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Abstract

Japanese encephalitis virus (JEV) causes acute central nervous system (CNS) disease in humans, in whom the
clinical symptoms vary from febrile illness to meningitis and encephalitis. However, the mechanism of severe
encephalitis has not been fully elucidated. In this study, using a mouse model, we investigated the pathogenetic
mechanisms that correlate with fatal JEV infection. Following extraneural infection with the JaOArS982 strain of JEV,
infected mice exhibited clinical signs ranging from mild to fatal outcome. Comparison of the pathogenetic response
between severe and mild cases of JaOArS982-infected mice revealed increased levels of TNF-α in the brains of
severe cases. However, unexpectedly, the mortality rate of TNF-α KO mice was significantly increased compared
with that of WT mice, indicating that TNF-α plays a protective role against fatal infection. Interestingly, there were no
significant differences of viral load in the CNS between WT and TNF-α KO mice. However, exaggerated inflammatory
responses were observed in the CNS of TNF-α KO mice. Although these observations were also obtained in IL-10
KO mice, the mortality and enhanced inflammatory responses were more pronounced in TNF-α KO mice. Our
findings therefore provide the first evidence that TNF-α has an immunoregulatory effect on pro-inflammatory
cytokines in the CNS during JEV infection and consequently protects the animals from fatal disease. Thus, we
propose that the increased level of TNF-α in severe cases was the result of severe disease, and secondly that
immunopathological effects contribute to severe neuronal degeneration resulting in fatal disease. In future, further
elucidation of the immunoregulatory mechanism of TNF-α will be an important priority to enable the development of
effective treatment strategies for Japanese encephalitis.
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Introduction

Japanese encephalitis virus (JEV), which belongs to the
genus Flavivirus in the family Flaviviridae, is a causative agent
of acute central nervous system (CNS) disease in humans and
domestic animals [1]. Pigs and birds are amplifiers or reservoir
hosts of JEV in the environment, providing a source of virus for
blood feeding Culex spp. mosquitoes [1] which may
subsequently feed on and infect humans. Japanese
encephalitis (JE) is a major public health issue in Asia and the
Asia-Pacific region [1,2]. Annually, 30,000-50,000 cases and

10,000-15,000 deaths are reported and more than 50% of
survivors may suffer from neurological disability [2].

Human infections are largely subclinical with a rate varying
from 1:25 to 1:1000 [3,4]. The clinical symptoms vary from mild
to severe disease including a non-specific febrile illness,
meningitis, encephalitis and meningoencephalitis, the latter
being observed in the most severe cases [4–6]. . Following an
incubation period of 6-16 days, patients may develop fever,
headache, vomiting, rigor and nausea [1,4]. Subsequently,
encephalitic cases develop neurological symptoms including
seizure, tremor, photophobia, decreased sensorium,
generalized and localized paresis, movement disorder [4,6].
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Signs of meningeal irritation such as neck stiffness may be
present. These clinical features are not unique to JE, thus,
laboratory diagnosis is required to distinguish it from other
neurological disorders.

The variety of disease symptoms and the prognosis in JE
cases appears to be dependent on complex interactions
between viral and host factors [4]. In particular, host factors
appear to be important determinants of disease severity and a
number of specific proinflammatory cytokines and chemokines
are observed in severe JE cases [7]. For example, it has been
demonstrated that increased levels of TNF-α in cerebrospinal
fluid (CSF) and serum correlated with cases of severe disease
[8]. However, how these biological cytokines and chemokines
contribute to the severe disease has not been fully elucidated.
Therefore, understanding the mechanism of the specific host
response in severe cases is an important priority to develop a
specific treatment for the infectious disease.

The laboratory mouse model is commonly employed to study
the CNS pathology induced by encephalitic flaviviruses [9–11].
In common with human cases, mice develop relatively similar
neurological dysfunction and the pathologic changes in infected
mouse brains are similar to those observed in human cases
[6,9]. Although extraneural infection frequently does not result
in detectable viremia or virus burden in mice, it is believed that
initial virus replication occurs in dendritic cells (DCs) such as
Langerhans cells at the site of infection, and the infected DCs
migrate to draining lymph nodes [6]. Virus then invades the
CNS and hosts develop CNS disease, although the mechanism
by which the blood–brain-barrier is crossed is not completely
understood [12–18].

CNS pathology is the consequence of viral infection of the
affected cells and the resulting inflammatory responses in the
CNS. Flavivirus variants may induce different degrees of
pathology, however, the host immune response is likely to be a
more critical determinant of clinical outcome [19]. Inflammatory
responses mainly contribute to virus clearance and recovery
from fatal disease. For example, CD8+ T cells are reported to
have an important function in controlling virus infection [20–25],
although one report showed only a subsidiary contribution of
CD8+ T cells in JEV infection [26]. On the other hand, in recent
studies it was suggested that immunopathological mechanisms
may contribute to the severity of outcome following some
encephalitic flavivirus infections [19,27–30]. For example, it
was reported that CD8+ T cell function enhances pathogenicity
during WNV and MVEV infections [29,30]. Furthermore, in
Tick-borne encephalitis virus (TBEV)-infected mice the
inflammatory response was reported to contribute significantly
to the fatal outcome [28].

