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Abstract: Soft tissue sarcoma (STS) comprise a large group of mesenchymal malignant tumors with
heterogeneous cellular morphology, proliferative index, genetic lesions and, more importantly, clinical
features. Full elucidation of this wide diversity remains a central question to improve their therapeutic
management and the identity of cell(s)-of-origin from which these tumors arise is part of this enigma.
Cellular reprogramming allows transitions of a mature cell between phenotypes, or identities, and
represents one key driver of tumoral heterogeneity. Here, we discuss how cellular reprogramming
mediated by driver genes in STS can profoundly reshape the molecular and morphological features
of a transformed cell and lead to erroneous interpretation of its cell-of-origin. This review questions
the fact that the epigenetic context in which a genetic alteration arises has to be taken into account as
a key determinant of STS tumor initiation and progression. Retracing the cancer-initiating cell and
its clonal evolution, notably via epigenetic approach, appears as a key lever for understanding the
origin of these tumors and improving their clinical management.

Keywords: sarcoma; soft tissue sarcoma; transcriptional networks; cellular reprogramming;
transdifferentiation; cell-of-origin; epigenetics; tumor heterogeneity; clinical management

1. Introduction

Soft tissue sarcoma (STS) represent a heterogeneous group of malignant tumors com-
prising a collection of more than 100 histological subtypes [1]. STS accounts for 1% of all
adult solid malignant tumors and between 5% and 10% of all pediatric cancers [2]. These
tumors can arise in a wide range of anatomical sites deriving from the mesenchymal lineage
including adipose and connective tissues, muscles, tendons, nerves, vessels, synovial and
stromal supporting cells [3]. Although mounting evidence supports that sarcomagenesis is
the result of genetic alterations in mesenchymal progenitor/stem cells (MSCs), this notion
remains unclear given the diversity of sources of these MSCs and the precise cellular origin
of STS remains largely unknown [4].

STS display a wide range of clinical behaviors with varying metastatic potentials,
which represent the most powerful predictor of outcome in patients [5]. Tumors with
minimal metastatic potential (low-grade) are more likely to be cured with complete surgical
resection, whereas tumors with a tendency for widespread metastatic dissemination (high-
grade) have a higher risk of recurrence and dissemination following local therapy. Surgery
then constitutes the primary treatment in STS, but is often combined with chemotherapy
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and/or radiotherapy, in particular for patients with unresectable or metastatic presen-
tation [6,7]. This multimodal strategy increased the long-term survival of patients with
localized STS (overall 5-year survival of about 80%), while the outcome for those with
spread diseases remains dismal (overall 5-year survival of about 15%) [8]. This poor
prognosis is explained by metastatic STS being refractory to radiation and chemotherapy
treatments, which is of great concern as it represents one-third of overall patients [1]. The
complex level of heterogeneity of STS constitutes an obstacle to improve their therapeutic
management. Indeed, the response to conventional treatments varies greatly and can-
not be translated either between different STS subtypes or between patients of the same
subtype [9]. It is therefore necessary to better understand the molecular and cellular mech-
anisms underpinning the heterogeneity of STS in order to improve their clinical prognosis.

The inter-patients heterogeneity observed in STS could result from the acquisition of
different oncogenic modules but could also reflect their different cells-of-origin [10–12]. The
cell-of-origin is defined as the normal cell that acquires the first cancer-promoting muta-
tion(s) and refers to a cancer-initiating or tumor-initiating cell [13]. The cancer biology has
been conceptualized by a complex interplay between non-mutually exclusive mechanisms
involving molecular events (genetic) and the cell-of-origin (epigenetic). This is illustrated
by (1) distinct oncogenic events occurring within the same target cell leading to different
tumor phenotypes; and (2) the outcome of a given genetic alteration that can differ depend-
ing on the epigenetic context of the cell in which it arises [13–15]. Accumulating evidences
show that the epigenetic state of a cell, defined by its chromatin landscape, appears to
be crucial in providing a permissive milieu for context-specific tumorigenesis [4,16–18].
Therefore, investigating the primary cells that are permissive to oncogenic drivers could
pave the way for identifying the spectrum of cell-of-origin of STS, and shed light on the
impact of this genetic/epigenetic crosstalk in determining tumor fate.

