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Abstract

Aims Models predicting mortality in heart failure (HF) patients are often limited with regard to performance and
applicability. The aim of this study was to develop a reliable algorithm to compute expected in-hospital mortality rates in
HF cohorts on a population level based on administrative data comparing regression analysis with different machine learning
(ML) models.
Methods and results Inpatient cases with primary International Statistical Classification of Diseases and Related Health
Problems (ICD-10) encoded discharge diagnosis of HF non-electively admitted to 86 German Helios hospitals between 1
January 2016 and 31 December 2018 were identified. The dataset was randomly split 75%/25% for model development
and testing. Highly unbalanced variables were removed. Four ML algorithms were applied, and all algorithms were tuned using
a grid search with multiple repetitions. Model performance was evaluated by computing receiver operating characteristic
areas under the curve. In total, 59 125 cases (69.8% aged 75 years or older, 51.9% female) were investigated, and
in-hospital mortality was 6.20%. Areas under the curve of all ML algorithms outperformed regression analysis in the testing
dataset with values of 0.829 [95% confidence interval (CI) 0.814–0.843] for logistic regression, 0.875 (95% CI 0.863–0.886)
for random forest, 0.882 (95% CI 0.871–0.893) for gradient boosting machine, 0.866 (95% CI 0.854–0.878) for single-layer
neural networks, and 0.882 (95% CI 0.872–0.893) for extreme gradient boosting. Brier scores demonstrated a good calibration
especially of the latter three models.
Conclusions We introduced reliable models to calculate expected in-hospital mortality based only on administrative routine
data using ML algorithms. A broad application could supplement quality measurement programs and therefore improve future
HF patient care.
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Introduction

Heart failure (HF) is still of highest socio-economic relevance
and despite increased survival rates one leading cause of over-
all mortality and hospitalizations.1–3 To further improve HF
treatment calls for comparative value-based patient care pro-
grams and standardized quality metrics.4,5 Numerous scores
predicting HF-related mortality or hospital readmissions have

been introduced but were still rarely used in clinical practice
due to modest performance, insufficient applicability, or lack-
ing external validation.6 Moreover, many prediction tools
were developed using highly selected datasets collected for
other purposes that hinder generalizability.7 The evaluation
of large datasets and the application of machine learning
(ML) algorithms have the potential to enhance model perfor-
mance, with already encouraging results in the context of HF
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hospitalization.8–10 Most existing tools predicting mortality
either failed to implement ML models or required variables
that were not easily available on a population level.6,11 This
is, however, relevant in order to retrospectively compare
disease-related outcomes between cohorts and health care
facilities in a standardized way rather than on an individual
basis at hospital admission to evaluate influencing factors
and facilitate quality care management. Therefore, the aim
of this study was to develop algorithms computing expected
in-hospital mortality rates in HF patient cohorts using a na-
tionwide, real-world administrative dataset that also includes
variables that could only be gathered retrospectively. Doing
so, we compared different ML methods with each other and
with a classic regression approach regarding their predictive
performance.

Methods

Data source

Administrative data of 86 Helios hospitals in Germany were
retrospectively analysed. Patient cases with inpatient treat-
ment within 1 January 2016 to 31 December 2018 and a
main discharge diagnosis of HF defined in accordance to
prior publications were identified.12 Types of admission
and discharge were gathered from administrative data,
and only cases with both urgent (non-elective) hospital ad-
mission and hospital discharge type other than hospital
transfer were further studied. In-hospital death as the out-
come of interest has been defined based on hospital dis-
charge type. Discharge diagnoses were encoded by the
International Statistical Classification of Diseases and Re-
lated Health Problems [ICD-10-GM (German Modification)].
Relevant co-morbidities were identified from encoded sec-
ondary diagnoses within hospital discharge data according
to the Elixhauser co-morbidity score as defined previously
without a distinction being made between pre-existing co-
morbidities and new medical conditions.13,14 Cases with
missing information for New York Heart Association (NYHA)
class (n = 5315 cases) were discarded due to adequate cal-
ibration of ML models. Detailed information regarding used
ICD codes and a comparison of datasets with and without
the exclusion of cases with missing NYHA class is provided
in the Supporting Information, Tables S1–S3. The investiga-
tion conforms with the principles outlined in the Declara-
tion of Helsinki. Given the anonymized data analysis of
administrative data, ethics committee approval was deter-
mined not to be required in accordance with German law
[Professional Code for Physicians (Saxony) §15]. Due to
the retrospective study of anonymized data, informed con-
sent has not been obtained.