Microglia are the resident macrophages in the brain and are
activated in response to a number of different pathological
states [31]. Following JEV infection, activated microglia play a
significant role in the development of pathology by producing
pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α
[32,33]. Although these pro-inflammatory cytokines have dual
roles, acting both as protectors and degenerators of neurons
[31], TNF-α is believed to be one of the key factors that
mediate immunopathology in the CNS during encephalitic
flavivirus infection. For example, it was suggested that TNF-α

directly mediates neuronal apoptosis by the engagement of
TNF receptor 1 (TNFR1), the TNFR-associated death domain
(TRADD) and neuronal death contributes to glial activation and
subsequent neuroinflammation [31,34,35]. It was also shown
that TNF-α and IL-1β mediate RANTES gene expression for
the recruitment of immune cells and glutamate released by
JEV-infected microglia, involves TNF-α signaling and
contributes to neuronal death [36,37]. On the other hand, other
studies have shown that TNF-α has a protective role against
WNV infections and restricts WNV pathogenesis by promoting
trafficking of mononuclear leukocytes into the CNS [38,39].
Furthermore, neuronal TNF-α expression during WNV
encephalitis may be an adaptive response to diminish
CXCL10-induced death [40]. At this stage of our knowledge,
therefore, the precise role of the TNF-α response in
encephalitic flaviviral pathogenesis remains to be clarified.

Immunomodulatory cytokines also affect disease outcome of
encephalitic flavivirus infection. IL-10 is reported to have an
effect on immunoregulation [41]. It was suggested that IL-10
mediates protection from acute encephalitis and plays a central
role in determining the clinical outcome of JEV infection [42].
Insufficient anti-inflammatory cytokine production of IL-4 and
IL-10 in the brain is associated with increased tissue pathology
[43]. IL-10 displays a neuroprotective function during JEV
infection and regulates deleterious effects of proinflammatory
cytokines [44]. Furthermore, an experiment using IL-10 KO
mice showed that IL-10 signaling plays a negative role in
immunity against WNV infection and blockade of IL-10
signaling helps to control viral infection [45]. Thus, the precise
role of the IL-10 response following encephalitic flavivirus
infection also remains to be resolved.

In general, evaluation of virus pathogenicity and virulence in
mouse models utilizes either the subcutaneous or intradermal
route of infection. This is considered to be a reproducible
model of natural human infections following the bite of an
infected mosquito or tick and in the past, death was used as an
index of pathogenesis [46]. However, it is known that peripheral
infections with some strains of encephalitic flaviviruses do not
exhibit normal dose response curves based on mortality.
Although this was first reported in the 1940’s [47], the reason
for these apparent discrepancies were not fully understood. We
previously showed that the Oshima strain of TBEV caused
dose independent mortality and the fatality rate did not
increase more than 50% with increasing virus challenge doses
from 102 to 106 plaque forming unit (pfu) [48]. In our study of
TBEV, we suggested that the variation of fatal outcome in
individual mice appeared to be due to variation in individual
host responses [48].

The purpose of this study was to investigate the host factors
that influence disease severity following JEV infection in a
mouse model. In particular, we focused on the variation of
disease outcome in individual mice following extraneural
infection with JEV. We first compared the pathogenicity of two
JEV strains, which cause either dose-dependent or dose-
independent mortality responses. We next compared severe or
mild cases of mice infected with JEV exhibiting dose-
independent mortality and investigated the specific host
responses such as TNF-α and IL-10 expression in the CNS.

TNF-α Response Following JEV Infection
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We also examined the roles of the specific cytokines observed
in severe cases using appropriate knockout (KO) mice.

Materials and Methods

Ethics statement
The animal experiments were performed in accordance with

the recommendations in the Fundamental Guidelines for
Proper Conduct of Animal Experiment and Related Activities in
Academic Research Institutions under the jurisdiction of the
Ministry of Education, Culture, Sports, Science and
Technology. The experimental protocols were approved by the
Animal Care and Use Committee of the Nagasaki University
(approval number: 091130-2-7/0912080807-7).

Virus and cells
The JaTH160 strain of JEV was kindly provided by Tomohiko

Takasaki, National Institute of Infectious Disease, Japan.
Stocks of JEV JaOArS982 and JaTH160 viruses were obtained
from cell culture medium of baby hamster kidney (BHK) cells
infected with viruses previously prepared in suckling mouse
brains [49]. The BHK cells were maintained in Eagle’s Minimal
Essential Medium (EMEM; Nissui Pharmaceutical Co.)
containing 8% fetal calf serum (FCS) and antibiotics.

Mice
C57BL/6j (B6) mice were purchased from Japan SLC

Corporation. B6 background IL-10-/- mice were purchased from
Jackson Laboratory, USA [50]. TNF -/- mice were kindly
provided by Yoichiro Iwakura, Research Institute for Biomedical
Sciences, Tokyo University of Science [51]. These mice were
mated in the facility of Nagasaki University. Five to six week old
mice were subcutaneously inoculated with a range of 100-106

pfu of JEV diluted in EMEM containing 2% FCS. Mock infected
mice were inoculated with EMEM from the supernatant medium
of BHK cells. Mice were weighed daily and observed for clinical
signs including behavioral symptoms and signs of paralysis.
Thirteen days post infection (pi), dying and recovering mice
were distinguished by the degree of weight ratio, and namely
mice exhibiting more than 25% or less than 10% weight loss
were recognized as dying or recovering mice, respectively.

Virus titration in tissues
Following subcutaneous inoculation with 104 pfu of JEV,

mice were euthanized and blood, spleen, brain and spinal cord
were collected following perfusion with cold phosphate-buffered
saline (PBS). Brains were dissected to provide four separate
fractions, ie the brain cortex, thalamus, cerebellum and
brainstem. Until they were used, these tissues were stored at
-80° C. Each tissue was homogenized in ten volumes of PBS
containing 10% FCS and diluted with EMEM with 2% FCS.
Virus titers were determined by plaque forming assays using
BHK cells and were expressed as pfu/g tissue [48].

Quantitative estimation of the expression of
inflammatory cytokines in brains and spleens

Mouse brains and spleens were collected after perfusion with
cold PBS. Freshly isolated brains and spleens were
immediately immersed in RNAlater (Ambion). Total RNA was
extracted using RNeasy Lipid Tissue Mini Kit (Qiagen)
according to the manufacturer’s instructions. The expression
levels of cytokines were measured by real time-PCR as
demonstrated previously [52]. The copy numbers were
calculated as a ratio of the copy numbers of internal control
glyceraldehyde-3-phosphate dehydrogenate.

