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Acute rejection (AR) after kidney transplant is one of the major obstacles to obtain ideal graft survival. Reliable molecular
biomarkers for AR and renal allograft loss are lacking. This study was performed to identify novel long noncoding RNAs
(lncRNAs) for diagnosing AR and predicting the risk of graft loss. The several microarray datasets with AR and nonrejection
specimens of renal allograft downloaded from Gene Expression Omnibus database were analyzed to screen differentially
expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). Univariate and multivariate Cox regression analyses were used to
identify optimal prognosis-related DElncRNAs for constructing a risk score model. 39 common DElncRNAs and 185 common
DEmRNAs were identified to construct a lncRNA-mRNA regulatory relationship network. DElncRNAs were revealed to
regulate immune cell activation and proliferation. Then, 4 optimal DElncRNAs, ATP1A1-AS1, CTD-3080P12.3, EMX2OS, and
LINC00645, were selected from 17 prognostic DElncRNAs to establish the 4-lncRNA risk score model. In the training set, the
high-risk patients were more inclined to graft loss than the low-risk patients. Time-dependent receiver operating characteristics
analysis revealed the model had good sensitivity and specificity in prediction of 1-, 2-, and 3-year graft survival after biopsy
(AUC = 0:891, 0:836, and 0:733, respectively). The internal testing set verified the result well. Gene set enrichment analysis
which expounded NOD-like receptor, the Toll-like receptor signaling pathways, and other else playing important role in
immune response was enriched by the 4 lncRNAs. Allograft-infiltrating immune cells analysis elucidated the expression of 4
lncRNAs correlated with gamma delta T cells and eosinophils, etc. Our study identified 4 novel lncRNAs as potential
biomarkers for AR of renal allograft and constructed a lncRNA-based model for predicting the risk of graft loss, which would
provide new insights into mechanisms of AR.

1. Introduction

Kidney transplant is increasingly and widely acceptable treat-
ment for end-stage renal disease. However, acute rejection
(AR) that occurs days to months after renal transplantation
is one of the major obstacles to obtain ideal long-term graft
survival, while plenty of patients with end-stage renal disease
are still waiting for renal grafts [1–3]. Therefore, it is impor-
tant to routinely monitor the function of allograft and diag-
nose AR promptly. The serum creatinine as a regular
biomarker for inferring AR can be late for the change of allo-

graft condition, while kidney biopsy, regarded as the gold
standard for diagnosing AR, still has limitations, such as
potentially variable artificial diagnosis and others, which
reflect that it requires additional molecular biomarkers to
become a unified diagnostic criteria [4, 5]. Although the rate
of acute rejection has drastically decreased over the past five
decades due to the advances in immunosuppressive therapy,
some evidence revealed that improvements of traditional
immunosuppression in transplant recipients for preventing
AR could improve the early outcome of renal allograft but
not the long-term graft survival [1, 6]. Moreover, high-dose
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immunosuppressants such as steroids and/or lymphocyte-
depleting antibodies enhance the risk of infection, sepsis,
and even cancer, potentially bringing about death of patients
with functioning allograft [7–9]. Hence, it is necessary to
identify novel biomarkers for AR of renal allograft, especially
prognosis-related biomarkers, which probably make avail-
able for speculating the underling mechanisms of AR and
provide druggable targets in the future.

Long noncoding RNAs (lncRNAs) defined as more than
200 nucleotides RNA without the ability of protein coding
were widely investigated and found to affect development
of human diseases through regulating neighbouring genes
and chromatin topology, scaffolding, and decoying proteins
[10, 11]. Their effective roles have been recognized in renal
transplantation, renal ischemia, fibrosis, injury, inflamma-
tion, glomerular diseases, and renal cell carcinoma [12].
Chen et al. [13] and Zou et al. [14] identified dysregulated
lncRNAs in AR specimens when compared with nonrejec-
tion specimens. Xu et al. [15] also screened the lncRNAs
associated with chronic damage and graft loss after renal
transplantation. Besides, lncRNA RP11-354P17.15-001 in
urine was reported that it might serve as a novel biomarker
for AR of kidney [16]. However, the underlying mechanism
through which lncRNAs contribute the rejection or injury
is rarely known. Atianand et al. has discovered that lncRNAs
take part in development and differentiation of innate and
adaptive immune cells [17]. Meanwhile, some studies
revealed that allograft-infiltrating immune cells own poten-
tial diagnostic and prognostic values in AR after renal trans-
plantation [18, 19], which turns out to be a major target for
immunosuppression therapy [20]. To the best of our knowl-
edge, no exact lncRNA has been regarded as the known cri-
teria to help diagnose AR and predict the prognosis of graft
survival so far. Thus, lncRNAs related to AR of kidney trans-
plant, graft survival, and allograft-infiltrating immune cells
were screened by our study based on the public datasets. This
will probably help develop novel biomarkers for AR of renal
allograft, directly or indirectly impact current clinical prac-
tices, and provide new insights into the mechanism of AR.