The objective of this review is to show the complexity of identifying the cell of origin
of STS, and how far we still have to go considering the importance of this factor in patients’
therapeutic management. We focus on how the mechanisms of cellular reprogramming,
driven by a complex interplay between genetic and epigenetic changes can lead to mislead-
ing definition of the cell-of-origin of STS by relying solely on gene expression profiles or
histological markers of normal differentiation. Using the example of rhabdomyosarcoma,
the most common form of STS in children and adolescents, we describe how cellular origin
can impact cancer evolution and contribute to inter-tumoral heterogeneity of STS. We
argue that analysis of heritable epigenetic marks constitutes a complementary strategy to
overcome the cellular reprogramming confusion. Finally, we illustrate the clinical relevance
of accurate inference of cell(s)-of-origin to improve the clinical management of patients
with STS.

2. Epigenetic Alterations and Context in STS: Impact on Oncogenic Reprogramming

Neoplastic transformation involves a profound cellular reprogramming in which fully
differentiated and functional cells lose aspects of their identity, while gaining progenitor
characteristics (dedifferentiation) or adopt distinct differentiated state (transdifferentia-
tion) [16,19,20]. Initially, it was accepted that “once a cell has concluded its differentiation
path towards a specific fate, this state is permanent and irreversible” [16], but this statement
has been overturned by the cell plasticity concept, which designates the ability of mature
cells to switch phenotype or identity [19,21]. This plastic process can result from random
genetic and epigenetic remodeling, and is particularly relevant as it plays a pivotal role in
tumor initiation, progression, therapeutic resistance and relapse [4,19,21–24]. Understand-
ing the reprogramming mechanisms involved in the etiology of STS and their diversity
requires the integration of three variables including: the underlying genetic alterations, the
epigenetic context and the temporal evolutionary dynamics of both parameters.
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2.1. Epigenetic Oncogenic Driver Events and Their Role in STS Etiology

The field of sarcoma biology is already familiar with powerful oncogenic events
that can achieve a profound cellular reprogramming. Sarcomagenesis is driven by a
wide spectrum of genetic alterations used to classify sarcomas into two main categories:
(1) those with simple karyotypes’ defects, including recurrent chromosomal translocations,
chromosomal amplifications, and specific activating or silencing oncogenic mutations; and
(2) those with complex karyotypic defects, characteristic of severe genetic and chromosomal
instability, with no tumor-specific genetic alterations [4,7,25–28].

Chromosomal translocations are a key determinant of oncogenic reprogramming in
STS, since about one-third of all cases are found to harbor balanced chromosomal transloca-
tions [3,29]. These translocations often lead to fusion of two distinct transcription factors-
encoding genes’ portions, the DNA binding domain of one, and the transactivation domain
of the other [4,5,7,30–40]. Such chimeric fusion proteins present higher transcriptional
activity than their wild-type counterparts and, in most cases, exhibit altered target genes
specificity. Their abnormal pattern of expression can achieve drastic changes in transcrip-
tomic and epigenetic landscapes and are believed to trigger reprogramming in appropriate
permissive cells [4,7]. For example, the unbalanced translocation t(X;17)(p11.2;q25) is char-
acteristic of alveolar soft part sarcoma and identified in the majority of these tumors [41,42].
The N-terminal portion of TFE3 is being replaced by ASPSCR1 (ASPL) sequences, while
retaining its DNA-binding domain, and is implicated in transcriptional deregulation and
pathogenesis of this type of sarcoma [41]. Among the most studied examples, we can also
mention the fusion of the DNA-binding domain of PAX3 or PAX7 transcription factors with
the transactivation domain of FOXO1 (FKHR) in rhabdomyosarcoma (RMS) that is directly
associated with gene expression dysregulation [35,43]. Similarly, unique transcriptomic
signatures are observed in each type of small round cell sarcomas, depending on their
driver fusion gene (i.e., CIC- or BCOR-fused [44]). However, although major in case of
chromosomal translocation affecting transcription factors, oncogenic transcriptional re-
programming also exists in STS without fusion transcripts, and can be induced by single
gene mutations. This notably holds true when mutation affects transcriptions factors, such
as the L122R gain-of-function mutation in MYOD1 observed in spindle cell/sclerosing
rhabdomyosarcoma, or in the CTNBB1 mutations that are recurrent in desmoid tumors for
example [45,46]. These particular signatures can serve as a guide to improve the molecular
classification of this complex entity.