Statistical analysis

All analyses were performed within the R environment for
statistical computing (Version 3.6.1, 64-bit build).15 The
dataset has been randomly split using 75% for model devel-
opment and 25% for model testing. Within the development
dataset, models were evaluated using three concurrent
variable settings with all of them implementing baseline
variables (age, gender, admission year, NYHA class, length of
hospital stay, and length of intensive care unit stay) and each
one set containing Elixhauser co-morbidities as separate var-
iables, Elixhauser weighted co-morbidity scores (Elixhauser
score), or Elixhauser weighted co-morbidity score quintiles
(Elixhauser index). Because no cross-linking of patients’ cases
between different hospitals was possible, no variables based
on historic information (e.g. previous HF-associated hospital-
izations) were used. Variables that are only known at hospital
discharge (e.g. length of stay) were included because the aim
of this project was to develop models for comparing expected
and observed mortality on a population basis under different
circumstances rather than creating a tool for individual
outcome prediction. Variables being highly sparse and
unbalanced (near-zero variance) were removed prior to the
analysis. Near-zero variance variables were defined as vari-
ables with a per cent of unique values (number of unique
value/number of samples * 100) below 10% and a frequency
ratio (frequency of most prevalent value over the second
most prevalent value) over 95/5. All variables were scaled
and centred before the analyses.

The three development data subsets were evaluated using
five algorithms: logistic regression [generalized linear models
(GLM)], random forest (RF), gradient boosting machine
(GBM), single-layer neural network (NNET), and extreme gra-
dient boosting (XGBoost). Even though ML algorithms can
implicitly take into account interactions between variables
and non-linearity, we decided not to specify interactions or
non-linear effects in the GLM for several reasons: (i) to keep
the model specification as simple as possible for comprehen-
sibility, (ii) to reflect the approaches already existing in the lit-
erature, and (iii) because non-linearity was not expected from
a clinical perspective.16,17 The algorithms were tuned using a
grid search with a k-fold approach, using three repetitions of
10-fold each. During each repetition, the training dataset
was split into 10 equal chunks, and each model was run with
9/10 of the training dataset for every combination of
hyper-parameters and evaluated on the remaining 1/10. This
has been performed 10 times for each repetition so that each
10th was used once for validation. After all iterations, the
hyper-parameter values maximizing the area under the
precision-recall curve (AUPRC) during cross-validation pro-
cess were selected, and the model was run on the whole
training set. To evaluate the performance of the models
trained, the values predicted during the cross-validation pro-
cess were used to compute receiver operating characteristic
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(ROC) areas under the curve (AUCs), and the model with the
highest AUPRC was considered the best. Accuracy has not
been chosen because of the outcome imbalance (less than
10% of the admissions resulted in in-hospital mortality). The
relative importance of variables was assessed after the train-
ing, and values were scaled to 100 in order to make them
comparable across algorithms. The methods used to assess
the relative importance of variable were algorithm specific
(GLM: absolute value of the t-statistic; RF: average across all
trees of the difference between out-of-bag accuracy and
out-of-bag accuracy after prediction permutation, normalized
by the standard error; GBM and XGBoost: sum across all
boosting iteration of the reduction in squared error attrib-
uted to a variable in each split based on this variable; and
NNET: combination of the absolute values of connecting
weights).

Two final steps were carried out before the final evaluation
of each model with the test dataset:

• The algorithm not based on likelihood or non-linear proce-
dure approximated probabilities only, and hence, the prob-
abilities had to be recalibrated. Here, we trained a logistic
generalized additive model to be monotonically increasing,
predicting the outcome with the probabilities computed
by the initial model using the training set. We then derive
probabilities from the test set with our initial algorithm
and scale these probabilities with generalized additive
model.18,19 Improvement or degradation of the prediction
with the recalibration was estimated with the Brier score.

• Due to high outcome imbalances, expected mortality prob-
abilities were likely to be low and the classification thresh-
old had to be changed (i.e. the threshold above which an
event is classified positive). Here, threshold has been cho-
sen based on the ROC curve, selecting the threshold that
maximizes the F1 statistic.