2. Material and Methods

2.1. GEO Dataset Acquisition and Preprocessing. Gene
Expression Omnibus database (GEO, https://www.ncbi.nlm
.nih.gov/geo/) is a public repository of high-throughput gene

expression data at the National Center of Biotechnology
Information, which is submitted by researchers in various
fields, and the data are freely accessible. Five datasets,
GSE34437 [21], GSE75693 [22], GSE50058 [23], GSE76882
[24], and GSE21374 [25], containing RNA sequencing data
extracted from kidney biopsies from kidney transplant
patients with different graft state were selected. Their series
matrix and MINiML formatted family files were down-
loaded. Two platforms were identified: GSE76882 dataset
was from Affymetrix HT HG-U133+ PM Array Plate, while
others were all from Affymetrix Human Genome U133 Plus
2.0 Array. The data tables of the two platforms were also
downloaded to obtain the gene symbol for reannotating the
Affymetrix Probe Set ID in the series matrix files. Besides,
we extracted the corresponding clinical information from
the MINiML formatted family files using SangerBox tool
(Version 1.0.9, http://sangerbox.com/). Among these data-
sets, the diagnosis criteria of AR for allograft were biopsy-
proven based on the Banff criteria scored by blinded pathol-
ogists, which accompanied rising serum creatinine. Nonre-
jection or stable biopsies were regarded as stable graft
function and absence of significant pathological injury based
on the Banff criteria. As for the protocol surveillance or for-
cause biopsies, the GSE34437, GSE50058, and GSE76882
datasets contained mixed samples, while the GSE75693 and
GSE21374 datasets embrace for-cause biopsies. In our study,
biopsy-proven acute rejection, borderline acute rejection,
and acute rejection with interstitial fibrosis and tubular atro-
phy were incorporated into the AR group in our study. Spec-
imens diagnosed with BK virus nephritis in the datasets were
excluded. The number of patients with different graft state
and outcome in the five datasets is shown in Table 1. The
more detailed clinical information of the kidney biopsies is
given in Tables S1 and S2.

Therefore, GSE34437 and GSE75693 datasets were
merged into a single cohort, in the following called the
merged dataset, due to the small number of specimens and
followed by batch normalization using “sva” R package to
eliminate the batch effect. Then in the merged dataset,
GSE50058 and GSE76882 datasets were used for differential
expression analysis. The time from biopsy to the graft failure
or patient censored in GSE21374 dataset was defined as graft
survival, which was used for subsequent graft survival analy-
sis of the screened genes. The 282 patients with information
of graft survival in GSE21374 dataset were randomly divided

Table 1: Clinical characteristics of the GEO datasets.

Characteristics
Merged

GSE50058 GSE76882 GSE21374
GSE34437 GSE75693 Total

Graft state

Acute rejection 17 15 32 43 83 —

Stable 16 30 46 58 99 —

Graft outcome

Failed — — — — — 51

Nonfailed — — — — — 231

Total 33 45 78 101 182 282
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into the training set (n = 198) and the testing set (n = 84) by a
ratio of 7 to 3 using “caret” R package.

2.2. Differential Expression Analyses of lncRNAs and mRNAs.
The expression data of GEO datasets were checked whether
they were standardized and were quantile normalized using
the normalizeBetweenArrays function from “limma” R pack-
age (Figure S1). Then, lncRNAs and protein-coding genes
were extracted from the matrix based on the human
genome (CRCh38) from database Ensembl (http://asia
.ensembl.org/index.html). Moreover, the gene was excluded
if it is an unrecognized gene or the sum of expression level
for each specimen is less than 1. Finally, 1236 lncRNAs and
1234 lncRNAs were obtained from the merged dataset and
GSE50058 datasets, respectively. 16413, 16432, and 14064
protein-coding genes were obtained from the merged
datasets GSE50058 and GSE76882, respectively.

The “limma” R package was used to screen differentially
expressed lncRNAs (DElncRNAs) and differentially
expressed mRNAs (DEmRNAs) between kidney transplant
patients with AR and stable function. Then, the DElncRNAs
from the merged dataset and GSE50058 dataset were inter-
sected to obtain common DElncRNAs, while the DEmRNAs
from the merged dataset, GSE50058 and GSE76882 were
intersected to obtain common DEmRNAs for subsequent
analyses. Adjusted p value < 0.05 and absolute log2 fold
change ðFCÞ > 0:5 were set to screen DElncRNAs. Adjusted
p value < 0.05 and absolute log2 fold change ðFCÞ > 1 were
used to screen DEmRNAs.

2.3. Construction of lncRNA-mRNA Regulatory Relationship
Network. To elucidate the expressional relationship between
dysregulated lncRNAs and mRNAs in AR of kidney allograft,
the Pearson correlation analysis was performed with the cut-
off criteria of absolute coefficient of correlation ðrÞ > 0:7 and
p value < 0.01. The visualization of the regulatory network
was constructed using Cytoscape (V3.7.2, https://cytoscape
.org/).

2.4. Functional Annotation and Enrichment Analyses of
DElncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were
conducted using “clusterProfiler” R package for revealing
the potential gene function terms and enriched signaling
pathways of the DEmRNAs in the lncRNA-mRNA regula-
tory relationship network, which could indirectly indicate
the potential biological function of DElncRNAs. GO enrich-
ment analysis contains the aspects of molecular function
(MF), cellular components (CC), and biological processes
(BP). Before doing the enrichment analyses, gene symbol
was converted to Entrez Gene IDs using “http://org.hs.eg
.db” R package in order to the mapping between GO or
KEGG terms and Entrez Gene IDs. The cutoff value for the
enrichment analyses was adjusted p value < 0.05.

2.5. Identification of Prognostic lncRNAs. The normalized
expression data of DElncRNAs and corresponding survival
time of grafts from the training set (n = 198) in GSE21374
dataset were used to identify the prognosis-related DElncR-
NAs using univariate Cox proportional hazards regression

analysis. Then, the patients were divided into two groups,
high- and low-expression groups by the median expression
level as a cutpoint of each prognostic DElncRNA, which
was determined by “survminer” R package. Then, “survival”
R package was performed to implement a log-rank test and
draw Kaplan-Meier curves to compare the graft survival rate
between high- and low-expression levels of the prognostic
DElncRNAs [26]. Afterwards, the prognostic DElncRNAs
screened from the univariate Cox proportional hazard
regression were enrolled in stepwise multivariate Cox pro-
portional hazard regression method to select the optimal
gene model with the minimum AIC value. A p value < 0.05
was considered as significant.