Histopathological examination
Mice inoculated with JEV were anesthetized and perfused

with 10% phosphate-buffered formalin. Fixed tissues were
routinely embedded in paraffin, sectioned, and stained with
hematoxylin and eosin. Immunohistochemical detection of the
JEV antigens was performed as described previously [53].
Rabbit polyclonal antibody against E protein was used to detect
JEV antigens.

Determination of virus sequences recovered from
severe and mild cases of JaOArS982-infected mice

Brains were collected from four mice in each group of dying
and recovering mice at 13 days pi. The brains were
homogenized and passaged in BHK cells for 2 days. Viral RNA
was extracted from the supernatant medium of the BHK cells
using QIAquick PCR Purification Kit (QIAGEN) according to
manufacturer’s protocol. Reverse transcription was performed
by using Superscript III reverse transcriptase (Invitrogen) and
random hexamers. PCR was performed to cover the whole
genome sequence using TAKARA Ex Taq DNA polymerase
(TAKARA BIO Inc.). The cycle sequencing reaction was
performed by using BigDye Terminator v 3.1 Cycle Sequencing
kit (Life Technologies) and the DNA sequence was determined
with Applied Biosystems 3730 DNA Analyzer (Life
Technologies).

Estimations of hormones and cytokine levels in the
serum

Serum samples were collected from infected mice. The
levels in the serum were measured by using competitive
enzyme immunoassay and sandwich enzyme-linked
immunosorbent assay kits for corticosterone (AssayPro), TNF-
α and IL-10, IL-12 (Endogen) according to the manufacturer’s
instructions.

Recovery of leukocytes from brain and thymus
Recovery of leukocytes was performed by applying

previously described methods [22,54]. Briefly, after perfusion
with cold PBS, brains and thymus were removed and placed on
ice in RPMI containing 5% FCS (Nissui Pharmaceutical Co.).
Brains were strained and homogenized gently with a 70 µm cell
strainer (BD Biosciences). After washing with RPMI, the cell
suspension was layered onto a 70% and 30% Percoll gradient
(GE Healthcare Bio-sciences AB) and centrifuged at 800 × g
for 45 min at 23° C. The leukocytes were collected from
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between the 70% and 30% interface. Thymocytes and
splenocytes were also recovered from these mice. Cells were
strained with a 70 µm cell strainer (BD Biosciences) and lysed
with RBC lysis buffer (Sigma-Aldrich). After washing, cells were
resuspended in RPMI medium. Isolated cells were counted and
kept on ice until the staining procedure.

Flow cytometric analysis of cell-surface antigens
Brain leukocytes were washed and blocked with Rat Anti-

Mouse CD16/32 (Fc Receptor) (Beckman Coulter) in FACS
buffer (PBS containing 0.1% BSA and 0.1% sodium azide).
Cells were stained with a mixture of different fluorescent-
labeled antibodies directed at surface phenotypic markers,
CD45-FITC, F4/80-PE, NK1.1-PerCP-Cy5.5, CD4-PE-Cy7,
CD8-APC, CD19-Alexa Fluor 700, CD3e-eFluor 450 (Beckman
Coulter) and then fixed with 4% paraformaldehyde overnight.
The stained cells were analyzed by Galios™ flow cytometer
(Beckman Coulter). Leukocytes were recognized by
characteristic size (forward scatter), granularity (side scatter)
and CD45 expression. Thymocytes were recognized by their
characteristic size and CD4+CD8+ double positive cells were
recognized by the expression of CD4+ and CD8+.

Statistical analyses
Kruskal-Wallis test, and Mann Whitney test were used for

statistical analysis to assess the significant differences of viral
loads, expression levels of cytokines, and numbers of
leukocytes. Gehan-Breslow-Wilcoxon Test was performed to
assess the survival curves of JEV-infected mice groups. P
value <0.05 was considered statistically significant.

Results

Mortality of JaOArS982- and JaTH160-infected mice
In this study, we used inbred B6 mice to minimize the

influence of the genetic background of individuals.
Subcutaneous infection with JaOArS982 did not lead to a
normal dose dependent curve of mortality (Figure 1A). The
mortality rate was not significantly increased when challenge
doses ranged from 102 to 106 pfu per mouse, although the
infectivity in the mice increased sequentially (Figure 1A). On
the other hand, JaTH160 infection exhibited a dose dependent
mortality curve and the infectivity in the mice was consistent
with the mortality (Figure 1A). These observations indicate that
individual JaOArS982-infected mice exhibit a variable
prognosis independent of virus challenge dose, whereas all
JaTH160-infected mice died.

Because a virus challenge dose of 104 pfu of either
JaOArS982 or JaTH160 induced 100% infectivity (Figure 1A),
this dose was used for all further investigations to compare the
pathogenesis. JaOArS982-infected mice did not start to die
until 13 days pi and the mean survival time (MST) was 15.5 ±
2.56 days (Figure 1B). Mice that died exhibited generalized
clinical signs involving slowness in movement, ataxia,
piloerection and anorexia. Continuous weight loss was
observed in mice that died, whereas survivors regained weight
from 13 to 15 days pi onwards (Figure 1C). On the other hand,

JaTH160-infected mice started to die at 9 days pi and all mice
had died by 15 days pi (Figure 1B) following continuous weight
loss (Figure 1C). MST was 12.8 ± 0.89 days and was
significantly shorter than that of JaOArS982-infected mice
(Mann Whitney test, P=0.0173). Thus, we hypothesized that
the cause of fatal disease was different between JaOArS982-
and JaTH160-infected mice.

