the P2 pathway of propionate synthesis. Based on these

observations we predicted LcdX function as lactoyl-CoA

dehydratase (EC:4.2.1.54).

Finally, the propanediol pathway P3 includes two non-

orthologous forms of propanediol dehydratase. The B12-

dependent three-subunit enzyme PduCDE was identified in

225 out of 309 genomes containing the P3 pathway, whereas

B12-independent propanediol dehydratase, named PduC2, is

present in 106 genomes that represent diverse Firmicutes, but

also a few E. coli strains, Rhodospirillum rubrum and

Bacteroides xylanolyticus (pathway variant P3*). These

include 28 Clostridiales genomes and Bacillus

massiliosenegalensis posessing both alternative forms of

propanediol dehydratase. The B12-independent propanediol

dehydratase PduC2 is a glycyl radical enzyme that belongs to

the COG 1882 (PflD) family, which includes pyruvate formate

lyase 2 and B12-independent glycerol dehydratase. In all

analyzed genomes, PduC2 is accompanied by the radical

SAM-family proteins PduD2 that belongs to the COG1180

(PflA) family, including glycerol dehydratase activating

protein, and thus is likely to function as an PduC2 activating

enzyme. The predicted new propanediol dehydratase

PduC2 and the PduD2 activating enzyme have been recently

biochemically characterized in Roseburia inulinivorans, and

confirmed to utilize 1,2-propanediol as a substrate in strictly

anaerobic conditions (LaMattina et al., 2016).

3.1.4 Other SCFAs and lactate synthesis
pathways

Acetate is synthesized by two consequential reactions from

acetyl-CoA using acetate kinase AckA and phosphate

acetyltransferase Pta (Figure 1). Formate is formed in a single-

enzyme reaction from pyruvate via a strictly anaerobic enzyme,

pyruvate formate-lyase PflB, which also requires the radical SAM-

family activating enzyme PflA to regenerate the inactive PflB enzyme

after each catalytic round. Both acetate and formate production

pathways are widely distributed in HGM bacteria, being present in

86.8 and 71.4%of the analyzedHGMgenomes, and corresponding to

686 and 530 out of 830 analyzed species, respectively.

Two isoforms of lactate are formed from pyruvate by either

L-lactate dehydrogenase or D-lactate dehydrogenase (Figure 1).

These fermentation pathways are also frequent among HGM

bacteria: L-lactate and D-lactate pathways were identified

63.3 and 45% of the analyzed genomes, corresponding to

470 and 385 species, respectively (Supplementary Table S1).

At that 200 HGM species (22.9% of analyzed genomes)

possess both L- and D-lactate pathways.

3.2 Comparison of predicted pathways
with published experimental data

To validate the predicted SCFA production capabilities in

reference HGM genomes, we collected the published

experimental data on SCFAs synthesis by each analyzed HGM

species. As result, we found experimentally described SCFA

production phenotypes for 210 out of 823 reference HGM

species (Supplementary Table S2). Among 147 predicted

propionate producers with experimentally data available,

125 species (85%) indeed are capable to produce propionate,

while the propionate production capability has not been reported

for the remaining 22 species. For butyrate production, we found

experimental confirmation for 112 out of 117 predicted butyrate

producers, thus giving 96% consistency between experimental

and predicted phenotypes. The remaining inconsistencies may

originate from a variety of factors including strain-specific

phenotype variations (as exemplified by four strains of

Hungatella hathewayi, only one of them is a predicted

butyrate producer), transcriptional repression of the

propionate/butyrate pathway genes in the analyzed

experimental conditions, or by a significantly larger metabolic
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flow to generate alternative fermentation product(s). For

propionate production, we also observed a few cases of

inconsistencies in the opposite direction, when three HGM

species that are experimentally confirmed to produce

propionate, appear to lack any propionate synthesis pathway

in their genomes (Clostridium viride, Acidaminococcus intestini,

Eubacterium biforme). Finally, in the process of searching for

experimental SCFA phenotype evidences in published sources,

were found a few other characterized SCFA producers, including

Clostridium neopropionicum, Anaerotignum neopropionicum,

Alistipes dispar, Alistipes communis, Anaerococcus

octribumium, Butyricimonas faecalis, Clostridium

phytofermentans, Corynebacterium avidum, Peptoniphilus

ivorii, Clostridium sphenoides. These HGM organisms have

not been described in our reference genomic collection, we

thus plan to add them to our collection in the future. Overall,

the examined experimental data on SCFA production are in good

agreement with our in silico reconstruction and prediction of

propionate and butyrate production phenotypes.