2.6. Establishment and Assessment of Multi-lncRNA Model.
The final optimal prognosis-related DElncRNAs screened
from multivariate Cox regression were used to construct a
risk score model to evaluate graft survival in renal transplant
patients who were diagnosed with acute rejection. The risk
score of each patient was calculated by multiplication of the
regression coefficient of the lncRNAs obtained from multi-
variate Cox regression and their expression level and finally
summing, which was the following:

Risk score = 〠
n

i=1
βi ∗ Expi, ð1Þ

where n, β, and Exp are the number, the regression coeffi-
cient, and the expression value of the prognosis-related
DElncRNAs, respectively.

Then, the median risk score was regarded as the cutoff
point to stratify the patients into high-risk and low-risk
groups in the training set. The Kaplan-Meier (KM) survival
analysis was performed to compare the graft survival
between these two groups. Moreover, the time-dependent
receiver operating characteristics (tROC) curve was used to
evaluate the specificity and sensitivity of the graft survival
prediction using “survivalROC” R package.

In order to assess the prediction value of the model, the
testing set (n = 84) in GSE21374 dataset was used to perform
validation. The risk score of each renal transplant patient was
calculated through the above formula with the same coeffi-
cients used in the training set. Then, the patients were strat-
ified into high-risk and low-risk groups using the same
cutoff point in the training set. Besides, we used KM survival
analysis and tROC analysis to validate the model in the test-
ing set.

2.7. Immune Cell Infiltration Analysis and Gene Set
Enrichment Analysis of Final Optimal lncRNAs. CIBERSORT
(cell type identification by estimating relative subsets of RNA
transcripts, https://cibersort.stanford.edu/) [27] is a compu-
tational approach for characterizing cell composition of com-
plex tissues including fresh, frozen, and fixed tissues from the
gene expression profiles. It outperformed many other esti-
mating methods with respect to noise and unknown mixture
content [28]. A signature matrix of the collated 547-gene
expression datasets associated with 22 immune cell types
was downloaded from CIBERSORT web portal, which
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encompasses T cells, B cells, natural killer cells, dendritic
cells, eosinophils, etc. Then, the significantly different pro-
portions of infiltrating immune cells in the merged dataset
and GSE76882 dataset between acute rejection and nonrejec-
tion specimens were calculated using the CIBERSORT algo-
rithm and Wilcoxon method for variance by R software
with the criteria of p value < 0.05. The correlation between
common infiltrating immune cells and expression of the final
optimal lncRNAs was further analyzed using Pearson corre-
lation analysis, which considered ∣r ∣ >0:3 and p value < 0.01
as significant.

For identifying the biological pathways of the final opti-
mal lncRNAs, gene set enrichment analysis (GSEA) [29]
was performed on JAVA 8.0 platform using GSEA software
(V4.0.4, http://software.broadinstitute.org/gsea/). The median
expression of the lncRNAs was regarded as a cutoff point to
divide all the samples into high- and low-expression groups.
Then, the annotated gene sets “c2.cp.kegg.v7.0.symbols” and
“c5.all.v7.0.symbols” downloaded from the Molecular Signa-
tures Database (MSigDB) were adopted as the reference gene
set to calculate enrichment score (ES). The number of per-
mutations was 1000. Gene size < 15 or >500 was excluded.
The enrichment pathways with ∣ES∣ > 1:5, normalized p value
< 0.05, and FDR < 0:25were expected as significant [29].

2.8. Statistical Analysis. R software (V3.6.1, The R Founda-
tion for Statistical Computing, 2019) was used to perform
all statistical analysis. Volcano plots of DElncRNAs and
DEmRNAs were plotted using “ggrepel” R package, while

heat maps of DElncRNAs and DEmRNAs were plotted using
“pheatmap” R package with zero-mean normalization. The
expressional boxplots between the AR and NR groups were
analyzed using the Mann–Whitney U test. The boxplots
and correlation graphs were drawn by Prism 8 (GraphPad).
To validate the association between the final optimal
lncRNAs and AR of renal allograft, logistic regression analy-
sis was conducted and area under the ROC curve (AUC) was
also calculated to illustrate their diagnostic accuracy. For
Kaplan-Meier curves, p values and hazard ratio (HR) with
95% confidence interval (CI) were generated by the log-
rank tests and Cox regression methods. All statistical tests
were two-sided. p value < 0.05 was considered as statistically
significant.

3. Results

3.1. Identification of DElncRNAs and DEmRNAs in AR. The
flow chart of our whole study is shown in Figure 1.

After differential expression analysis via limma R pack-
age, there were 134 DElncRNAs and 553 DEmRNAs in the
merged dataset; 63 DElncRNAs and 439 DEmRNAs in
GSE50058 dataset; and 620 DEmRNAs in GSE76882. The
cluster heat maps of top 20 DElncRNAs and volcano plots
of DElncRNAs in the merged dataset and GSE50058 dataset
are shown in Figures 2(a)–2(d). Then, the common 39
DElncRNAs and 185 DEmRNAs were obtained via integra-
tion using “vennDiagram” R package, which are shown in
Figures 2(e) and 2(f).