Comparison of viral loads and inflammatory responses
in the CNS of JaOArS982- and JaTH160-infected mice

Infectious virus was detectable in the brain cortex and
thalamus at 5 days pi in both JaOArS982 and JaTH160-
infected mice without significant difference in titer (Figure 1D).
However, at 9 days pi viral loads of JaTH160-infected mice
were significantly higher than those of JaOArS982-infected
mice in every region of the brain cortex, thalamus, brainstem,
cerebellum and spinal cord (Figure 1D).

It is important to note that viral load in the brain cortex was
higher than in other regions of the CNS in both JaOArS982 and
JaTH160-infected mice (Figure 1D), indicating that the brain
cortex is the main target region for JEV infection. Thus, we next
examined the cytokine levels in the brain cortex to compare the
immune responses. The levels of TNF-α, IFN-γ, IL-2 and IL-10,
but not IL-4 and IL-5 were significantly higher in JaTH160-
infected mice than in JaOArS982-infected mice (Figure 1E,
Figure S1A). The cytokine levels of TNF-α, IFN-γ, IL-2 and
IL-10 were very low or undetectable in mock-infected mice and
in infected mice at 5 days pi (Figure 1E). Corresponding to the
viral loads, histopathological examination showed that a large
number of neurons displayed JEV antigens and severe cuffing
was observed in the brain cortex of JaTH160-infected mice at 9
day pi (Figure 1F). JaOArS982-infected mice also exhibited
JEV antigen-positive neurons and cuffing, but at lower levels
than those observed in JaTH160-infected mice (Figure 1F).
Mock-infected mice showed no JEV antigen-positive neurons
or inflammatory reactions (Figure 1F). These results confirm
that during the early phase of infection, JaTH160-infected mice
developed severe encephalitis with extensive neuronal
infection which contrasts with the less extensive neuronal
infection induced in JaOArS982-infected mice.

Infectious virus was either not detectable or very limited in
spleens (data not shown). Interestingly, the levels of TNF-α and
IL-2 in spleens were up-regulated in JaOArS982-infected mice
at 5 and 9 days pi, however, they were not elevated in
JaTH160-infected mice (Figure S1B). The levels of IFN-γ, IL-4,
IL-5 and IL-10 were not significantly different between
JaOArS982 and JaTH160-infected mice (Figure S1B). These
observations suggest that i) inflammatory responses in
peripheral organs were different from those in the CNS, and ii)
JaTH160 infection induced no significant expression of TNF-α
in the spleen.

JaOArS982 virus quasispecies in the brain do not
contribute to the divergence of disease severity

In view of the observation that individual mice displayed
different disease progress when infected with JaOArS982
under identical conditions, we attempted to identify specific
factors relating to disease severity outcome. Initially, we
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Figure 1.  Mortality and pathogenicity of B6 mice subcutaneously infected with JaOArS982 and JaTH160.  (A) Mortality and
infectivity rates of B6 mice (n=10) following subcutaneous infections with 100, 102, 104 and 106 pfu of JaOArS982 and JaTH160.
Mice were recorded for 21 days and no mice died after 21 days. Infectivity was determined by anti-JEV IgG antibody seroconversion
for more than 1:1000 of IgG ELISA titer. (B and C) B6 mice were subcutaneously infected with 104 pfu of JaOArS982 (n=30) and
JaTH160 (n=15).
Survival curves P: Gehan-Breslow-Wilcoxon Test. (C) The averages ratio of weight change of living mice at the time points
compared with those of day 0 following subcutaneous infections with 104 pfu of JaOArS982 (n=30) and JaTH160 (n=15). Error bars
represent the standard deviations. (D) Viral loads in distinct regions of the CNS following subcutaneous infections with 104 pfu of
JaOArS982 (Day 5: n=5, Day 9: n=15) and JaTH160 (Day 5: n=5, Day 9: n=8). P: Mann Whitney test. (E) mRNA levels of TNF-α,
IFNγ, IL-2 and IL-10 quantified by real-time PCR in the brain cortex of B6 mice infected with 104 pfu of JaOArS982 (Day 5: n=5, Day
9: n=12), JaTH160 (Day 5: n=5, Day 9: n=5) and mock (n=8). P: Mann Whitney test. (F) Histopathological features of brain cortex in
B6 mice infected with 104 pfu of JaOArS982 and JaTH160 at 9 days pi. JEV antigens were detected using E-protein specific JEV
antibody (insets). Each experiment represents six and four mice infected with JaOArS982 and JaTH160, respectively. JaOArS982-
infected mice showed slight inflammatory infiltration in meninges. In brain cortex, a few degenerated cells were presented (arrow)
and were virus antigen-positive cells. In JaTH160-infected mice, severe inflammatory reactions were seen in meninges and
perivascular area (asterisks). Many virus antigen-positive cells were detected in degenerated neuronal cells of the cortex (arrows).
doi: 10.1371/journal.pone.0071643.g001
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attempted to discriminate severe and mild disease groups
during the observation period by following the progression of
weight change of individual mice. We discriminated dying and
recovering mice based on whether they showed less than 0.75
or more than 0.90 of the weight ratio at 13 days pi (Figure 1C).
It was difficult to predict if mice would survive or die between
0.75 and 0.9 of the designated weight ratio, because within this
window both dead mice and survivors were recorded. Having
established this defining parameter between severe and mild
disease groups, we then attempted to examine specific factors
relating to disease severity.

We initially considered the possibility that the divergence of
disease severity might be due to the selection of quasispecies
variants from the JaOArS982 virus population in the CNS.
Accordingly, we compared the virus sequences recovered from
the brains of dying and recovering mice (Figure 2A). However,
no specific virus sequence differences were detected in viruses
from either the severe or mild disease severity groups (DSG)
(Figure 2A). Furthermore, recovered viruses from either severe
or mild DSG exhibited similar mortality patterns to those of the
parent JaOArS982 virus (Figure 2B). Noticeably, the viruses
recovered from severe DSG mice did not induce 100% lethal
infection in subsequent mouse virulence tests (Figure 2B).