Using the probabilities predicted within the test data and
the optimal threshold, the predictive abilities of each algo-
rithm were assessed by ROC, the precision-recall curve, cali-
bration-in-the-large (overall expected and observed
mortality rate), weak calibration (intercept and slope of the
calibration curve), calibration plots, and AUCs.20 A continuous
net reclassification improvement index has been computed
comparing GLM with each ML algorithm in order to examine
differences between model performance in addition to the
comparison of the aforementioned metrices with values
above zero indicating superiority.

Results

We included 59 125 patient cases from 69 German Helios
hospitals into our analysis. The majority of patients were

75 years or older (69.8%), 48.1% were male, and most pa-
tients were highly symptomatic with 42.0% and 47.4% pre-
senting with NYHA classes III and IV, respectively. In-hospital
mortality was 6.20% overall. Patient cohorts used for model
training and model testing were well balanced with regard
to age, gender, NYHA class, and Elixhauser co-morbidities.
Baseline characteristics as well as a comparison of training
and testing dataset are summarized in the Supporting Infor-
mation, Table S4. In univariable regression analysis, higher
age, longer stay at the intensive care unit, male sex, higher
NYHA class, and several variables from the Elixhauser
co-morbidity score were predictors of in-hospital mortality
(Table 1).

Model training

During the training process, the hyper-parameters of each al-
gorithm (except for GLM) were tuned keeping the following
values (three values are specified for variable sets containing
the Elixhauser co-morbidities, the Elixhauser score, or the
Elixhauser index):

• RF: number of variables randomly selected at each split = 3/
2/2, number of trees = 500;

• GBM: number of trees = 300; maximum depth = 3, learning
rate = 0.1, minimum number of observations in each
node = 2;

• NNET: number of units in the hidden layer = 8/11/11,
learning rate = 0.6/0.4/0.3; and

• XGBoost: maximum number of boosting iterations = 100,
maximum depth = 5; learning rate = 0.1, minimum loss re-
duction = 0.2; proportion of columns sampled per
tree = 0.5; minimum child weight = 5; proportion of rows
sampled per tree = 0.8.

Comparing the three aforementioned variable sets, ROC
AUCs for the GLM were 0.820, 0.812, and 0.809. AUCs for
all ML models were higher including RF (0.858, 0.858, and
0.857), GBM (0.867, 0.863, and 0.863), NNET (0.859, 0.859,
and 0.858), and XGBoost (0.867, 0.865, and 0.863). For fur-
ther model testing, the variable set containing the single
Elixhauser co-morbidities was used because the correspond-
ing models showed similar or superior ROC AUC values
compared with both other variable sets in all models. Specific
variable importance values for the baseline variables and
Elixhauser co-morbidities are listed in the Supporting
Information, Table S5.

Model testing

All ML models performed better than GLM with respect to
the ROC AUC. Within ML models, GBM and XGBoost showed
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the highest ROC AUC values, but 95% confidence intervals
(CIs) overlapped with those of RF and NNET. In detail, AUCs
were 0.829 (95% CI 0.814–0.843) for GLM, 0.875 (95% CI
0.863–0.886) for RF, 0.882 (95% CI 0.871–0.893) for GBM,
0.866 (95% CI 0.854–0.878) for NNET, and 0.882 (95% CI
0.872–0.893) for XGBoost. This was confirmed by net reclas-
sification improvement index calculation for the comparison
of GLM with the different ML models: GLM vs. RF 0.372
(95% CI 0.306–0.438, P < 0.001), GLM vs. GBM 0.469 (95%
CI 0.404–0.534, P < 0.001), GLM vs. NNET 0.569 (95% CI
0.504–0.634, P < 0.001), and GLM vs. XGBoost 0.685
(0.621–0.749, P < 0.001). Corresponding AUPRCs were
0.309 (95% CI 0.280–0.339), 0.456 (95% CI 0.424–0.489),
0.476 (95% CI 0.444–0.508), 0.446 (95% CI 0.414–0.478),
and 0.477 (95% CI 0.445–0.509), respectively. Results of
AUPRCs are illustrated in Figure 1.