 GSE34437

 GSE75693

GSE50058
(n = 101)

Filtered and normalized

Differential expression analysis 

Intersecting DEmRNAs Intersecting DElncRNAs

185 Common DEmRNAs 39 Common DElncRNAs
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4-lncRNA Risk Score System
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Figure 1: Flowchart of our study design.
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3.2. lncRNA-mRNA Regulatory Relationship Network
Construction and Functional Enrichment Analysis. For iden-
tifying the coexpression relationship between DElncRNAs
and DEmRNAs in AR of renal allograft, the Pearson correla-
tion analysis was performed based on GSE50058 dataset and
totally there were 101 lncRNA-mRNA pairs with positive
correlation and 16 lncRNA-mRNA pairs with negative corre-
lation (∣r ∣ >0:7, p value < 0.05). The relevant positive and
negative correlation networks were constructed using Cytos-
cape and they are shown in Figures 3(a) and 3(b). Besides, in
order to figure out the potential biological function of com-
mon DElncRNAs, the coexpression DEmRNAs were used
for GO and KEGG analyses. The significantly enriched GO
terms are shown in Figure 3(c). Top 10 enriched terms in
BP, CC, and MF are listed in the figure. In BP category, most
of the enriched terms were associated with regulation of
immune cell activation and proliferation. In CC and MF cat-
egory, “external side of plasma membrane” and “G protein-
coupled receptor binding” were the most enriched terms,
respectively. The significantly enriched KEGG pathways are
shown in Figure 3(d). “Cytokine-cytokine receptor interac-
tion” was the most enriched pathway. “Allograft rejection”
and “MHC protein complex binding” were also enriched
which demonstrated the good reliability of the differential
expression analysis screened by our study. Moreover, signal-
ing pathways like “NOD-like receptor signaling pathway”
and “Toll-like receptor signaling pathway” were enriched.
Pathways involved in “Allograft rejection” and “Graft-
versus-host disease” were enriched as well.

3.3. Screening of Prognosis-Related DElncRNAs. The graft
survival data after biopsy of renal allograft and the expression
data of 39 common DElncRNAs in the training set were sub-
jected to univariate Cox proportional hazards regression
analysis with the significant threshold of p value < 0.05.
Therefore, 15 DElncRNAs associated with the graft survival
were identified, among which there were 2 positive DElncR-
NAs (HR > 1) and 13 negative DElncRNAs (HR < 1). Then,

these 17 DElncRNAs were used in subsequent stepwise mul-
tivariate Cox proportional hazards regression analysis.
Finally, the optimal 4-lncRNA combination was obtained
with the minimum Akaike’s information criterion value
(AIC = 317:29), which contained ATP1A1-AS1, CTD-
3080P12.3, EMX2OS, and LINC00645. The results of Cox
regression analysis are shown in Table 2.

3.4. Expression Profiles and Survival Analysis of the Optimal 4
lncRNAs. The expression profiles of the optimal 4 DElncR-
NAs between AR and NR specimens in the merged dataset
and GSE50058 dataset are presented in Figure 4(a), which
indicated that the 4 DElncRNAs were significantly downreg-
ulated in AR of renal allograft (p < 0:001). Moreover, the
result of logistic regression analysis based on the merged
dataset and GSE50058 dataset verified that the 4 DElncRNAs
were significantly associated with the AR of renal allograft
(p < 0:01) (Table 3).

In the meanwhile, ROC analysis was performed as
well to obtain their AUC values and standard error. In
the merged dataset, AUCATP1A1‐AS1 = 0:863 (0.041), AU
CCTD‐3080P12:3 = 0:852 (0.044), AUCEMX20S = 0:750 (0.060),
and AUCLINC00645 = 0:756 (0.059). In GSE50058 dataset,
AUCATP1A1‐AS1 = 0:780 (0.048), AUCCTD‐3080P12:3 = 0:744
(0.049), AUCEMX20S = 0:666 ð0:057Þ, and AUCLINC00645 =
0:718 (0.052).

KM survival curves were plotted to evaluate the prognos-
tic value of the 4 DElncRNAs (Figure 4(b)), in which the
median expression value of each DElncRNA was regarded
as a cutoff point to partition the patients into the high-
expression and low-expression groups. Low expression of
the 4 DElncRNAs was associated with the poor prognosis
of the renal allograft. The KM survival curves of other 11
prognosis-related DElncRNAs screened from univariate
Cox regression analysis are also shown in Figure S3.

3.5. Construction and Validation of the 4-lncRNA Model.
The Cox coefficients of the 4 lncRNAs obtained from

95 2439

GSE34437+GSE75693 GSE50058

(e)

132
36

317

86
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200

GSE50058 GSE76882
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Figure 2: Identification of DElncRNAs and DEmRNAs (adjusted p value < 0.05 and ∣log2FC ∣ >0:5 for DElncRNAs; adjusted p value < 0.05
and ∣log2FC ∣ >1 for DEmRNAs). (a, b) Volcano plots of DElncRNAs in the merged dataset and GSE50058 dataset, respectively. (c, d) Heat
maps of top 20 DElncRNAs in the merged dataset and GSE50058 dataset, respectively. (e) Venn diagram of 39 common DElncRNAs between
the merged dataset and GSE50058 dataset. (f) Venn diagram of 185 common DEmRNAs among the merged dataset, GSE50058 dataset, and
GSE76882 dataset (volcano plots and heat maps of DEmRNAs in these three datasets are presented in Figure S2). DElncRNAs: differentially
expressed lncRNAs; DEmRNAs: differentially expressed mRNAs; FC: fold change.
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the multivariate Cox proportional hazards regression
analysis were used to multiply their expression values for
calculating the risk score of each patient in GSE21374 data-
set. Risk score = ð−1:9663Þ ∗ ExpðATP1A1‐AS1Þ + ð−2:28396Þ ∗
ExpðCTD‐3080P12:3Þ + ð−1:12712Þ ∗ ExpðEMX20SÞ + ð−0:59929Þ
∗ ExpðLINC00645Þ:

Then, the patients in the training set were divided into
high- and low-risk groups based on the median risk score
determined by “survminer” R package, in which the risk
score curve is shown in Figure 5(a). The corresponding graft
survival status of the patients in the training set is demon-
strated in Figure 5(b), which suggests that there were more
patients who were classified as high risk tend to get graft fail-
ure. The expression profiles of the 4 DElncRNAs in AR and
stable specimens are visualized in the cluster heat map
(Figure 5(c)). The KM survival curve revealed that the
high-risk group patients have worse graft survival outcome
than that of the low-risk group patients (p < 0:001)
(Figure 5(d)). Moreover, tROC analysis was performed and

AUC values of 1-, 2-, and 3-year graft survival after biopsy
are 0.891, 0.836, and 0.733 (Figure 5(e)).

In order to verify the results obtained from the training
set, the testing set was used for the same analysis. The cutoff
point of the risk score in the training set was used to divide
the patients into high- and low-risk groups in the testing set
(Figure 6(a)), and more patients got graft failure in the high-
risk groups (Figure 6(b)). The cluster heat map of the 4
DElncRNAs is also presented in Figure 6(c). The KM sur-
vival curves verified the significant difference of graft sur-
vival between the high- and low-risk groups (p < 0:05)
(Figure 6(d)). AUC values of 1-, 2-, and 3-year graft survival
after biopsy in the testing set are 0.805, 0.781, and 0.763
(Figure 6(e)).

3.6. Correlation between the Optimal 4 lncRNAs and Immune
Cell Infiltration. For determining the types of infiltrating
immune cells involved in AR of renal allograft, CIBERSORT
algorithm was performed to speculate the percentage of 22
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Figure 3: Relationship between DElncRNAs and DEmRNAs and corresponding functional enrichment analysis of DEmRNAs. (a) The
DElncRNA-DEmRNA regulatory relationship network. The orange nodes represent the common DElncRNAs. The purple nodes
represent the DEmRNAs correlated with the DElncRNAs. The relationship is shown based on Pearson correlation analysis with the
criteria of ∣r ∣ >0:7 and p value < 0.05. (b) GO functional enrichment analysis of DEmRNAs involved in the network. (c) KEGG functional
enrichment analysis of DEmRNAs involved in the network. DElncRNAs: differentially expressed lncRNAs; DEmRNAs: differentially
expressed mRNAs; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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types of immune cells in allograft specimens. After the cal-
culation and filter with the criteria of p value < 0.05, the
merged dataset and GSE76882 contained 68 and 108 AR

and stable specimens, while GSE50058 contained only 15
AR and stable specimens. Therefore, the GSE50058 dataset
was excluded in the comparison analysis for revealing

Table 2: Univariate and multivariate Cox regression of 39 DElncRNAs in the training set of GSE21374.

Variable
Univariate Multivariate

HR 95% CI p value HR 95% CI p value

TRG-AS1 1.951 1.426-2.688 <0:001 — — —

LINC00645 0.58 0.443-0.758 <0:001 0.549 0.396-0.761 <0:001

LINC01187 0.461 0.305-0.697 <0:001 — — —

TCL6 0.202 0.085-0.480 <0:001 — — —

DANCR 0.25 0.116-0.540 <0:001 — — —

LINC00982 0.437 0.270-0.707 0:001 — — —

CTD-3080P12.3 0.159 0.050-0.504 0:002 0.102 0.021-0.505 0:005

EMX2OS 0.212 0.078-0.576 0:002 0.324 0.091-0.916 0.082

TRAM2-AS1 0.236 0.090-0.620 0:003 — — —

LINC00671 0.502 0.309-0.817 0:005 — — —

WAC-AS1 3.154 1.414-7.036 0:005 — — —

ATP1A1-AS1 0.106 0.021-0.537 0:007 0.14 0.020-0.968 0:046

AC112198.1 0.367 0.174-0.773 0:008 — — —

WDFY3-AS2 0.682 0.507-0.916 0:011 — — —

LINC00886 0.403 0.183-0.892 0:025 — — —

AL022344.5 3.228 1.129-9.231 0:029 — — —

RPARP-AS1 0.242 0.066-0.890 0:033 — — —

SMIM2-AS1 0.468 0.205-1.071 0:072 — — —

RUSCI-AS1 2.547 0.879-7.385 0:085 — — —

C12orf77 7.544 0.712-79.89 0:093 — — —

ITGB2-AS1 1.338 0.952-1.880 0:094 — — —

PCED1B-AS1 2.276 0.866-5.986 0:095 — — —

LINC00592 3.047 0.810-11.463 0:099 — — —

ADIRF-AS1 0.477 0.197-1.154 0:101 — — —

AC005523.2 0.391 0.099-1.533 0:177 — — —

ZNF213-AS1 0.416 0.110-1.570 0:196 — — —

TRHDE-AS1 0.769 0.479-1.235 0:277 — — —

LINC00911 2.155 0.377-12.30 0:387 — — —

AC092192.1 1.494 0.534-4.418 0.446 — — —

ELOVL2-AS1 2.084 0.316-13.740 0:446 — — —

GS1-124K5 2.14 0.247-18.58 0:489 — — —

EPB41L4A-AS1 0.651 0.182-2.325 0:508 — — —

APTR 0.761 0.221-2.623 0:666 — — —

LINC01410 0.601 0.053-6.847 0:682 — — —

HMMR-AS1 0.698 0.104-4.654 0:711 — — —

LINC00472 0.945 0.639-1.398 0:778 — — —

LINC01222 0.776 0.114-5.259 0:795 — — —

FLJ37453 0.934 0.145-6.001 0:943 — — —

SEPSES-AS1 1.033 0.335-3.179 0:955 — — —

HR: hazard ratio; CI: confidence interval.
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Figure 4: Expression pattern and Kaplan-Meier survival analysis of the optimal 4 lncRNAs. (a) The expression pattern of ATP1A1-AS1,
CTD-3080P12.3, EMX2OS, and LINC00645 in the merged dataset and GSE50058 dataset. (b) Graft survival analysis of ATP1A1-AS1,
CTD-3080P12.3, EMX2OS, and LINC00645 in the patients of GSE21374 datasets. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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significant different infiltrated immune cells between AR
and stable specimens.