Besides those transcriptional rewiring, direct perturbations in the epigenetic machin-
ery have emerged as driver mechanisms of tumorigenesis in various STS and have been
found sufficient to induce oncogenic reprogramming and transdifferentiation [28,47–50].
Epigenetics is critical in establishing and maintaining cell-type identity and its dysregula-
tion can lower the barriers for transition between cell states [15,51,52]. The differentiation
of a cell is driven by sequential genes expression patterns that largely depends on chro-
matin accessibility [13,53–56]. Indeed, physical interactions between chromatin-binding
factors and regulatory genomic regions (enhancers, promoters, insulators) are necessary
to cooperatively modulate genes expression. The organization of accessible chromatin
across the genome reflects a permissive state for initiating transcription and is controlled by
different epigenetic layers of regulation: DNA methylation, histones’ post-transcriptional
modifications, nucleosome remodeling and subsequent modulation of the 3D chromatin
structure [28,57]. This chromatin landscape is modulated by a collection of enzymatic
proteins and complexes that can “write”, “read” or “erase” some epigenetic marks, such
as acetylation and methylation, resulting in transcriptionally active, inactive or neutral
states [58,59].

Dysregulation in post-transcriptional modification of histone represents a common
mechanism for tumorigenesis in several subtypes of STS, such as malignant peripheral
nerve sheath tumors (MPNSTs) [60–63], endometrial stromal sarcomas (ESSs) [64–66] or
small blue round cell sarcomas [49,67–69]. The polycomb repressive complex (PRC) de-
signs a group of chromatin-modifying proteins assembled into two canonical complexes,



Int. J. Mol. Sci. 2022, 23, 6310 4 of 17

PRC1 and PRC2, which display respectively histone ubiquitin ligase (H2AK119ub) and
methyltransferase (H3K27me3) activities [70,71]. In MPNSTs, two exclusive loss-of-function
alterations have been reported in PRC2 core components: suppressor of zeste 12 (SUZ12)
and embryonic ectoderm development (EED) [60,72]. As a result, EED and SUZ12-deficient
MPNSTs exhibit chromatin remodeling modifications that lead to an upregulation of genes
expression compared with their wild-type counterparts, directly involved in the transforma-
tion of normal cells. In addition, impaired function of PRC2 has also been described in ESSs
as a consequence of the expression of the fusion genes JAZF1–SUZ12 [72], JAZF1-PHF1 [73]
and MBTD1–EZHIP [74], which reduces the methyltransferase activity of the complex. In a
subset of high-grade ESSs and small blue round cell tumors, internal tandem duplication
and chromosomal translocations alter the activity of the BCL6 co-repressor (BCOR), a
member of the PRC1.1 complex (a non-canonical PRC1) [65,66], which is involved in the
maintenance of pluripotency in stem cell populations and in the suppression of mesodermal
transcriptional programs [28]. Several studies support the fundamental role of PRC1 and
PRC2 in preserving cell-type identity and the impact of their dysregulation on cellular
reprogramming [75,76]. Therefore, genetic alterations in core components of PRC1 and
PRC2 likely represent a profound epigenetic reprogramming event in STS, but their impact
on dedifferentiation or transdifferentiation needs to be further elucidated.