3.3 Variability of SCFA binary phenotypes

To apply the reconstructed SCFA synthesis pathways in

reference genomes to metagenomic HGM samples we use the

concept of binary phenotypes introduced in our previous study

of vitamin synthesis capabilities in the human gut microbiome

(Rodionov et al., 2019). Binary representation of SCFA

synthesis phenotypes (Supplementary Table S1) allows us to

assess the phylogenetic distribution of predicted SCFAs

producers across HGM reference genomes, as visualized on

the phylogenetic tree constructed for representative HGM

genomes for nearly 300 analyzed genera (Supplementary

Figure S2). The largest analyzed phylum of Firmicutes

(1,331 genomes, 134 genera) contains mostly producers

capable of synthesizing all described SCFAs. The second

largest phylum of Proteobacteria (636 genomes, 79 genera)

contains a large number of acetate, formate and D-lactate

producers, whereas L-lactate producers are much less

abundant, propionate is only produced by a subset of

enterobacteria, and the butyrate synthesis pathway was

identified in a single genome (Kosakonia sacchari). Most of

the 504 analyzed genomes from the Actinobacteria phylum

(47 genera) are producing acetate, formate, and L-lactate,

whereas propionate and D-lactate can be produced by

6 and 3 genera, respectively, and the butyrate production

pathway was found only in a single genome

(Micromonospora aurantiaca). The Fusobacteria

(44 genomes, 3 genera) and Bacteroidetes (303 genomes,

24 genera) phyla contain mostly producers capable of

synthesizing all described SCFAs. The Verrucomicrobia

phylum as represented by six Akkermansia strains have

biosynthetic capabilities for formate, propionate and

D-lactate. Three reference genomes from the Synergistetes

phylum are capable of formate and propionate synthesis.

The Lentisphaerae phylum represented by a single HGM

species (Victivallis vadensis) produces only acetate and

formate. Both strains of Brachyspira pilosicoli from the

Spirochaetes phylum are producers of acetate, butyrate and

L-lactate. The Tenericutes phylum members (6 Mycoplasma

and 19 Ureaplasma strains) are able to produce acetate and

L-lactate. A single HGM strain from the Planctomycetes

phylum (Schlesneria paludicola) can produce only L-lactate.

To assess variations of the assigned binary SCFAs

synthesis phenotypes at the species and genus taxonomic

levels we used two metrics: 1) number of variable

phenotypes (NVP), and 2) overall phenotype variability

score (OPVS) calculated as a sum of variances for each

SCFA phenotype (Supplementary Table S3). The highest

individual phenotype variability score 0.5 corresponds to a

case when a taxonomic group is represented by an equal

number of SCFA producers and non-producers, thus the

cumulative OPVS metric ranges between 0 and 3 for six

analyzed SCFA phenotypes. Overall, 330 out of

823 analyzed HGM species are represented by two or more

strains, including 39 species with 10 or more strains. Of those,

63 species (~7.6%) have at least one variable SCFA phenotype

including 14 species characterized by two variable phenotypes

(NVP = 2). These include two closely-related species of

Clostridia, C. bolteae (7 strains) and C. clostridioforme

(9 strains) possessing highly variable butyrate and

propionate production phenotypes. Other phylogenetically

diverse HGM species including Acinetobacter baumannii

(21 strains), Enterococcus faecalis (62 strains),

Fusobacterium nucleatum (21 strains) and Fusobacterium

periodonticum (6 strains) demonstrated high OPVS values

due to variability of the acetate, L-, D-lactate and propionate

production phenotypes. Similar metrics were used to assess

SCFA phenotype variations at the genus level. Out of

296 analyzed HGM genera, 163 were represented by more

than one genome, and 102 of them (~34%) demonstrated

various degrees of phenotype variability. Majority of genera

with the highest variability of SCFA binary metabolic

phenotypes (NVP >3; OPVS >0.95) belong to the Clostridia

class from the Firmicutes phylum (Table 2). In contrast, other

HGM phyla including Bacteroidetes, Proteobacteira and

Actinobacteria demonstrate relatively low levels of

variations of SCFA production phenotypes. For instance,

the Bacteroides and Prevotella genera from the

Bacteroidetes phylum were characterized by 5 and

4 variable phenotypes with OPVS values 0.13 and 0.38,

respectively. Finally, by comparing cumulative variability

metrics between individual SCFA phenotypes across all

analyzed HGM genomes, we demonstrated that the L-,

D-lactate, formate and propionate production are most

variable phenotypes both at the species and genus level,
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whereas the acetate and butyrate production phenotypes are

more conserved in closely-related species and genera of HGM

strains.

3.4 Prediction of SCFA production
capacity for human gut communities

3.4.1 Metabolic profiling of microbiomes from
diverse national cohorts

We used the metabolic phenotype profiling approach and

the obtained reference BPM (see Methods) to predict SCFA

production capabilities for HGM samples from three

published 16S rRNA gene sequencing datasets, namely the

American Gut Project (AGP) (McDonald et al., 2018), the UK

twins (UKT) (Goodrich et al., 2016) and the Hadza dataset

representing the community of hunter-gatherers from

Tanzania (Schnorr et al., 2014). By applying the Phenotype

Profiler pipeline to ASV taxonomic profiles of each

metagenomic sample, we calculated the sample-specific

Community Phenotype Indices (CPI) and respective CPI

prediction errors for each SCFA synthesis phenotype

(Supplementary Table S4). Average CPI prediction errors,

reflecting imprecise mapping of ASVs to reference genomes

and phenotype microheterogeneity, are in the 0.01–0.03 range

for each dataset. Each CPI value represents a predicted

fraction of microorganisms that are capable for production

of a corresponding SCFA. We then compared CPI

distributions for each SCFA metabolic phenotype between

the AGP, UKT and Hadza datasets (Figure 2). All three

datasets show high average CPI values for the production

of acetate and formate, while the production of butyrate and

both lactate forms is characterized by significantly lower CPI

values. For AGP and UKT datasets, the observed distributions

share a high degree of similarity for all phenotypes, while the

Hadza dataset demonstrates a different pattern. Most

strikingly these differences are manifested for the

propionate and D-lactate production, with the respective

CPI values being significantly lower for the Hadza, as

compared to the Western HGM communities. We also

noticed a similar, however, less pronounced trend for a

decreasing production capabilities for butyrate and

L-lactate, while the acetate and formate production is

slightly higher in the Hadza community.