Calibration metrices are shown in Table 2, and calibration
plots are illustrated in Figure 2. Brier scores (uncalibrated)

were 0.050 for GLM, 0.045 for RF, 0.043 for both GBM and
XGBoost, and 0.044 for NNET. A recalibration of probabilities
did not improve Brier scores relevantly. Expected and
observed event rates were compared overall and within
subsets of different age groups and the year of admission
(Figure 3).

Discussion

With the present study, we showed that the calculation of
reliable models for the calculation of expected in-hospital
mortality rates on a population basis is possible by using
widely available administrative data only. Model perfor-
mance was improved when implementing ML algorithms
compared with a classic regression analysis, with GBM and
XGBoost providing the most encouraging results. These

Table 1 Event rates and univariable regression analysis results for in-hospital mortality

Variablea
Event rateb,c

[% (n/N)]

Univariable analysis

OR (95% CI) P-value

Age
<65 years 2.3 (175/7459)
65–74 years 3.7 (385/10 377) 1.60 (1.34–1.92) <0.001
>74 years 7.5 (3117/41 289) 3.39 (2.91–3.97) <0.001

Length of stay
<5 days 7.8 (1713/21 981)
5–9 days 3.8 (740/19 392) 0.47 (0.43–0.51) <0.001
>9 days 6.9 (1224/17 752) 0.88 (0.81–0.95) <0.001

Length of ICU stay
0 days 4.2 (2008/47 485)
>0 days 14.3 (1669/11 640) 3.79 (3.54–4.06) <0.001

NYHA class
NYHA class II 0.5 (24/5289)
NYHA class III vs. NYHA class I/II 2.2 (542/24 842) 4.89 (3.25–7.37) <0.001
NYHA class IV vs. NYHA class I/II 11.1 (3111/28 027) 27.4 (18.3–40.9) <0.001

Gender
Female 6.0 (1850/30 689)
Male 6.4 (1827/28 436) 1.07 (1.00–1.14) 0.046

Elixhauser co-morbidity score
Cardiac arrhythmias 6.6 (2451/36 921) 1.22 (1.13–1.31) <0.001
Chronic pulmonary disease 6.5 (754/11 515) 1.07 (0.99–1.16) 0.103
Chronic renal failure 6.7 (2495/37 250) 1.26 (1.17–1.35) <0.001
Deficiency anaemia 6.2 (197/3195) 0.99 (0.85–1.15) 0.898
Depression 5.1 (158/3121) 0.79 (0.68–0.94) 0.006
Diabetes, complicated 6.6 (864/13 028) 1.09 (1.01–1.18) 0.027
Diabetes, uncomplicated 5.9 (628/10 642) 0.93 (0.86–1.02) 0.134
Fluid and electrolyte disorders 10.9 (2010/18 504) 2.85 (2.66–3.05) <0.001
Hypertension, complicated 4.2 (1246/29 343) 0.50 (0.47–0.54) <0.001
Hypertension, uncomplicated 6.1 (1087/17 800) 0.97 (0.90–1.05) 0.458
Hypothyroidism 4.8 (381/7935) 0.73 (0.66–0.82) <0.001
Obesity 4.1 (567/13 759) 0.58 (0.53–0.64) <0.001
Peripheral vascular disease 7.2 (550/7633) 1.20 (1.09–1.32) <0.001
Pulmonary circulation disorder 6.2 (705/11 357) 0.99 (0.92–1.09) 0.955
Valvular heart disease 5.8 (1289/22 269) 0.89 (0.83–0.95) <0.001
Weight loss 15.3 (542/3548) 3.02 (2.73–3.33) <0.001

CI, confidence interval; ICU, intensive care unit; NYHA, New York Heart Association; OR, odds ratio.
aOnly variables after feature selection are shown.
bFor all variables, event rates and proportions of events/patients were given.
cFor all Elixhauser co-morbidities, event rates and proportions of events/patients were given for the group of present co-morbidity.
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kinds of models could be used in a second step to compute
a standardized mortality ratio for further scientific evalua-
tions and quality management programs by comparing tem-
poral or regional disparities between expected and observed
event rates in specific patient cohorts retrospectively,
which could also be interesting with respect to hospital
benchmarking.