These results indicate that quasispecies variants of
JaOArS982 did not contribute to the divergence of disease
progression observed in all experiments with this virus; thus,
other factors such as host response seem most likely to be the
determinants of disease severity.

Comparison of viral loads and inflammatory responses
in the CNS of different DSG in JaOArS982-infected mice

We next compared the viral loads in the CNS between
severe and mild DSG in JaOArS982-infected mice at 13 days
pi. Viral loads in brain cortex, thalamus and brainstem but not
cerebellum and spinal cord were significantly higher in severe
DSG mice than in mild DSG (Figure 3A). However, in the brain
cortex, the variance of virus titer in the mild DSG mice ranged
from the minimal detection limit to 108 pfu/g of tissue, whereas
all mice exhibited more than 106 pfu/g of tissue in the severe
DSG (Figure 3A). These results imply that 45.8% (11/24) of
mice in the mild DSG produced high viral loads similar to those
in the severe DSG. Thus, it is likely that high viral infection
alone is not a critical determinant of severe disease and
additional factors contribute to the fatal encephalitis.

Therefore, to compare the specific immune responses in
severe cases, we further subdivided the mice into three
subgroups, severe group (SG), mild group with high viral load
(>106 pfu/g of tissue) (MHG) or low viral load (<106 pfu/g of
tissue) (MLG), and compared their cytokine levels in the brain
cortex (Figure 3B). All groups exhibited increased levels of
inflammatory cytokines of TNF-α, IL-10, IFN-γ and IL-2, but not
IL-4 and IL-5 in the brain cortex compared with the uninfected
group (UG) (Figure 3B). Interestingly, the level of TNF-α in the
SG was significantly increased when compared with those in
the MHG and MLG (Figure 3B). The level of IL-10 in the SG
was also significantly higher than in the MLG (Figure 3B).
Although the difference was not significant, the level tended to
be higher than that recorded in the MHG (Figure 3B). On the

other hand, IFN-γ did not show significant differences between
the three groups, and IL-2 levels in the SG were lower than in
the MHG (Figure 3B).

Histopathological examination revealed inflammatory
infiltration with mononuclear cells in the brain cortex of both
severe and mild cases of JaOArS982-infected mice (Figure 4A
to C). In severe cases, JEV antigens were detected in neurons,
and degenerated neurons were observed in a wide area of the
brain cortex and medulla (Figure 4A). On the other hand, in
mild cases, there was variation of pathological features in some
JaOArS982-infected mice. Other mild cases showed neuronal
infections similar to those observed in severe cases but there
was little neuronal degeneration in the brain cortex (Figure 4B).
Other mice exhibited very limited evidence of neuronal infection
and neuronal degeneration (Figure 4C). Mock-infected mice
showed none of these pathological changes (Figure 4D).

In summary, both neuronal infection and CNS pathology
were associated with severe disease outcome. In particular,
increased levels of TNF-α and IL-10 in the brains appeared to
be associated with severe disease, although it was not clear
whether the increased levels were the cause or result of severe
disease.

Systemic inflammatory responses in JaOArS982-
infected mice

Interestingly, the levels of TNF-α in the spleens of SG and
UG mice were similar and relatively low, whereas the levels of
both MHG and MLG mice were significantly higher (Figure
S2A). IL-10 levels in SG, MHG and MLG mice were high
compared with those in UG mice. No significant differences
were observed between the SG, MHG and MLG (Figure S2A).
On the other hand, the IFN-γ level in SG mice was lower than
those recorded in the UG, MHG and MLG (Figure S2A). There
were no significant differences of IL-2, IL-4 and IL-5 levels
between UG, SG, MHG and MLG mice (Figure S2A).

Some mice in the SG showed high levels of TNF-α in the
serum, although no significant difference was observed when
compared with other groups (Figure S2B). IL-10 in the serum of
SG mice was significantly increased compared with UG and
MHG mice (Figure S2B). Corticosterone levels in the serum
were also significantly increased in SG mice compared with
other groups (Figure S2B). Corticosterone, a major
glucocorticoid hormone, is a strong immunosuppressant and is
elevated under stress response conditions such as those
preceding death [55,56]. Furthermore, severe cases resulting
from infection with JaOArS982 exhibited a significant reduction
of CD4+ and CD8+ doubly-positive cells in the thymus (Figure
S2C). Thymic depletion and body weight loss are the main
features of the systemic stress response [55,56]. These
observations therefore suggest that SG mice exhibited a
severe systemic stress response accompanied by immune
suppression. Thus, the roles of inflammatory cytokines
appeared to be different in peripheral and CNS tissues.

TNF-α and IL-10 protect mice from fatal infection with
JaOArS982 virus

To investigate in more detail, the role of TNF-α and IL-10
during JEV infection, we infected TNF-α KO and IL-10 KO B6
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Figure 2.  Viral sequences and their potential for fatal infection recovered from JaOArS982-infected mice.  (A) Comparison
of viral genome sequences (nucleotide and corresponding amino acid – in parentheses) between recovered viruses from brains of
severe (S14, S15, S18 and S19) and mild (M4, M10, M13 and M24) cases of JaOArS982-infected B6 mice. (B) Weight changes of
B6 mice infected with 104 pfu of recovered viruses from severe (S14, S15, S18 and S19) and mild (M17 replaced to M4, M10, M13
and M24) cases. Five mice in each group were inoculated subcutaneously and observed for 21 days. Closed and open symbols
identify mice that died or survived, respectively, during observation period.
doi: 10.1371/journal.pone.0071643.g002
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mice with JaOArS982, and observed the disease courses
compared with those of infected fully immunocompetent B6
mice. Unexpectedly, the mortality rates of TNF-α KO and IL-10
KO mice were increased compared with those of WT mice
(77.3%, 43.2% and 26.7%, respectively) (Figure 5A). MSTs of
fatal cases in TNF-α KO and IL-10 KO mice (12.6 ± 1.05 and
11.5 ± 0.80 days) were significantly shorter than those of WT
mice (15.5 ± 2.14 days) (p=0.0087 and p=0.0039,
respectively). Consequently, these observations indicate that
TNF-α and IL-10 protect significant proportions of mice from
fatal infection by pathogenic JaOArS982 virus. Importantly,
TNF-α had a particularly pronounced protective effect.