Similarly, impaired functions of nucleosome-remodeling complexes, such as the
SWI/SNF family, are implicated in the acquisition of a stem-like phenotype and in the
oncogenic transformation in various subtypes of STS [77–80]. Nucleosome-remodeling
complexes are specialized multi-protein machines that use the energy of ATP hydrolysis to
alter the structure, composition, and position of nucleosomes, enabling access of transcrip-
tional factors and initiators to the underlying DNA. The SWI/SNF family of chromatin
remodelers (also known as BRG1/BRM associated factor (BAF) complexes) exists in at
least three forms: canonical BAF (cBAF), polybromo-associated BAF complex (PBAF), and
GLTSCR1/1L-containing BAF (GBAF; non-canonical BAF or ncBAF). Each of these large
complexes are composed of approximately 15 protein subunits, including SMARCB1 (SNF5,
BAF47 and INI1), SMARCC1/SMARCC2 (BAF155 and BAF170), and one of the two mutu-
ally exclusive ATPase subunits, SMARCA4 (BRG1) and SMARCA2 (BRM). Recent studies
revealed that the SWI/SNF complex is commonly altered by genetic alterations in about
20% of all tumors [81]. Sarcomas make no exception with SMARCB1 loss being characteris-
tic of epithelioid sarcoma and malignant rhabdoid tumors [28,82]. In synovial sarcoma, the
incorporation of SS18–SSX fusion protein into cBAF, instead of wild-type SS18, results in
the ejection of SMARCB1 and its subsequent proteasome-mediated degradation [83].

Then, beside targeted activation of transcriptomic programs by chromosomal translo-
cations involving transcription factors, epigenetic alterations appear to be a key determinant
of the cellular reprogramming of some STS, which must be addressed given its importance
in the deployment of specific oncogenic programs.

2.2. Permissivity of the Epigenetic Context for Cellular Reprogramming

Besides direct perturbation of its organization, there is mounting evidence that the
epigenetic state of a cell is important in providing a permissive milieu to oncogenic transfor-
mation and may predetermined the outcome of genetic change(s) [11,53]. Indeed, activation
of the same oncogenic pathway in different cellular compartments, or cellular contexts,
can result in distinct tumor types [11,84]. For example, EWSR1-ATF1 or EWSR1-CREB1
chromosomal translocations can give rise to both clear cell sarcoma and angiomatoid fi-
brous histiocytoma, which are two STS subtypes with distinct morphological and clinical
features (Figure 1A) [39,85,86]. Moreover, the t(X;17)(p11.2;q25) translocation resulting in
ASPL-TFE3 fusion gene can result in alveolar soft part sarcoma [41], but also a distinctive
subset of renal cell carcinoma, which frequently has papillary architecture [87].
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standing of the importance of the epigenetic context, in which a given genetic alteration 
occurs. For example, expression of the pathognomonic PAX3-FOXO1 fusion gene associ-
ated with p53 loss is sufficient to trigger RMS occurrence when expressed in Myf6+ fetal 
myogenic progenitors but not in Myf6+ postnatal committed myogenic progenitors (Fig-
ure 1B). Moreover, whereas this chromosomal translocation gives rise to tumors with an 
alveolar histology in these Myf6+ fetal precursors, its expression in Pax7+ post-natal sat-
ellite cells leads to the appearance of RMS tumors with pleomorphic characteristics [88]. 
Similarly, a model of liposarcoma-like tumors was successfully developed with transgenic 
mice expressing the FUS–DDIT3 fusion gene alone [4,89,90], but identifying the appropri-
ate cellular environment supporting its expression to generate myxoid liposarcoma still 
represents an active area of research. An additional level of complexity comes from the 
fact that the epigenetic landscape of a cell changes along with its differentiation stage 
[52,54,55]. Therefore, the permissiveness of the epigenetic context of one cellular lineage 
can change along with its developmental trajectory. This could partly explain why the 
onset of some tumors occurs sometimes in a very narrow period of time during childhood. 
As an example, three-quarters of the patients diagnosed with atypical teratoid/rhabdoid 
tumors are 3 years old or younger [91]. The issue is then not only to define which cells are 
susceptible and tolerant to a given oncogenic alteration, but also the permissive 
timepoints along their respective differentiation process. 
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Figure 1. Permissivity of the epigenetic context for cellular reprogramming. (A) Expression of
EWSR1-fusion genes leads to different phenotypical outcomes depending on the cell in which it
occurs. (B) Pax3-Foxo1 oncogenic transformation power relies on the cell state in which it is expressed.