To study relationship between SCFA production

phenotypes and microbial alpha diversity (AD) of the gut

microbiome samples, we binned all samples into groups of

similar AD and constructed CPI-vs.-AD scatterplots for each

SCFA metabolic phenotype. The UKT dataset demonstrated

characteristic phenotype-specific dependences between CPI

and AD values (Figure 3). First, all SCFA production

phenotypes can be divided into two groups of either

increasing (butyrate, L-lactate) or decreasing (propionate,

acetate, formate, D-lactate) median CPI values. Second,

largest CPI variations for all SCFA phenotypes were

observed for intermediary values of AD, while samples with

the highest AD have the decreased variations in CPI values.

The AGP dataset showed similar CPI-vs.-AD distributions for

butyrate, acetate, formate, and lactate phenotypes, however

propionate is characterized by significantly lower CPI values

in samples with low AD (Supplementary Figure S3). In both

AGP and UKT datasets, the samples with the highest AD

TABLE 2 Taxonomic genera with high variability of SCFA binary metabolic phenotypes.

HGM genus # Strains Variability metricsa Family Phylum

NVP OPVS

Anaerotruncus 4 4 1.50 Ruminococcaceae Firmicutes

Clostridium 53 4 0.98 Clostridiaceae Firmicutes

Coprococcus 6 5 1.33 Lachnospiraceae Firmicutes

Corynebacterium 18 4 1.06 Corynebacteriaceae Actinobacteria

Desulfotomaculum 8 5 1.88 Peptococcaceae Firmicutes

Eubacterium 14 6 1.79 Eubacteriaceae Firmicutes

Lachnoclostridium 35 5 1.12 Lachnospiraceae Firmicutes

Peptoniphilus 12 4 1.33 Peptoniphilaceae Firmicutes

Pseudoflavonifractor 4 3 1.25 — Firmicutes

Ruminiclostridium 9 5 1.33 Ruminococcaceae Firmicutes

Ruminococcus 18 4 1.16 Ruminococcaceae Firmicutes

Subdoligranulum 3 4 1.33 Ruminococcaceae Firmicutes

Tannerella 2 3 1.50 Tannerellaceae Bacteroidetes

aNVP, number of variable phenotypes; OPVS, overall phenotype variability score.
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values converge to similar median CPI values for each SCFA

phenotype. Dietary strategy has a large impact on biodiversity

of the animal gut microbial communities, when higher AD is

generally associated with more stable and healthy gut (Reese

and Dunn, 2018). Thus, the observed CPI values

corresponding to the highest AD values can be interpreted

as optimal relative abundances of SCFA producers in the

healthy HGM samples.

3.4.2 Metabolic profiling of young children
microbiomes

The gut microbiota is passed on to newborns from their

mothers and develops with age (Tannock, 2021). To analyze

changes in HGM metabolic capabilities during development of

infant microbiota, we applied the metabolic profiling approach to

16S rRNA gene sequencing dataset for the Sweden cohort from

The Environmental Determinants of Diabetes in the Young

(TEDDY) study (Stewart et al., 2018). The obtained CPI

values for SCFA production in 3,558 stool samples were

analyzed in the context of available metadata: 1) Type

1 diabetes (T1D) status and 2) child age (between 2 months

and 5 years old) (Supplementary Table S4D). First, we compared

metabolic potential for SCFA production in healthy subjects and

T1D patients, and found no significant differences in the

corresponding distributions of CPI values between these

groups for all considered metabolic phenotypes. This

coincided with the previously obtained microflora-associated

characteristics in the diabetes and control children from

Sweden by determining their fecal concentrations of SCFAs,

when no statistically significant differences were reported

(Samuelsson and Ludvigsson, 2004). We further compared the

SCFA production potential of these samples grouped by the

children age (Figure 4). The fraction of butyrate producers, as

reflected by corresponding CPI values, was significantly larger for

1–3 years old children compared to infants under 1 year old,

while the sub-communities of acetate and L-lactate producers

were highly reduced in older children.

To investigate taxonomic biomarkers responsible for the

observed quantitative shifts in the butyrate-producing

communities, we performed linear discriminant analysis with

effect size (LEfSe) (Segata et al., 2011) at different stages of child

development in the TEDDY 16S dataset. LEfSe was performed

FIGURE 3
Relationship between Community Phenotype Indices (CPI) and Alpha Diversity (AD) for the UKT dataset. Samples are grouped together based
on their AD values calculated using Faith phylogenetic diversity metric.
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after filtration of the 16S metagenomic dataset to retain only

ASVs assigned to the butyrate producing species. This analysis

identified 16 discriminative species (LDA score >2.8) between
two age subcohorts of children (Figure 5A). These include F.

prausnitzii, a major butyrate producing bacterium in HGM

(Lopez-Siles et al., 2017), as well as other butyrate producers,

namely Gemminger formicilis, Anaerobutyricum hallii,

Anaerostipes hadrus, Roseburia faecis, Alistipes putredinis and

Subdoligranulum variabile, that are present in a subset of samples

with relative abundance >1%. We further compared relative

abundances of these butyrate-producing species in children of

different age groups (Figures 5B,C). Each of these identified

species are either absent or significantly underrepresented in

the subcohort of 0–6 month old children. In contrast, these

species demonstrated gradual increase in their relative

abundances after 6 months of age reaching maximal values in

the 24 months and older group.