Viral loads in the brains of IL-10 KO and TNF-α KO mice
infected with JaOArS982

Following inoculation with JaOArS982 virus, there were no
significant differences of infectious viral loads in the brain
cortex between WT, IL-10 KO and TNF-α KO at 5, 9 and 11
days pi (Figure 5B). However within individual mice in each
mouse group the range of viral infectivity varied from the lowest
detection limit to 109 pfu/g of tissue at 9 and 11 days pi (Figure
5B). It therefore appears that the increased mortality in IL-10
KO and TNF-α KO mouse was not simply due to the increased
viral loads in the brains, but other factors must also have
contributed to the fatal disease in these KO mice.

Figure 3.  Viral loads and cytokine levels in the brains of severe and mild cases of JaOArS982-infected mice.  (A) Viral loads
in the CNS of severe (weight loss: <0.75, n=8) and mild (weight loss: >0.90, n=24) cases of JaOArS982-infected B6 mice at 13 days
pi. P: Mann Whitney test. (B) mRNA levels of TNF-α, IL-10, IFNγ, IL-2, IL-4 and IL-5 quantified by real-time PCR in the brain cortex
of JaOArS982-infected B6 mice at 13 days pi. Uninfected group (U group, n=8), Severe group: S (n=8), Mild group with high viral
load of >106 pfu/g of brain tissue: MH (n=11), Mild group with low viral load of <106 pfu/g of brain tissue: ML (n=13). P: Kruskal-
Wallis test, p: Mann Whitney test.
doi: 10.1371/journal.pone.0071643.g003
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Figure 4.  Histopathological features of brain cortex in severe and mild cases of JaOArS982-infected B6
mice.  Histopathological features of B6 mice infected with 104 pfu of JaOArS982 at 13 days pi. Each experiment represents five and
sixteen mice of severe and mild cases, respectively. JEV antigens were detected using E-protein specific JEV antibody (insets). (A)
Severe case (weight ratio: 0.63) showed acute neuronal necrosis in the brain cortex. Virus antigen-positive cells were the necrotic
neurons. (B) In a mild case (weight ratio: 0.90), massive inflammatory infiltration was exhibited. Acute necrosis was seen in the
area. Some JEV antigen-positive cells were detected. (C) In a mild case (weight ratio: 1.05), focal inflammatory infiltration was seen
in the brain cortex (asterisk). JEV antigens were not clearly detected. (D) Mock-infected mice (weight ratio: 1.02).
doi: 10.1371/journal.pone.0071643.g004
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Figure 5.  Mortality and pathogenicity of TNF-α and IL-10 KO mice infected with JaOArS982.  (A) Survival curves of IL-10 KO
(n=37) and TNF-α KO (n=22) B6 mice following subcutaneous infections with 104 pfu of JaOArS982. WT B6 mice (n=30) show the
same data as Figure 1B. P: Gehan-Breslow-Wilcoxon Test. (B) Viral loads in the brain cortex of WT (Day 5: n=5, Day 9: n=15, Day
11: n=20), IL-10 KO (Day 5: n=5, Day 9: n=15, Day 11: n=12) and TNF-α KO (Day 5: n=5, Day 9: n=7, Day 11: n=7) mice following
subcutaneous infections with 104 pfu of JaOArS982 at 5, 9 and 11 days pi. WT B6 mice at 5 and 9 days pi show the same dataset
as Figure 1D. (C and D) mRNA levels of cytokines in the brain cortex of WT, TNF-α KO and IL-10 KO mice infected with 104 pfu of
JaOArS982 at 9 days pi. The levels of IFNγ, IL-1β, IL-2, IL-4, IL-5 and IL-6D (C) and perforin, granzyme A, granzyme B and FasL
(D) were quantified by real-time PCR. WT B6 mice show the same data as Figure 1E and Supplemental Figure 1. P: Kruskal-Wallis
test, p: Mann Whitney test.
doi: 10.1371/journal.pone.0071643.g005
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Enhanced expression of proinflammatory cytokines in
the brains of IL-10 KO and TNF-α KO mice infected with
JaOArS982 virus

It was difficult to distinguish between dying and recovering
mice on the basis of their clinical signs at 9 to 11 days pi.
However, high viral loads in the brain cortex appeared to be
necessary for fatal outcome. Thus, we compared the
inflammatory responses in the brain cortex of mice that
contained high viral loads with more than 106 pfu per g of tissue
(Figure 5B). Surprisingly, TNF-α KO mice exhibited significantly
enhanced levels of IFN-γ, IL-1β, IL-2, IL-4, IL-5 and IL-6 in the
brain when compared with the WT and IL-10 KO mice at 9 and
11 days pi (Figure 5C and Figure S3A). Furthermore, at 5 days
pi, the levels of IL-4 and IL-5 were higher in TNF-α KO (Figure
S3B). IL-10 KO mice also exhibited the increased levels of IFN-
γ, IL-1β, IL-2, IL-4 and IL-6 compared with those of WT mice at
9 days pi, although the differences were smaller than those
between TNF-α KO and WT mice (Figure 5C). Uninfected mice
showed some significant differences of cytokine levels between
the three groups, but the levels were very low compared with
infected mice and were not significant (Figure S3C).