Along the same line, the use of transgenic mice models has improved our under-
standing of the importance of the epigenetic context, in which a given genetic alteration
occurs. For example, expression of the pathognomonic PAX3-FOXO1 fusion gene asso-
ciated with p53 loss is sufficient to trigger RMS occurrence when expressed in Myf6+
fetal myogenic progenitors but not in Myf6+ postnatal committed myogenic progenitors
(Figure 1B). Moreover, whereas this chromosomal translocation gives rise to tumors with
an alveolar histology in these Myf6+ fetal precursors, its expression in Pax7+ post-natal
satellite cells leads to the appearance of RMS tumors with pleomorphic characteristics [88].
Similarly, a model of liposarcoma-like tumors was successfully developed with transgenic
mice expressing the FUS–DDIT3 fusion gene alone [4,89,90], but identifying the appropri-
ate cellular environment supporting its expression to generate myxoid liposarcoma still
represents an active area of research. An additional level of complexity comes from the fact
that the epigenetic landscape of a cell changes along with its differentiation stage [52,54,55].
Therefore, the permissiveness of the epigenetic context of one cellular lineage can change
along with its developmental trajectory. This could partly explain why the onset of some
tumors occurs sometimes in a very narrow period of time during childhood. As an example,
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three-quarters of the patients diagnosed with atypical teratoid/rhabdoid tumors are 3 years
old or younger [91]. The issue is then not only to define which cells are susceptible and
tolerant to a given oncogenic alteration, but also the permissive timepoints along their
respective differentiation process.

Overall, the wide diversity of genetic events and epigenetic contexts of the cell(s)-
of-origin give rise to a collection of molecular combinations, likely contributing to the
large biological and clinical heterogeneity of STS. This shades light on how the lineage
programs inherent to the tumor precursor cell is determinant in its susceptibility to onco-
genic transformation and how it can influence the tumor cell fate and pathology. This
reinforces the need to advance into the stratification of STS not only according to their
genetic abnormalities but also to their cell-of-origin [13].

3. Cellular Reprogramming as a Source of Confusion in the Definition of the
Cell-of-Origin in STS
3.1. Histologic and Transcriptomic Analogies: The Roots of STS Classification

The inference of cancer cell-of-origin has long been driven by histological and morpho-
logical resemblances with normal cell differentiation and has guided cancer classification
for almost a century [18,53,92,93]. Indeed, tumor cells morphology and histology, as well
as intra-tumoral hierarchy, reflect the differentiation trajectories that are deployed within
tumors and are used to extrapolate the identity of the cell-of-origin. Consequently, STS are
named eponymously after their presumed cell-of-origin, which historically relied on their
histological appearance and anatomic tissue compartments [94]. However, this approach
is complex for some entities, such as clear cell sarcoma and an angiomatoid histiocytofi-
broma, with non-specific or misleading histology, hence requiring additional techniques
for diagnosis [3,85]. Immunohistochemistry first emerged as a powerful tool to identify
diagnostic markers of poorly differentiated tumors, such as in RMS, and to propose hy-
potheses of originating cell [3,63,95–97]. More accurate inference of cell-of-origin have
relied on comparisons between gene expression signatures of tumor and normal cell pop-
ulations from which they may arise [53]. Recent studies have demonstrated that tumor
subsets share transcriptomic similarity with their corresponding lineage of origin [53,98].
These findings support the view that developmental programs are recapitulated in many
diverse solid tumor types, such as medulloblastoma [99] and melanoma [100]. Single-
cell RNA sequencing (scRNA-seq) data have reinforced the interest in these comparative
transcriptomic approaches as tools to characterize the lineage of origin of tumor cells
by trajectory inferences analyses [101,102]. Moreover, even poorly differentiated tumor
cells might preserve a lineage memory that reflects their developmental history [103,104].
Transcriptome-wide profiling helped clarify the complexity of STS classification by defining
homogeneous molecular subgroups and gained insights into the molecular basis of poorly
differentiated tumor types. For example, expression-profiling of synovial sarcoma indicate
that these tumors are most closely related to MPNST tumors from a transcriptomic point of
view, suggesting a possible neural crest origin [105,106]. To sum up, the gene expression
signatures revealed by transcriptome-based techniques are believed to reflect “shadows”
of the cell-of-origin in cancer.