Finally, we compared microbial composition of samples

within and between groups of samples from the TEDDY

dataset with available metadata (age, diagnosis). In order to

measure the overall scale of the observed differences, we

performed beta diversity (BD) analysis and considered the

average pairwise distances between samples for each

comparison scenario. We found that for both intergroup and

intragroup comparisons their respective BD values were of the

same order of magnitude (see Supplementary Table S5),

suggesting the absence of high-level taxonomic biomarkers

that can distinguish the analyzed groups of samples. We

further restricted the BD analysis to the sub-communities of

SCFA producers and calculated Phenotype Beta Diversity (PBD)

relative PBD (rPBD) and for each SCFA phenotype. Averaging

intergroup/intragroup pairwise distances (the same way as with

BD), we found that the sub-communities of butyrate producers

in the group of 0–1 year old infants possess significantly larger

degree of similarity to each other than the respective sub-

communities within the group of 1–3 years old children and

between these groups. This observation likely indicates that the

butyrate producing bacterial communities are more mature and

stable in older children. In contrast, the SCFA producer sub-

communities have similar PBD and rPBD values for the groups

of healthy and T1D samples, suggesting that the SCFA

phenotypes cannot serve as biomarkers for the T1D status.

3.5 SCFA production capabilities and
metabolomics data

To understand relationship between the predicted SCFA

production potentials and measured metabolic product

concentrations we analyzed published microbiome datasets

with available 16S metagenomics and metabolomics data.

These include an in vivo study of HGM modulation with

discrete dietary fiber structures in randomized controlled trial

in humans (Deehan et al., 2020), and two in vitro fermentation

studies describing the effect of dietary fibers and emulsifiers on

bacteria in human fecal samples (Chen M. et al., 2020; Elmén

et al., 2020). In each of these studies, we focused on the

experimentally measured concentrations of butyrate and

FIGURE 4
Distribution of Community Phenotype Indices (CPI) for SCFAs and lactate in HGM 16S samples from the TEDDY dataset among two age groups
of children.
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propionate and compared those with the corresponding CPI

values calculated for 16S rRNA gene profiles using the Phenotype

Profiler tool (Supplementary Table S4). Acetate was excluded

from this analysis as the most abundant SCFA produced by a

large number of HGM species. In the first in vivo study (Deehan

et al., 2020), the experimentally measured concentrations of

butyrate and propionate in fecal samples did not show

significant Spearman correlation with the calculated CPI

values of the fecal microbiota, suggesting the efficient

absorption of SCFAs in the colon may dramatically reduce

their fecal concentrations (Figure 6A).

On the contrary, CPI values correlate well with the measured

SCFA concentrations obtained in experiments on in vitro

fermentation of fecal inoculum. In the first in vitro study, the

authors have performed batch fermentations of feces from

30 individuals on fiber substrates with different degrees of

FIGURE 5
Linear discriminant analysis with effect size (LEfSe) for butyrate producers in HGM samples from young children of different age groups in the
TEDDY study. (A) The LEfSe analysis was performed on taxonomic abundances of Amplicon Sequence Variants (ASVs) representing predicted
butyrate producers in each sample. LDA score plot includes top taxonomic species corresponding to the most discriminative butyrate producers
between two age groups of children. (B) and (C) Boxplots of relative abundances of the most dominant butyrate producing species in HGM
samples from children in different age groups.
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polymerization, namely carboxymethylcellulose, β-glucans, and
galactooligosaccharides (Chen M. et al., 2020). The Spearman

correlation coefficients between the experimentally measured

concentrations and the calculated CPI values were 0.74 and

0.49 for propionate and butyrate, respectively (Figure 6B). In

another in vitro study, fecal samples from twelve healthy human

subjects have been fermented in a rich medium supplemented

with or without sodium stearoyl lactylate (SSL) (Elmén et al.,

2020). Measurement of SCFA concentrations has revealed that

the SSL emulsifier reduces 6-8 fold the capacity of the bacterial

inoculum to produce butyrate, while the production of

propionate was increased 3-4 fold. The corresponding SSL-

exposed microbiomes showed a significant increase in the

relative abundance of propionate producers and dramatic

FIGURE 6
Correlations between Community Phenotype Indices (CPI) for butyrate and propionate production and the experimentally measured
concentrations of SCFAs in 16S metagenomics studies of HGM. (A) In vivo study of the effects of dietary fibers on fecal microbiota of 200 healthy
individuals (Deehan et al., 2020). (B) In vitro batch fermentation study of the effect of fibers on HGMmicrobiota (ChenM. et al., 2020). (C) Study of the
effects of dietary emulsifiers on fecal microbiota in vitro (Elmén et al., 2020).
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reduction of butyrate producers. Comparison between

corresponding CPI values and measured SCFA concentrations

in this in vitro study showed the Spearman correlation

coefficients 0.75 and 0.98 for propionate and butyrate,

respectively (Figure 6C), providing a strong validation of the

genomic-based approach to predict butyrate and propionate

producers in HGM.