Furthermore, the levels of perforin, granzyme B and FasL at
9 days pi, and granzyme A at 11 days pi were significantly
increased in TNF-α KO mice compared with those of WT mice
(Figure 5D and Figure S3D), whereas IL-10 KO mice exhibited
the increased level of perforin at 9 days pi (Figure 5D). These
cytokines are associated with immune-mediated
neurodegeneration.

These findings suggest that immunopathological effects in
the CNS contribute to the accelerated mortality in TNF-α KO
mice infected with JaOArS982. Thus, IL-10 and in particular
TNF-α mediate immunomodulatory effects against such
inflammatory responses.

TNF-α KO mice display severe neuronal degeneration
but no quantitative differences of infiltrated cells when
compared with brains of WT mice

Histopathological examination of TNF-α KO mice revealed
severe neuronal loss in extensive areas of brain cortex when
compared with WT mice (Figure 6A and B). However, the
proportion of infiltrated cells involving leukocytes (CD45), T
cells (CD3, CD4 or CD8), B cells (CD19), NK cells (NK1.1) and
macrophages (F4/80) did not appear to differ significantly
between TNF-α KO and WT mice (Figure 6C). These
observations suggest that the increased levels of cytokines in
TNF-α KO mice were due to qualitative differences of their
expression in inflammatory cells, rather than quantitative
increases of infiltrating cytokine producing cells.

Inflammatory responses in spleen cells of TNF-α KO
mice infected with JaOArS982

In the spleens of mock-infected mice, there were no
significant differences of IFN-γ levels between WT, IL-10 and
TNF-α KO mice (Figure S4A). However, following JaOArS982
infection the levels of IFN-γ in TNF-α KO mice were
significantly increased compared with those of WT mice at 5
and 9 days pi (Figure S4B and C). On the other hand, IL-2 and
IL-4 levels in TNF-α KO mice were significantly higher than

those of WT and IL-10 KO mice during mock infection (Figure
S4A) and following JaOArS982 infections (Figure S4B to D).
Also, the level of IL-5 in TNF-α

KO was decreased compared with WT and IL-10 KO mice at
5 days pi (Figure S4B).

These observations suggest that the patterns of cytokine
levels observed in spleens were different from those of the
brain and therefore that peripheral responses are unlikely to
contribute to the increased disease severity in TNF-α KO mice.

Increased levels of inflammatory cytokines in TNF-α KO
mice infected with JaTH160

Although the high virulence of JaTH160 is probably
attributable to viral factors, we attempted to assess whether or
not TNF-α might also contribute significantly to the
pathogenicity observed following infection with JaTH160 virus.
Accordingly, mice were inoculated with JaTH160 virus at a
challenge dose of 104 pfu per mouse, all WT, IL-10 KO and
TNF-α KO mouse groups died. However, TNF-α KO mice
presented with significantly shorter survival times than B6 WT
mice (9.57±1.19 days and 12.8±0.89 days, respectively, Mann
Whitney test: p=0.0002) (Figure 7A). It is important to note that
viral loads in the brains were not significantly different for either
WT, TNF-α KO or IL-10 KO mice at 5 and 7 days pi (Figure
7B).

TNF-α KO mice exhibited significantly increased levels of
IFN-γ and IL-5 in the brains compared with WT and/or IL-10
KO mice at 5 and 7 days pi following JaTH160 inoculation
(Figure 7C and D). However, levels of IL-2 and IL-4 in the
brains were not increased when WT and TNF-α KO groups at 5
and or 7 days pi were compared (Figure 7C). Moreover, levels
of perforin, granzyme A, granzyme B and FasL were not
increased in TNF-α KO when compared with WT mice at 7
days pi. However, histopathological data showed that TNF-α
KO mice presented with severe acute necrotic changes in the
brain cortex compared which was not the case for WT and
IL-10 KO mice at 9 days pi (Figure 7D).

In the spleens, similar to the JaOArS982 infection, the levels
of IFN-γ, IL-2 and IL-4 in IL-10 KO and TNF-α KO mice were
significantly increased compared with those of WT mice at 7
days pi following JaTH160 infection, whereas the level of IL-5
was decreased in TNF-α KO (Figure S5B).

These results suggest that the shorter survival time of
JaTH160-infected TNF-α KO mice when compared with WT
mice may be partially attributable to an immunopathological
effect, whereas direct neuronal infection is likely to be the main
cause of neurodegeneration in JaTH160-infected mice.