3.2. Misleading Appearances and Confounding Factors in Defining the Cell-of-Origin of STS

However, initiating oncogenic events, and accumulating changes in the genetic and
epigenetic cellular landscape, can lead to a profound cell identity crisis, sustained by reacti-
vation of developmental or differentiation programs from completely distinct lineages, to
support tumor progression [13,16,107–109]. As a result, the cancer cell transcriptome that
shape the morphological features and phenotype of a cell then no longer resembles its cell-
of-origin [11,99,110,111]. Then, some of the cell-of-origin attributions based on morphologic
resemblance observations remain intact today, while others are named erroneously [3]. For
example, synovial sarcoma was named for its resemblance to synovium, even if there is cur-
rently no argument to support that they derive from synoviocytes. RMS is a heterogeneous
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entity, with as a sole common denominator, embryonic myogenic attributes. Consequently,
they have long been assumed to derive solely from muscle progenitors and precursors, but
this view has been challenged recently. Indeed, although RMS exhibit markers of muscle
differentiation and are most often found in tight proximity with skeletal muscle beds, there
is growing evidence that the cell causing these cancers is not limited to skeletal muscle
embryonic or stem cells. First, these tumors arise from many anatomic sites, including
organs that are free of skeletal muscles, such as the bladder, prostate, salivary glands, and
biliary tract [102,112]. Furthermore, animal models and xenografts of transformed human
cells demonstrate that both skeletal muscle precursors [113,114] and non-myogenic lineage
cells, such as endothelial cells or even MSCs, can give rise to RMS-like tumors [115,116].
Even more surprisingly, the expression of PAX3-FOXO1 fusion gene in neural progenitors
of chick embryos is sufficient to give rise to tumor masses, and to drive the establishment
of a myogenic signature from a non-muscle lineage [117].

3.3. Cell-of-Origin of STS: Behind the Mesenchymal Origin Paradigm

STS are gathered as an entity based on their mesenchymal origin. However, the
diversity of mesenchymal lineages and their pleiotropic developmental origins question
the significance of this grouping in terms of molecular etiology. This can be illustrated with
MSC, which have been proposed as candidate cell-of-origin for sarcomagenesis [118–120].
MSCs are multipotent cells with multiple characteristics including the ability to (1) give
rise to a wide range of mesenchymal cell types including adipocytes, chondrocytes, skeletal
myoblasts, osteocytes, neural cells, and fibroblasts, (2) adhere to plastic substrate in vitro.
They also express a specific set of surface antigens markers. However, these inclusion
criteria mask the heterogeneity of MSCs, which can originate from different mesodermal
and neuroectodermal progenitors/precursors from different tissue sources at different time
points during development/ontogenesis, each type being associated with a potentially
particular epigenetic state [118–122]. Therefore, the question is less to define whether MSCs
can be cells-of-origin of STS, but to identify which are the MSCs that are permissive to the
expression of oncogenic drivers and characteristic of each of these types of cancers.

Then, it appears that relying on the gene expression profiles and histological/functional
markers of a tumor cell can lead to erroneous inference of its cell-of-origin, or to insufficient
characterization of its identity to extrapolate its behavior upon oncogenic transformation.
Novel strategies are therefore needed to accurately identify the cell-of-origin of STS.