The comparison of immune cell infiltration between AR
and stable specimens in the merged dataset and GSE76882
dataset is shown in Figures 7(a) and 7(b), respectively. In
these two datasets, there were 5 common significantly differ-
ent immune cell types: CD8+ T cells (p = 0:018), activated
memory CD4+ T cells (p = 0:001), gamma delta T cells
(p = 0:028), and eosinophils (p = 0:011) were more infiltrated
in AR specimens, while resting dendritic cells (p = 0:005) was
less infiltrated in AR specimens compared with stable speci-
mens. Then, the correlation between the optimal 4 lncRNAs
and the 5 common significantly different immune cell types
is explored and presented in Figures 7(c)–7(f) based on the
merged dataset. The expressions of ATP1A1-AS1, CTD-
3080P12.3, and EMX2OS were all negatively correlated with
the gamma delta T cells and eosinophils. The expression of
LINC00645 was negatively correlated with CD8+ T cells
and positively correlated with resting dendritic cells.

3.7. Gene Set Enrichment Analysis. The potential biological
functions of ATP1A1-AS1, CTD-3080P12.3, EMX2OS,
and LINC00645 were mined using GSEA. As the results
shown in Figure 8(a), lymphocyte differentiation and mitotic
cell cycle checkpoint gene sets were found to be enriched
in the low expression of ATP1A1-AS1. G1 DNA damage
checkpoint and mitotic cell cycle checkpoint gene sets
were enriched in the low expression of CTD-3080P12.3
(Figure 8(b)). For the low expression of EMX2OS, DNA-
binding transcription factor and RNA splicing gene sets
were enriched (Figure 8(c)). Fucosylation and nucleobase
biosynthetic process gene sets were enriched in the low
expression of LINC00645 (Figure 8(d)). Moreover, several
important signaling pathways which play important roles in
allograft rejection were found to enriched by the low expres-
sion of these 4 lncRNAs, such as the MAPK signaling path-
way, MTOR signaling pathway, Toll-like receptor signaling
pathway, NOD-like receptor signaling pathway, p53 signal-
ing pathway, TGF-β signaling pathway, JAK-STAT signaling
pathway, and VEGF signaling pathway, where the findings
provided good clues for exploring the potential specific func-
tion of these four lncRNAs in AR of renal allografts.

4. Discussion

Mining high-throughput microarray datasets which contain
thousands of genes in small sample sizes are the cost-

effective manner in exploring the fields of genetic character-
istics and functional genomics [30]. lncRNAs as noncoding
RNAs have been reported that they could be the main regu-
lators of immune response and exert their functional roles
in immune-mediated tissue rejection [31]. Therefore, we
used the public microarray datasets to investigate the poten-
tial lncRNAs as biomarkers and therapeutic targets for AR
after renal transplantation.

In our study, several GEO datasets about AR after renal
transplantation were used to identify differentially expressed
lncRNAs and mRNAs to construct the DElncRNA-
DEmRNA regulatory relationship network based on Pearson
correlation analysis. GO and KEGG functional enrichment
analyses were performed to reveal the potential biological
function of DElncRNAs, showing that T cell activation was
mostly enriched. Proliferation and regulation of immune-
related cells including leukocytes, lymphocytes, and mono-
nuclear cells were also enriched. These biological processes
were achieved probably by the means of interfering
cytokine-cytokine receptor interaction pathway and chemo-
kine signaling pathway, which were enriched in KEGG anal-
ysis. This suggests that the identified DElncRNAs are
deserved to be further explored for the roles in immune
response in the future. Then, the DElncRNAs were used for
univariate and stepwise multivariate Cox regression analysis
and 4 optimal DElncRNAs associated with graft survival
were obtained, which included ATP1A1-AS1, EMX2OS,
CTD-3080P12.3, and LINC00645. ATP1A1-AS1 is antisense
RNA 1 of Na/K-ATPase α1 (ATP1A1). In human kidney
cells, ATP1A1-AS1 was discovered to negatively regulate its
sense gene, ATP1A1, which regulates renal cell survival as a
signal transducer [32]. Fan also claimed that ATP1A1-AS1
is a moderate negative regulator of ATP1A1 and modulates
Na/K-ATPase-related signaling pathways, which play an
important role in cardiac fibrosis [33]. It was also found to
be dysregulated expression in cutaneous melanoma [34]
and related to the prognosis of thymoma [35]. However, no
more studies about the molecular mechanisms and signaling
pathways of ATP1A1-AS1 can be found. According to our
allograft-infiltrating immune cells analysis, we found that
ATP1A1-AS1 is correlated negatively with the infiltration
of gamma delta T cells and eosinophils. The role of gamma
delta T cells in transplantation is underresearched. Some
studies have proven that they frequently present in acute
rejection of renal allografts and have direct cytolytic activity
against renal epithelium, in which the mechanism for killing
allogeneic renal cells is a natural killer-like way [36, 37].