3.6 Comparison between the predictive
metabolic profiling and pathway
abundance approaches

To compare the distribution of metabolic genes from

individual SCFA production pathways we analyzed two

shotgun metagenomic sequencing datasets in WGS format,

namely 1,048 samples from the German cohort of TEDDY

dataset (Stewart et al., 2018) and 384 samples from the IBD

study (Morgan et al., 2012). Pathway abundances were estimated

as a sum of TMM-normalized gene abundances for functional

roles that are specific to the P1, P2, P3, and P4 butyrate pathways

and the P1, P2, and P3 propionate pathways (Supplementary

Table S6). In addition, we calculated the TMM-normalized

cumulative gene abundances for the universal butyrate

pathway that converts Crotonyl-CoA to butyrate (Figure 1), as

well as for the acetate, formate, L-lactate and D-lactate

fermentation pathways. As result, the P1 (acetyl-CoA) and

universal butyrate pathways are highly abundant in both IBD

and TEDDY datasets, while the P2 (succinate), P3 (glutamate),

and P4 (lysine) pathways are substantially underrepresented

(Figure 7). Interestingly, the median value of the P4 (lysine)

pathway is greater in the IBD dataset than in the TEDDY dataset,

suggesting that adults have more producers synthesizing butyrate

via the amino acid pathway than children. The P1 (succinate)

pathway is the most abundant propionate synthesis pathway in

both datasets, followed by the P3 (propanediol) pathway in

children from the TEDDY dataset (Figure 7). In contrast, the

P2 (lactate) pathway abundances are very low in both datasets, as

well as the P3 pathway in adults from the IBD dataset. The P1 to

P3 mean pathway abundance ratio is much higher in the IBD

dataset, suggesting that children microbiomes contain the

comparable numbers of producers synthesizing propionate

from succinate and propanediol, while the P1 (succinate)

pathway is predominant in adult gut microbiomes. Finally,

mean abundances of acetate, formate, and D-lactate pathways

are similar in both datasets, while the L-lactate pathway mean

abundance is higher in the TEDDY dataset (Figure 7). We further

obtained taxonomic profiles for each sample from the TEDDY

FIGURE 7
Distribution of metagenomic abundances for SCFA synthesis pathways in HGM samples from TEDDY (A) and IBD (B) datasets. Pathway
abundances were calculated as a sum of TMM-normalized counts for selected signature genes in each SCFA pathway (see Supplementary Table S6).
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and IBD datasets and mapped the obtained taxonomies to the

reference HGM genomes in order to calculate the specific CPI

values for each SCFA production phenotype (Supplementary

Table S6). Comparison of the obtained CPI values with the

TMM-normalized SCFA pathway abundances revealed a

strong correlation with total abundance of genes from most

abundant SCFA pathways, namely the P1 (acetyl-CoA)

pathway for butyrate production, the P1 (succinate) pathway

for propionate synthesis, as well as for L- and D-lactate synthesis

pathways in both datasets (Table 3).

To compare the phenotype profiling using cumulative CPI

values with alternative approaches for prediction of

metagenomic functions in 16S datasets, we chose the

PICRUST2 algorithm allowing reconstruction of an ancestral

state for gene occurrences or functional traits (Douglas et al.,

2020). First, we used the obtained in this work BPM describing

SCFA production phenotypes as a custom input of functional

traits in PICRUST2. As result, we calculated the predicted SCFA

phenotype abundances in 16S samples from the AGP and UKT

datasets and compared them with corresponding CPI values. A

fairly high Spearman correlation coefficients were obtained for

butyrate and propionate in AGP dataset (0.5 and 0.61) and also in

UKT dataset (0.56 and 0.81, respectively). We then compared the

PICRUST2-predicted phenotype profiles with relative

abundances of corresponding SCFA production metabolic

pathways in MetaCyc obtained via the default

PICRUST2 pipeline (Supplementary Table S7). We have

selected metabolic pathways in the MetaCyc database that

most accurately describe of butyrate and propionate

biosynthesis capabilities. Formate, acetate and lactate pathways

were not included in this comparison, since the corresponding

enzymes participate in multiple central pathways. The best

Spearman correlation coefficients were observed for the P1

(acetyl-CoA) butyrate pathway and the P1 (succinate)

propionate pathway in HGM samples from both the AGP and

UKT datasets (Table 4).

4 Discussion

The human gut microbiota produces a large number of

metabolites that influence our health and physiology. SCFAs

are produced in the large intestine as fermentation products from

dietary fibers and proteins. Acetate, propionate and butyrate are

the most abundant products, representing 90–95% of the

microbially produced SCFAs. Other fermentation products,

including formate, succinate and two enantiomers of lactate,

are produced by many HGM species but do not accumulate to

high levels in the colon due to bacterial cross-feeding allowing

their further conversion to acetate, propionate and butyrate.