4. Epigenetics as a Powerful Tool to Refine the Cell-of-Origin of STS

Epigenetic marks are increasingly interpreted to infer cancer cell-of-origin as they may
retain a “fossil record” of tissue-specific developmental programs, faithfully propagated
from the first transformed cell throughout tumor progression [15,59,123–125]. During
the developmental process, heritable epigenetic marks are required to define and main-
tain unique gene expression patterns, crucial for cell-type identity [124]. One of the best
characterized epigenetic mark is DNA methylation, which usually refers to modified nu-
cleotide 5-methylcytosine (5mC), and which has a key role in stabilizing the inheritance
of genes expression responses across cell division. In mammals, the primary target for
DNA methylation is the cytosine of CpG sites that are genomic sequences of dinucleotide
cytosine(C)-phosphate(p)-guanine(G). Genomic regions exhibiting elevated frequencies of
these CpG sites are known as “CpG islands” and are present at over two-thirds of gene pro-
moters [126]. Recent findings show that hypomethylated CpG sites can preserve a nearly
complete archive of their developmental origin [13,28,123]. For example, a recent study
demonstrated that during retinogenesis, the most dramatic change was the derepression
of cell-type-specific differentiation enhancers, while some progenitor and cell cycle genes
remained epigenetically silenced [127]. Increasing evidence supports that this also holds
true in cancers and that embryonic development’s epigenetic memory may be retained
during cancer initiation and progression, despite genetic and epigenetic changes [123].
Accordingly, a recent study showed that retinoblastoma epigenome resembled a particular
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stage of the retina development [127]. Moreover, analysis of multiple samples regions of
primary tumor, metastases and pre-malignant outgrowths in prostatic adenocarcinoma
revealed that lineage tracing via DNA methylation heterogeneity closely mirrored the
phylogenetic relationships built on copy number genetic diversity [15]. Similarly, a study
of single-cell-derived colon cancer organoids demonstrated that marked DNA methylation
heterogeneity was propagated stably, in parallel with genetic diversification [15]. Consider-
ing, the retention in tumor cells of epigenetic fingerprinting of the tissue of origin, DNA
methylation is now used to infer the tissue of origin of cancers of unknown primary (CUP)
sites [128]. In other words, genome-wide DNA methylation prints can reflect a tissue-
specific developmental program and pave the way to better understand the cell-of-origin
in many cancer types [129–132].

The question of STS cells-of-origin was mainly addressed using models, by induc-
ing the expression of specific oncogenic drivers in a given precursor. The informational
potential of epigenetic memory remains less explored [3]. DNA methylation profiles of
STS was proven useful to improve lineage classification and to reveal methylome patterns
that were specific of tumor types or stages [3,28]. These results allowed the distinction
among subtypes of RMS [133], angiosarcoma [134] or small blue round cell sarcomas [135]
for example. In addition, specific methylation profiles correlated with diverse clinical
outcomes in dedifferentiated liposarcoma [96]. DNA methylation profile was also used to
show that phenotypical differences between undifferentiated endometrial carcinoma and
SMARCA4-deficient uterine sarcoma may result from SWI/SNF deficiency occurring in
different cellular contexts. Overall, the subtype-specific DNA methylation patterns in STS
suggests that they might arise from different timepoints of a same differentiation trajec-
tory, or from possible distinct lineages, but proof-of-evidences are required. Based on this
concept of “epigenetic memory”, further research using genome-wide DNA methylation
analyses and their cross-referencing with transcriptomic data are therefore needed to better
understand the cellular origin of STS (Figure 2).
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Figure 2. Epigenetic memory as a robust tool to infer cancer cell-of-origin. During tumorigenesis,
oncogenic driver events can lead to drastic changes in the transcriptomic landscape of the transformed
cell and mechanically modify the histological and morphological properties of the cancer cell com-
pared to its initiating counterpart. Epigenetics comprises robust molecular marks of tissue-specific
developmental program that may be retained during cancer initiation and progression.
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5. Clinical Relevance of the Cell-of-Origin in the Management of STS

Beyond simply improving our knowledge of sarcoma biology, defining the identity of
the lineage or cell(s) at the origin of the different histological and molecular types of STS
is a key clinical issue. Indeed, if the epigenetic context clearly participates in defining the
transformation capacity of a cell, it also constitutes an important determinant of treatment
response and resistance [136–138]. Along this line, the work performed by Abraham
and colleagues [88] has shown that the introduction of the PAX3-FOXO1 translocation
in Myf6+ fetal myogenic progenitors or in Pax7+ post-natal satellite cells results in the
appearance of RMS-like tumors with singular level of sensitivity to cell cycle inhibitors,
consistent with their respective degree of myogenic differentiation. Moreover, preliminary
evidence already supports this notion of ‘context-driven’ therapeutic indices, in which
combinations of genetic alterations and specific lineages constitute unique vulnerabilities.
As an example, the presence of hemizygous deletions on chromosome 1p predict enhanced
chemosensitivity in anaplastic oligodendrogliomas, whereas no correlation is found with
tumors from other lineages [53,139]. Moreover, clinical trials show that a same drug
targeting oncogenic BRAFV600E mutation is efficient in melanoma, non-small-cell lung
carcinoma and hairy cell leukemia, but not in colorectal cancer [13,140–142]. More than
targeting a given genetic abnormality, the next challenge in the therapeutic management of
cancers, with a high degree of heterogeneity such as STS, will be to integrate the cell types
and cell states from which they arise into clinical practice [88].