To date, prediction tools for mortality in HF patients are
rarely used in routine practice outside clinical studies, both
overall and especially in the setting of mortality prediction
on a population level rather than on an individual basis.
This is most likely caused by either the lacking availability
of required variables on a population level or poor predic-
tive performance of less complex scores.6,11 Existing risk
stratification models for mortality of individual HF patients
(with most of them relating to long-term mortality risk)
showed a wide range with regard to C-statistics ranging
from 0.60 to 0.89 for different follow-up periods and HF
subgroups with all models with values >0.80 either using

data of laboratory results, clinical metrices, or medication
data except from one.11 Reflecting this fact, N-terminal
pro-brain natriuretic peptide, serum creatinine, blood urea
nitrogen, systolic blood pressure, heart rate, and left
ventricular ejection fraction are under the most commonly
reported variables used for patient-based outcome
prediction.6 However, implementing those or even more
disease-specific values did not result in a further improve-
ment of statistic performance neither in established HF risk
scores for long-term risk prediction nor in newly introduced
models.21–25 This is also true for common clinical risk
prediction models of individual in-hospital mortality in HF
patients.26,27 All of those prediction tools estimate the
individual, patient-based risk, which was not the intention
of our project, and referencing them is therefore not
meant to be as a comparison with our results. However,
it shows an existing conflict between variable availability
and model integration to a larger scale. Only two prior
studies solely focused on administrative data computing

Figure 1 Summarized areas under the precision-recall curve from the testing dataset for all investigated models. GBM, gradient boosting machine;
GLM, generalized linear models; NNET, single-layer neural network; RF, random forest; XGBoost, extreme gradient boosting.

Table 2 Calibration metrices for all investigated models within the test dataset

Calibration-in-the-large Calibration intercept Calibration slope

GLM 6.2% vs. 6.2% 0.00 (�0.068 to 0.074) 1.05 (0.981–1.111)
RF 6.2% vs. 6.4% �0.03 (�0.100 to 0.044) 1.35 (1.274–1.427)
GBM 6.2% vs. 6.4% �0.05 (�0.125 to 0.030) 1.06 (1.008–1.119)
NNET 6.2% vs. 6.3% �0.01 (�0.086 to 0.069) 1.01 (0.951–1.061)
XGBoost 6.2% vs. 6.3% �0.03 (�0.102 to 0.051) 1.10 (1.041–1.158)

GBM, gradient boosting machine; GLM, generalized linear models; NNET, single-layer neural network; RF, random forest; XGBoost, ex-
treme gradient boosting.
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Figure 3 Comparison of predicted and observed in-hospital mortality categorized by age and admission year. GBM, gradient boosting machine; GLM,
generalized linear models; NNET, single-layer neural network; RF, random forest; XGBoost, extreme gradient boosting.

Figure 2 Calibration plots from the testing dataset for all investigated models. GBM, gradient boosting machine; GLM, generalized linear models;
NNET, single-layer neural network; RF, random forest; XGBoost, extreme gradient boosting.
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overall acceptable AUCs of 0.72 to 0.78 with only one of
them predicting in-hospital mortality specifically.28,29

Nevertheless, a direct comparison with our models was
also not possible because several information included in
both referenced analyses were not available from our
dataset (medication use, number of prior HF-related
hospitalizations, ethnicity, and insurance information). The
observed event rate in our cohort was rather higher when
compared with the cohort of Lagu et al., which is likely to
influence the model quality in the development phase po-
tentially leading to higher AUCs. Differing baseline charac-
teristics including a higher proportion of patients older
than 75 years could be one explanation for higher
in-hospital mortality rates in our HF cohort. The better per-
formance of both our regression models and ML algorithms
when compared with the work of Desai and colleagues may
be linked to the comparatively low number of patients of
less than 10 000 cases in their database exceeded more
than six-fold by our cohort. Interestingly, they also analysed
different ML algorithms with GBM showing the best AUC
value but without a significant difference to a classic
regression model.28 Other studies examining ML methods
for mortality prediction reported of comparable or lower
AUC values but did so in either different patient cohorts
(both inpatients and outpatients) or investigating different
endpoints.8,21 RF and dynamic radius means were pre-
sented as the most reliable models, which differs from
our findings. However, the different subsets of imple-
mented variables as well as the already mentioned meth-
odological deviations should be major influencing factors.