Table 3: Logistic regression analyses and ROC analyses of the 4 optimal lncRNAs.

Predictors
Merged GSEa (n = 78) GSE50058 (n = 101)

OR AUC (SE) OR AUC (SE)

ATP1A1-AS1 0.032∗∗∗ 0.863 (0.041)∗∗∗ 0.123∗∗∗ 0.780 (0.048)∗∗∗

CTD-3080P12.3 0.147∗∗∗ 0.852 (0.044)∗∗∗ 0.160∗∗∗ 0.744 (0.049)∗∗∗

EMX20S 0.147∗∗∗ 0.750 (0.060)∗∗∗ 0.501∗∗ 0.666 (0.057)∗∗

LINC00645 0.232∗∗∗ 0.756 (0.059)∗∗∗ 0.455∗∗∗ 0.718 (0.052)∗∗∗

aMerged GSE = GSE34437 + GSE75693. ∗∗∗p value < 0.001. ∗∗p value < 0.01. ROC: receiver operating characteristics; OR: odds ratios; AUC: area under the
curve; SE: standard error.
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Figure 5: Prognostic analysis of the 4-lncRNA risk score in the training set of GSE21374 dataset. (a) The curve of risk score. The dotted line
represents the cutoff score which divides the patients into the low-risk group and high-risk group. (b) The survival status of renal allograft.
The coral dots represent graft failure while the aquamarine dots represent graft survival. (c) Heat map of the 4-lncRNA expression profiles in
the low-risk group and high-risk group. (d) KM survival analysis of the risk score model. (e) Time-dependent ROC analysis of the risk score
model. KM: Kaplan-Meier; ROC: receiver operating characteristic.
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Besides, in small animal models, it was observed that gamma
delta T cells could produce interleukin-17 (IL-17) to contrib-
ute acute and chronic allograft dysfunction in skin [38] and
lung transplantation [39]. In contrast, some evidence showed
they could produce IL-4 and IL-10 to decrease Th1 responses
to achieve allograft protection [40]. For eosinophils, they are
regarded as the promoting factor for inducing acute allograft
rejection and the increased presence of eosinophils in periph-
eral blood and/or renal allograft biopsy specimen would
be risky factors for outcome of acute rejection [41, 42].
Therefore, according to what we found, low expression of
ATP1A1-AS1 was associated with the high infiltration of
gamma delta T cells and eosinophils, which probably provide
some hints to reveal the causes for acute rejection of the renal
allograft. Besides, our GSEA revealed that ATP1A1-AS1 is
involved in allograft rejection and other several signaling
pathways including the MAPK signaling pathway [43],
MTOR signaling pathway [44], and Toll-like receptor signal-
ing pathway [45], which were discovered to play a role in
rejection of renal allograft. EMX2OS is an antisense tran-
script of homeodomain-containing transcription factor
EMX2, which plays a vital role in brain development [46]
and urogenital development [47]. Gu et al. revealed the rela-
tionship between the downregulation of EMX2OS and poor
prognosis of classical papillary thyroid cancer [48], while
Tang et al. revealed its participation in the molecular mecha-
nisms regulating recurrent laryngeal cancer [49]. However,
there have been little related researches investigating the roles
of EMX2OS in kidney cells and even renal allograft with AR.
As our study results indicated, downregulation of EMX2OS
can predict the poor renal allograft survival after biopsy. It
also correlates negatively with gamma delta T cells and eosin-

ophils, which can be risky factors in AR of renal allograft.
GSEA suggests that EMX2OS can probably exert its roles
through regulation of protein binding, RNA splicing, and
transcription factor binding. Besides, low expression of
EMX2OS also promotes leukocyte transendothelial migra-
tion and the TGF-β signaling pathway which regulates cell
development, differentiation, apoptosis, and other func-
tions associated with cell homeostasis [50]. As for CTD-
3080P12.3, there are not much research introducing its
basic information and studying its biological function. Kim
et al. regarded CTD-3080P12.3 as a candidate biomarker
for thyroid cancer by analyzing their collected samples and
The Cancer Genome Atlas dataset [51]. Esposti et al. found
it was a differentially expressed lncRNA in hepatocellular
carcinoma compared with adjacent cirrhotic tissues [52].
However, the role of CTD-3080P12.3 in rejection or immune
response remains unknown. Our results provided some
potential clues that CTD-3080P12.3 can be an independent
prognostic factor for predicting the renal graft survival as
shown in Table 2. The low expression of CTD-3080P12.3 is
also associated with the high infiltration of gamma delta T
cells and eosinophils in renal allograft with AR. Then on
the basis of the functional enrichment analysis, the downreg-
ulation of CTD-3080P12.3 possibly gives positively impact
on the JAK-STAT signaling pathway, NOD-like receptor sig-
naling pathway, p53 signaling pathway, and Toll-like recep-
tor signaling pathway. The JAK-STAT signaling pathway
has the cardinal role in the development and/or function of
immune cells [53], while the NOD-like receptor and Toll-
like receptor signaling pathways play critical role in activat-
ing innate and adaptive immune response [54]. These find-
ings suggest that CTD-3080P12.3 can exert its important
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Figure 6: Prognostic analysis of the 4-lncRNA risk score in the testing set of GSE21374 dataset. (a) The curve of risk score. The dotted line
represents the cutoff score which divides the patients into the low-risk group and high-risk group. (b) The survival status of renal allograft.
The coral dots represent graft failure while the aquamarine dots represent graft survival. (c) Heat map of the 4-lncRNA expression profiles in
the low-risk group and high-risk group. (d) KM survival analysis of the risk score model. (e) Time-dependent ROC analysis of the risk score
model. KM: Kaplan-Meier; ROC: receiver operating characteristic.
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Figure 7: Pearson correlation analysis between the 4 lncRNAs and 5 common different allograft-infiltrating immune cell types. (a, b)
CIBERSORT estimation of 22 immune cell types between AR and nonrejection specimens in the merged dataset and GSE76882 dataset,
respectively. CD8+ T cells, activated memory CD4+ T cells, gamma delta T cells, resting dendritic cells, and eosinophils are 5 significantly
different immune cell types common to the merged dataset and GSE76882 dataset. (c) The correlation between the expression of
ATP1A1-AS1 and gamma delta T cells as well as eosinophils. (d) The correlation between the expression of CTD-3080P12.3 and gamma
delta T cells as well as eosinophils. (e) The correlation between the expression of EMX2OS and gamma delta T cells as well as eosinophils.
(f) The correlation between the expression of LINC00645 and CD8+ T cells as well as resting dendritic cells. CIBERSORT: cell type
identification by estimating relative subsets of RNA transcripts; AR: acute rejection.
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role in immune-related aspects. LINC00645, a long inter-
genic noncoding RNA 645 located in human chromosome
14, is firstly discovered and found to be oncogenic in endo-
metrial cancer by the team of Chen et al. [55]. They found
that it was upregulated in endometrial cancer through
sequencing the lncRNA transcriptome. Besides, it was stud-
ied thoroughly by Li et al., who explored that LINC00645
plays an oncogenic role in glioma through LINC00645/-
miR-205-3p/ZEB1 signaling axis triggered by the TGF-β sig-
naling pathway [56]. However, the action of LINC00645 in