Intrinsic variability of taxonomic composition of HGM that is

caused by many variable environmental factors such as diet,

lifestyle and drug use, translates to extensive variations of HGM

functional potentials. Genomic-based prediction of HGM

metabolic potential (such as SCFA production) based on 16S

orWGSmetagenomic data is important for microbiome research

and development of personalized prebiotics and probiotics.

Isolating and culturing of individual HGM bacterial species to

identify their metabolic products is not feasible due to unknown

carbon sources and growth medium conditions for a significant

number of HGM species. Thus, development of bioinformatics

approaches for prediction of SCFA production potential is

important for predictive functional profiling of microbiomes.

In our previous works, we developed the metabolic phenotype

profiling approach to estimate the relative abundance of HGM

bacteria encoding functional variants of amino acid and vitamin

biosynthetic pathways (Rodionov et al., 2019; Ashniev et al.,

2022), while here we expanded it for predictive profiling of SCFA

production capabilities in HGM metagenomes.

To obtain the reference collection of SCFA metabolic genes

and phenotypes we utilized the subsystems approach and

analyzed a set of 2856 HGM genomes representing

823 bacterial species. As result, the comparative genomics

analysis allowed us to reconstruct all previously described

variants of metabolic pathways for production of butyrate

(4 variants), propionate (3 variants), formate, acetate, and

lactate (Figure 1). Complete pathways of butyrate and

propionate synthesis were identified in 359 and 826 genomes,

respectively, at that 167 and 122 of them contain more than one

pathway variant for each SCFA, respectively (Table 1). These

include five alternative enzymes from propionate synthesis

pathways represented by non-orthologous gene displacements.

Each of the formate, acetate and lactate production pathways

contains one or two enzymes and are much broader distributed

TABLE 3 Correlation coefficients between Community Phenotype
Indices (CPI) and SCFA pathway abundances in the TEDDY and IBD
WGS datasets.

SCFA Pathway variant Correlation
coefficient

TEDDY IBD

Butyrate P1 0.69 0.73

P2 0.00 0.16

P3 0.18 0.31

P4 0.13 0.11

Universal 0.89 0.88

Propionate P1 0.70 0.84

P2 0.15 −0.11

P3 0.47 −0.16

Acetate 0.37 0.26

Formate 0.16 0.24

L-lactate 0.76 0.84

D-lactate 0.83 0.77
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among the analyzed HGM genomes (45–87%). To validate the

predicted SCFA phenotypes, we collected published

experimental data on SCFA production capabilities in

210 HGM species, and obtained 96 and 85% consistency

between experimental and predicted phenotypes for butyrate

and propionate, respectively (Supplementary Table S2). We also

compared our reference HGM collection of butyrate producers

with the results of previous bioinformatics studies. Vital et al.

established a gene catalogue of butyrate-producing pathways by

screening 3,184 sequenced bacterial genomes from the Integrated

Microbial Genome database by specific EC numbers from KEGG

database and by using Hidden Markov Models (HMM) models

for corresponding protein families (Vital et al., 2014). As result,

the authors identified 225 bacterial genomes of butyrate

producers, 107 of which are environmental isolates and the

remaining 117 out of 118 genomes are also present in our

reference collection of butyrate producers (Supplementary

Table S1). Overall, our expanded collection of HGM genomes

contains 242 additional predicted butyrate producers as

compared to the list of butyrate producers identified by Vital

et al.

The obtained reference collection of SCFA production

pathways and genes was further used for functional

profiling of HGM metagenomes from published datasets.

This analysis included the calculation of sample-specific

phenotype abundance CPI values (for 16S and WGS

datasets) and overall metabolic pathway abundance (for

WGS). Each CPI value represents a probabilistic estimate

of the fraction microbial cells that are capable to produce a

specific SCFA. To enable the phenotype profiling approach,

we obtained the simplified binary phenotypes corresponding

to producers (“1”) and non-producers (“0”) of each SCFA.

These binary values were combined together for

2,856 analyzed genomes to make a BPM that was further

analyzed across taxonomically-related genomes to determine

the variability of SCFA phenotypes at the species and genus

levels (Supplementary Table S3). Comparison of binary SCFA

phenotypes across 823 HGM species and 296 genera revealed

that ~8% of species and 35% of genera have at least one

variable phenotype and that majority of them belong to the

Firmicutes phylum (Table 2). Most of these variations can be

explained by either strain-specific gain or loss of SCFA

production pathway genes that are often organized into

operons and are frequent subject to a horizontal transfer.

For example, the P3 (propanediol) pathway for propionate

production encoded by the pdu gene cluster was identified

only in 9% of 144 analyzed Lactobacillus genomes, at that this

pathway is present in 2 out of 3 strains of L. brevis and 8 out of

10 strains of L. reuteri. To minimize the CPI prediction error

due to the observed phenotype variations we used the

sequence-based mapping scheme for functional profiling of

16S microbiome datasets. As result, mean CPI prediction

error values were no more than 1% for most analyzed 16S

datasets and SCFA phenotypes (Supplementary Table S4).