Indeed, theThe integration of the epigenetic component is essential to precisely define
the Achilles’ heel of tumor cells and the actionable levers according to the cellular context
to sensitize them to treatments. Thus, manipulation of the expression level of the PAX3-
FOXO1 transgene by using the histone deacetylase inhibitor entinostat potentiates the effect
of actinomycin D, only when this fusion gene is expressed in Pax7+ satellite cells in the
postnatal period [88]. If this statement needs to be tempered considering the important
epigenetic reorganization undergone by tumor cells during the transformation and escape
oncogenic process, which reduces the impact of the original cellular context, the approaches
of personalized medicine should probably be rethought beyond the framework of genetics
alone [133,143,144].

Another important aspect of elucidating STS cell(s)-of-origin concerns the identifi-
cation of the environmental factors that may play a causal role in their initiation/escape.
The developmental context in which childhood cancers occurs could a priori confer sus-
ceptibility to carcinogens exposure. Several environmental factors have been suggested to
be associated with increased risk of several childhood cancers, but the formal demonstra-
tion of their implication as well as the mechanisms and molecular bases linking early life
factors to childhood cancers remain poorly understood [145–149]. Environmental factors
could exert an oncogenic action not only by mutagenesis but also by inducing epigenetic
remodeling [150–152] and an accumulation of evidences indicates that exposures in utero,
or in early life, induce significant epigenetic alterations. However, the impact of pollutants
can differ depending on the cell type on which it acts. For example, it has been shown
that neural crest cells (NCCs), from which several types of sarcoma are thought to derive,
are very sensitive to environmental exposures. Prenatal exposure to tobacco, arsenic, or
pesticides are all associated with defects in the formation of NCCs, and notably alter their
differentiation, and their migration, to their proper location [153–157]. Beyond these migra-
tory defects, these pollutants have been shown to alter the expression profile of genes that
control NCCs fate, thereby altering the cellular context in which an oncogenic mutation
can occur [157,158]. Consequently, the identification of the cell(s)-of-origin of STS becomes
a key issue not only in therapeutic terms, but also from a prevention perspective, to better
identify the impact of the exposome during embryonic development or ontogeny (Figure 3).
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Figure 3. The therapeutic response is conditioned by the combination of the oncogenic event and the
environmental factors at the origin of the tumor transformation, and the cellular context in which
they occur.

6. Conclusions and Future Perspectives

Cellular reprogramming, following oncogenic event(s), can profoundly reshape the
transcriptome and epigenome of a transformed cell and can result in misinterpretation of
the cell-of-origin of STS. Functional studies have shown that oncogenic transformation
of cells from the muscular lineage, but also that non-muscle lineage (endothelial and
neural progenitors), can lead to the emergence of cancer cells expressing striated muscle
markers (i.e., RMS-like cells). This questions the stratification of STS, largely based on
the differentiated cells they most resembled. Thus, accurate definition of the sarcoma
cell-of-origin could help refine the current classification of STS.

Beside patients’ stratification, the precise cell type in which the first oncogenic event
occurs is of crucial importance as it can influence the tumor phenotype and aggressiveness.
A better understanding of the primary cell initiating sarcomagenesis could be translated
into clinical use and improve the prognostic prediction of patients with STS.
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Thus, the integration of genetic, transcriptomic and epigenetic data is likely to be
necessary to improve our understanding of the complexity of these tumors’ biology and
the medical management of sarcoma patients.
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