renal allograft rejection or immune response remains
unclear. Based on our findings, the low expression of
LINC00645 is associated with the high infiltration of CD8+

T cells and low infiltration of resting dendritic cells. In grafts
undergoing acute rejection, invading CD8+ T cells with
immunologic specificity for the allograft can release perforin
and granzymes A and B to perforate target cell membrane
and induce caspase-mediated apoptosis of tubular cells
[57]. Dendritic cells are critical in the induction of T cell
immunity and in peripheral T cell tolerance. It has been
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Figure 8: GSEA of the 4 lncRNAs. (a) ATP1A1-AS1. (b) CTD-3080P12.3. (c) EMX2OS. (d) LINC00645. GSEA: gene set enrichment analysis.
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reported that resting dendritic cells can induce peripheral
CD8+ T cells tolerance through PD-1 and CTLA-4 [58, 59].
These discoveries verify what we found for LINC00645,
whose low expression will probably whittle the tolerance of
CD8+ T cells induced by resting dendritic cells and facilitate
AR of renal allograft. Besides, our GSEA revealed that “allo-
graft rejection” was enriched by the low expression of
LINC00645, while the JAK-STAT signaling pathway and
p53 signaling pathway are also enriched, which suggests that
it is quite possible to play an important role in AR through
these important signaling pathways. From the above, the
researches about specific function and mechanism of these
four novel lncRNAs remain limited. Our findings provide
some important insights for the lncRNAs and more basic
researches are recommended to be achieved to investigate
their precise role in acute rejection of renal allograft.

After identifying the optimal 4 lncRNAs, logistic regres-
sion analysis showed their significant association with acute
kidney transplant rejection and their AUC values of ROC
analysis interpreted that they have good sensitivity and spec-
ificity for differentiating AR of renal allograft (Table 3).
Besides, we also constructed a prognosis-related risk score
system on the foundation of the 4 lncRNAs to predict the risk
of renal graft loss after biopsy. Through calculating the risk
score of transplant patients using the formula we provided
in the result, the patients in the training set who were clas-
sified into the high-risk group were easier to get renal allo-
graft loss than those into the low-risk group. The same
significant result was revealed in the testing set. Time-
dependent ROC analysis of the risk score system in the
training set and the testing set both illustrated the good per-
formance in prediction of 1-, 2-, and 3-year graft survival
after biopsy. Therefore, our 4-lncRNA based model may
help predict the graft survival outcome of kidney transplant
patients and provide the reference for therapeutic guidance
in AR of kidney transplant.

However, several limitations should be acknowledged in
our studies. Firstly, to the best of our knowledge, there is only
one GEO dataset (GSE21374 dataset) which contains sur-
vival time of renal graft after biopsy. Thus, in our study, we
divided this dataset randomly into the training set and the
testing set. The testing set was used to verify the performance
of the model screened from the training set. More indepen-
dent datasets are needed for validation. Secondly, the datasets
we used in our study are mainly from North America, which
suggests that more public datasets should get involved to
eliminate the geographical difference. Thirdly, the optimal
biomarkers for AR and graft loss in our study were screened
through mining the public dataset merely. The essential clin-
ical parameters supplied by these public datasets are
restricted and it is not able to investigate the potential influ-
ence of the clinical parameters on the four lncRNAs and
the model. Probably in the future we will plan to collect our
own data exploring the effects to elaborate the model.
According to what we have found, it is still valuable and cru-
cial to conduct the functional experiment in the future to
explore the potential mechanism of these ideal four lncRNAs
in acute rejection, which probably assists its transition from
experimental research to clinical implementation.

5. Conclusion

In summary, we used high-throughput microarray datasets
to identify 4 novel lncRNAs as biomarkers for AR of renal
allograft and construct a lncRNA-based risk score model to
predict the risk of graft loss after renal transplantation, which
probably aids clinicians in choosing or adjusting therapy of
immunosuppression after renal transplantation. Besides,
functional enrichment analysis and allograft-infiltrating
immune cell analysis revealed the value and importance of
the exploring experiment in these 4 novel lncRNAs.
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