When looking for other cardiovascular studies comparing
several ML methods for endpoint prediction aside from
mortality in HF, there are publications supporting different
models also investigated in our manuscript. In a recent analy-
sis of data from GARFIELD-AF and ORBIT-AF, predictive ability
of GBM and GLM was comparable whereas neural network
models had the lowest discriminatory power.30 In contrast,
another study propagated neural networks to be superior to
other ML methods under several circumstances with regard
to data diversity and density when predicting incident HF.31

Our results are in between showing no significant differences
between NNET and RF, GBM, or XGBoost but with a better
performance compared with GLM. Two other studies propa-
gated RF models to outperform established risk prediction
tools including GLM, which is in line with our findings.32,33

Nevertheless, both of them did not compare RF with other
ML algorithms, which would be of interest because values of
AUC and AUPRC were slightly worse for RF than those of
GBM and XGBoost in our calculations, even when not meeting
statistical significance. Lastly, in an Australian multicentre
analysis of almost 40 000 patients, several tested ML models
showed higher predictive abilities in comparison with classic
GLM in predicting in-hospital mortality following out-
of-hospital cardiac arrest, which could be transferred to our

findings.34 Whether an augmentation by data from electronic
medical records, especially clinical and lab data, has the
potential to further improve our models will be subject of
future research.28,35 However, one goal of our analysis was
the introduction of a reliable model, which can be reproduced
from widely available data.

Our models are not intended as mortality prediction tools
for individual patients resulting in therapy adaptations.
Rather, after future validation, it is conceivable that those
models could contribute to further scientific research as well
as quality management programs by the implementation of
risk-adjusted and therefore standardized calculation of
expected mortality rates in large HF cohorts comparing differ-
ent geographic regions, hospitals, or time periods. In a sec-
ond step, a broad integration is imaginable at least in the
context of quality management programs. Furthermore, the
impact of certain external factors such as the ongoing pan-
demic caused by SARS-CoV-2 on health care of HF patients
could be examined by comparing expected and observed
in-hospital mortality rates.

Limitations

Retrospectively collected data are widely considered to be of
inferior quality compared with datasets with a prospective
data assessment. Nevertheless, existing literature suggested
that data collection mode per se did not influence the dis-
criminatory power of the derived model.11 The analysis of
data derived from the Helios hospital network only could pos-
sibly result in a selection bias with respect to local differences
regarding socio-economic factors, ethnicity, and other fac-
tors. However, due to the size of our cohort and the distribu-
tion of Helios hospitals across Germany serving about 7–8%
of all German inpatient cases, we presume our database to
be representative. Moreover, standardized treatment
protocols within our hospital group may influence care
pathways and outcome. Nonetheless, this analysis includes
data from all hospital classes, including community hospitals
as well as tertiary or university centres, which should partly
alleviate the last-mentioned bias.

Our study analysed administrative data not being stored
for research interests but for remuneration reasons, which
could potentially affect the encoded information. Quality of
the results depends to a large extent on the correct encoding
of hospital discharge diagnoses.14,36 However, regarding the
main discharge diagnosis and the adequacy of hospitalization
as well as encoding, there is a continuous evaluation by reim-
bursement companies/health insurances, which supports the
assumption of overall valid information with respect to the
diagnoses and the appropriateness of the patient’s hospitali-
zation. Moreover, used ICD codes have been validated
internally using electronic medical records in previous works
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of this working group.12,37 Information regarding patients’
specific medical history, time of the onset of symptoms,
cardiac imaging, laboratory results, medication, and
treatment-related data was not available due to the type
and structure of the analysed database. In particular, NYHA
classification is influenced by the subjective assessment of
the treating physician, and the addition of more objective
criteria of disease severity is not possible when only using
administrative data. Moreover, information regarding prior
HF-related hospitalizations would have been likely to improve
the performance of our models. Finally, an external validation
of our models is required.

Conclusions

Machine learning algorithms are reliable metrics to calculate
expected in-hospital mortality rates in HF patients
outperforming regression analyses in a large, multicentre,
real-world administrative database. Identifying a model
based on widely available data with high predictive power
could supplement quality measurement programs and there-
fore improve future HF patient care.
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for training and testing dataset.
Table S5: Variable importance values for all tested models.
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