Analysis of the AGP and UKT datasets showed significant

similarity between the obtained SCFA phenotype profiles

(Figure 2), which may be related to similar dietary patterns

(consumption of fibers, proteins, vitamins) in these two

Western populations. Both datasets show high average CPI

values for acetate and formate and low values for butyrate and

L-lactate. Unlike the European and American microbiomes,

gut microbiomes of the indigenous hunter-gatherers from

Tanzania have reduced CPI values for butyrate, propionate,

and lactate production. Overall, our observations suggest that

the potential for the production of terminal SCFAs in the

Hadza gut communities is shifted towards acetate and

formate, with the possibility of their conversion into other

SCFAs through the process of cross-feeding (see below). At

the same time, we conclude that the landscape of probable

fermentation products is more diverse in the AGP and UKT

gut communities, with presumably more intricate cross-

feeding networks. The comparison of CPI profiles for two

age groups of young children from the Sweden cohort of the

TEDDY dataset revealed an increased number of butyrate

producers in the group of older children (1–3 years old)

compared to younger infants (Figure 4), indicating a

TABLE 4 Correlation coefficients between phenotype abundances produced by the PICRUSt2 pipeline with binary phenotypes andMetaCyc pathway
abundancess in AGP and UKT datasets.

SCFA Pathway variant BioCyc ID Correlation MetaCyc pathway description

AGP UKT

Butyrate P1 PWY-5676 0.73 0.43 acetyl-CoA fermentation to butanoate II

P2 PWY-5677 0.45 −0.05 succinate fermentation to butanoate

P3 P162-PWY 0.5 0.05 L-glutamate degradation V via hydroxyglutarate

P4 P163-PWY 0.36 −0.01 L-lysine fermentation to acetate and butanoate

Propionatea P1 P108-PWY 0.93 0.92 pyruvate fermentation to propanoate I

P3 PWY-7013 0.37 0.15 (S)-propane-1,2-diol degradation

aPropionate pathway variant P2 (acrylate pathway, PWY-5494) was not present in the PICRUST2 output.
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stabilization of the butyrate production phenotype in the older

children population. The observed large shifts in the predicted

SCFA production profiles during infant gut microbiota

development agree well with the previous measurements of

fecal major fermentation products and microbial families that

were linked to the introduction of complementary foods

around the age of 6 months followed by reduction and

eventual cessation of breastfeeding in infants after 1 year of

age (Vatanen et al., 2018; Appert et al., 2020). Relative

abundance of top butyrate-producing species demonstrated

gradual increase with the children age in the TEDDY cohort

(Figure 5). Similar trends of increasing abundance of major

butyrate producers and fecal butyrate levels were recently

reported for a cohort of 3–12 months old children from

Switzerland (Appert et al., 2020). We further applied a

diversity-based approach for the detection of SCFA

phenotypes that are associated with children’s age and

diagnosis. By comparing relative PBD metrics for each

SCFA phenotype, we found that sub-communities of

butyrate producers in the 0–1 year old group possess a

significantly larger degree of similarity to each other than

the respective sub-communities within the 1–3 years old

group and between these groups. It is noteworthy that

similar observation was made in our previous work

(Iablokov S. et al., 2021), where we established that PBD

for butyrate was lower in “healthy” (vs. “Crohn’s disease”)

group, thus making the respective sub-communities of

butyrate producers follow the famous “Anna Karenina”

principle for microbiomes (Ma and Sam, 2020). If applied

to the present analysis, this principle could be restated for

butyrate as follows: as the child gut microbiome matures, the

microbial communities become more similar to one another,

however, only in terms of butyrate-producing species.

To validate the functional profiling approach, we analyzed

three published HGM datasets with measured SCFA

concentration data for each 16S metagenomic samples.

Quantitative assessment of SCFAs in fecal samples via

metabolomics reflects steady state metabolite levels,

however 90–95% of SCFAs produced in the colon lumen

are absorbed by the intestinal mucosa (McNeil et al., 1978).

Indeed, our analysis of published metabolomic and

metagenomic data showed a correlation between CPI values

and concentrations for butyrate and propionate measured in

vitro fermentation experiments (Figure 6). However, the HGM

datasets with in vivo measured SCFA concentrations in feces

did not show a correlation with corresponding CPI values.

Finally, we compared the predictive metabolic profiling with

pathway abundance approaches by analyzing two WGS

FIGURE 8
Metabolic pathways and cross-feeding mechanisms for SCFA production by HGM bacteria. Terminal SCFAs and lactate are in green. Dietary
nutrients and coremetabolic precursors are in black and red, respectively. Microbial SCFA fermentation pathways analyzed in this work are shown by
red arrows. Carbohydrate catabolic pathways are in black. Wood-Ljungdahl pathway is in blue. Absorption of terminal SCFAs by intestinal epithelial
cells is shown by thick green arrows. Cross-feeding interactions between HGM members are shown by thick orange arrows.
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datasets with our expanded collection of SCFA synthesis genes

from 2,856 reference HGM genomes. The calculated TMM-

normalized gene abundances were summed up for each

individual SCFA pathway (Figure 7) and compared to the

CPI profile, resulting in significant correlation coefficients for

butyrate (P1), propionate (P1), L-, and D-lactate pathways

(Table 3). In a previous work, Vital et al. also used the SCFA

production pathway gene catalogue for functional and

taxonomic profiling of butyrate producers in HGM samples

from 15 metagenomic datasets (Vital et al., 2017). The P1

(acetyl-CoA) pathway genes were most abundant in samples

derived from healthy individuals of nine metagenomics

studies, and F. prausnitzii was the major species

contributing to this pathway abundance. These previous

results are in agreement with our current results on the

abundance of individual butyrate pathways in the TEDDY

and IBD datasets.

We also compared our SCFA phenotype profiling

approach with a state-of-the-art functional profiling

approach for 16S metagenomics datasets, PICRUSt2, which

uses an ancestral-state reconstruction algorithm and the

MetaCyc pathway’s collection (Douglas et al., 2020). The

PICRUSt2-predicted relative abundances of the major

butyrate (P1 or acetyl-CoA) and propionate (P1, succinate)

production pathways revealed a generally good agreement

with the corresponding CPI values in both AGP and UKT

datasets (Table 4). However, the abundances of alternative

butyrate and propionate production pathways did not

correlate with the predicted community phenotype values.

The latter results can be explained by significantly lower

abundances of the P2/P3/P4 pathways for butyrate and P2/

P3 pathways for propionate in HGM samples, which is

supported by our quantitative analysis of two WGS datasets

(Figure 7) and by the previous analysis of 15 WGS datasets for

butyrate (Vital et al., 2017).

One limitation of our phenotype profiling approach is that

it does not take into account metabolite cross-feeding

interactions in HGM communities, when certain

microorganisms are capable to consume SCFAs or their

metabolic precursors produced and secreted by other

community members. Figure 8 summarizes all known

metabolic interactions between HGM species contributing

to accumulation or usage of SCFAs/precursors. First, lactate

and acetate produced from carbohydrates by diverse HGM

species (such as Bifidobacterium and Lactobacillus spp.) serve

as substrates for formation of propionate (via P2 pathway)

and butyrate (through acetyl-CoA, and P1 pathway) by

numerous other HGM species. These metabolic interactions

were confirmed in a few in vitro co-culturing studies,

including 1) the co-growth of B. adolescentis, which uses

starch and fructose oligosaccharides as substrates, and

strains of Eubacterium (Anaerobutyricum) hallii and

Anaerostipes caccae, that use lactate and acetate (formed by

B. adolescentis) and produce butyrate as a final SCFA product

(Belenguer et al., 2006); and 2) the co-culture of acetate-

producing B. longum and Roseburia intestinalis that is

capable to produce butyrate from exogenous acetate

(Falony et al., 2006). The second important intermediate

for cross-feeding in HGM communities is succinate, which

is a common product of bacterial fermentation of dietary fiber.

The main producers of succinate in the intestine are bacteria

from the Bacteroidetes phylum, mainly Bacteroides and

Prevotella (De Vadder et al., 2016; Connors et al., 2018).

Succinate is usually found at relatively low concentrations

in the intestinal lumen, since it is a major substrate for the

formation of propionate and an additional metabolic

precursor for butyrate (Louis and Flint, 2017). The

conversion of succinate to propionate (via the P1 pathway)

was previously mainly studied in several Firmicutes bacteria

from the Negativicutes class (Reichardt et al., 2014), while the

butyrate production from succinate (via the P2 pathway) was

demonstrated in Porphyromonas gingivalis and Clostridioides

difficile (Louis and Flint, 2017). The third strategy of cross-

feeding relationships in HGM implies the propionate-

producing strains possessing the P3 (propanediol) pathway

(Table 1). 1,2-propanediol is a major end product from

anaerobic degradation of L-rhamnose or L-fucose by

various HGM species from the Anaerostipes, Bacteroides,

Clostridium, and Escherichia genera (Baldomà and Aguilar,

1988; Rodionova et al., 2013). The other routes of synthesis of

1,2-propanediol are from other sugars via the glycolysis

intermediate dihydroxyacetone-phosphate and

methylglyoxal (Saxena et al., 2010). Several

microorganisms, including Salmonella typhimurium (Staib

and Fuchs, 2015) and Roseburia inulinivorans (Scott et al.,

2006), are capable to directly catabolize fucose to propionate

via 1,2-propandiole, while other HGM bacteria use 1,2-

propandiole to form cross-feeding relationships with each

other. For example, 1,2-propandiole produced by

Bifidobacterium breve is utilized by Lactobacillus reuteri to

convert it to propionate (Cheng et al., 2020). Finally, formate

is produced by many HGM species and further converted to

acetate via the Wood-Ljungdahl pathway in acetogenic

clostridia; indeed co-cultivation on starch of the formate-

producing Ruminococcus bromii and the acetogenic

bacterium Blautia hydrogenotrophica led to the

disappearance of formate and an increase quantity of

acetate (Laverde Gomez et al., 2019).

Taking together, the reconstructed biochemical pathways

and binary metabolic phenotypes for SCFA and lactate

production in 2,856 reference HGM strains allowed us to

expand the previously reported BPMs for amino acid and

vitamin biosynthesis and to perform a quantitative analysis

of SCFA phenotype profiles in HGM metagenomes. The

predicted SCFA synthesis phenotype and pathway

abundances can find its practical application in the

Frontiers in Molecular Biosciences frontiersin.org21

Frolova et al. 10.3389/fmolb.2022.949563

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.949563


diagnosis and treatment of syndromes associated with

dysbiosis through a rational and personalized choice of

probiotics and food supplements. Future expansion of the

reference genome set by newly sequenced HGM isolates and

metagenome-assembled genomes will improve the accuracy

and reliability of our functional phenotype profiling

approach.
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