Discussion

This study provides the first evidence that TNF-α has an
immunoregulatory effect on pro-inflammatory cytokines in the
CNS during JEV infection and this results in protection from
fatal disease due to infection with this virus. Following
JaOArS982 virus infection, TNF-α KO mice exhibited
significantly increased mortality rates when compared with WT
mice. Although it has been suggested that TNF-/- mice show
developmental defects of the humoral immune system
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Figure 6.  Neuronal degeneration and inflammation in the brains of TNF-α KO mice infected with JaOArS982.  (A and B)
Histopathological features of WT (A) and TNF-α KO (B) mice infected with 104 pfu of JaOArS982 at 10 days pi. JEV antigens were
detected using E-protein specific JEV antibody (insets). Each experiment represents six and five mice of WT and TNF-α KO,
respectively. Inflammatory reactions and neuronal degeneration were seen in the WT mice. The TNFa KO mice showed acute
necrotic changes in the brain cortex. (C) Number of infiltrating leukocytes, T cells (CD3+), CD4+ T cells, CD8+ T cells, B cells
(CD19+), NK cells (NK1.1+) and macrophages including microglia (F4/80+) in brains of WT (mock: n=5, Day 10: n=6) and TNF-α KO
(mock: n=5, Day 10: n=7). p: Mann Whitney test.
doi: 10.1371/journal.pone.0071643.g006
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Figure 7.  Mortality and pathogenicity of TNF-α and IL-10 KO mice infected with JaTH160.  (A) Survival curves of IL-10 KO
(n=15) and TNF-α KO (n=14) B6 mice following subcutaneous infections with 104 pfu of JaOArS982. WT B6 mice (n=15) show the
same data of Figure 1B. P: Gehan-Breslow-Wilcoxon Test. (B) Viral loads in the brain cortex of WT (Day 5: n=5, Day 7: n=9, Day 9:
n=8), IL-10 KO (Day 5: n=5, Day 7: n=8, Day 9: n=6) and TNF-α KO (Day 5: n=5, Day 7: n=5) mice following subcutaneous
infections with 104 pfu of JaTH160 at 5, 7 and 9 days pi. Data of WT B6 mice at 5 and 9 days pi were same to Figure 1D. (C and D)
mRNA levels of IFNγ, IL-2, IL-4 and IL-5 in the brain cortex of WT, TNF-α KO and IL-10 KO mice infected with 104 pfu of JaTH160
at 5 (C) and 7 (D) days pi. P: Kruskal-Wallis test, p: Mann Whitney test. (E) Histopathological features of WT, TNF-α KO and IL-10
KO mice infected with 104 pfu of JaTH160 at 9 days pi. JEV antigens were detected using E-protein specific JEV antibody (insets).
Each experiment represents four, five and six mice of WT, TNF-α KO and IL-10 KO mice, respectively. The B6 WT and IL-10 KO
mice showed severe inflammatory reactions in the brain cortex. On other hand, the TNF-a KO mice exhibited acute necrotic
changes with slight inflammatory reactions in the brain cortex.
doi: 10.1371/journal.pone.0071643.g007
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including a lack of primary B cell follicles [38,57,58], TNF-α KO
mice that we used in this study did not show significant
depletion in the anti-JEV IgM response (data not shown) or in
cytokine expression (Figure S4). In addition, no significant
increases of viral propagation were observed in the peripheral
and CNS tissues. Interestingly, there were no significant
differences of viral load in the CNS between WT and TNF-α KO
mice. However, high inflammatory responses were observed in
the CNS of TNF-α KO mice. In particular, perforin, granzyme A,
granzyme B and FasL, which are known to be associated with
immune-mediated neurodegeneration, were significantly
increased in the brains of TNF-α KO mice when compared with
those of WT mice. These observations suggest that
immunopathological effects contribute to the severe neuronal
degeneration and fatal disease in TNF-α KO mice.

IL-10 KO mice also exhibited increased mortality and up-
regulated levels of inflammatory cytokines in the CNS
compared with WT mice and in common with TNF-α KO mice,
there were no significant differences in viral loads. However, it
is important to note that the levels of inflammatory cytokines of
TNF-α KO mice and the resultant mortality were dramatically
higher than those observed in IL-10 KO mice. IL-10 has an
immunoregulatory function on various cells in the innate
immune system including cytotoxic and helper T cells, NK cells
and B cells [59]. IL-10 signaling has a negative role in immunity
against WNV infection [45]. It is also known that TNF-α is a
critical regulatory cytokine exerting homeostatic and
pathological effects in the CSF [60]. Therefore, our data imply
that TNF-α mediates greater efficacy of immunoregulatory
function during JEV infection.

In preparatory studies of JEV infection, we attempted to
inject TNF-α intravenously or intracerebrally after JEV
inoculation to examine whether or not this improved the
disease outcome. However, there was no significant
improvement in the condition of the mice or protection from
death. Administration of anti-mouse TNF-α antibody also
showed no improvement of disease outcome. Although we
cannot totally exclude the possibility that failure of TNF-α
administration to improve disease outcome, may have been the
result of the technical design of the experiments, different
responses of TNF-α in the CNS when compared with
peripheral tissues may partly explain our observations.
Therefore, further investigation of the immunoregulatory
mechanism of TNF-α in vivo and in vitro will be required to
understand the basis of the immunopathological effects
observed during JEV infection.

In this study, we focused on the variation of disease severity
in mice following JaOArS982 infection to detect specific
responses that may be associated with severe disease. Thus,
we discriminated severe and mild cases of mice by their weight
ratio at 13 days pi. Using this simple and effective approach,
we had previously shown that specific immune responses were
detected in severe disease cases when compared with mild
cases following TBEV infection [48]. Loss of appetite probably
caused the weight loss due to decreased food and water
intake. However, undernourishment did not appear to be the
simple cause of death, because our preliminary data showed

that an infusion of glucose solution to compensate for weight
loss did not prevent fatal disease.

We first considered whether or not viral quasispecies could
account for the diversity of disease outcome. Our results did
not support this possibility. We also identified specific immune
responses including TNF-α and IL-10 up-regulation in the
brains of severe cases when compared with mild cases. In
human cases, an increased level of TNF-α in the CSF appears
to correlate with JE disease severity [8]. Therefore, this JEV-
infected mouse model appears to be a reproducible model of
severe JE disease in human cases. Furthermore, from the
results of increased fatality in TNF-α KO mice, we propose that
increased levels of TNF-α in the brains of severe cases in WT
mice were probably produced in response to the disease
severity, to alleviate the pathological impact of the encephalitis.

It has been reported that immunopathological effects do
contribute to flavivirus encephalitis [27]. Cytolytc leukocytes
such as CD8+ T cells induce cytopathology during some
encephalitic flavivirus infections [28–30] and these leukocytes
kill virus-infected cells using two distinct mechanisms viz., Fas
and granular exocytosis which involve perforin, granzyme A
and B [61–64]. In TNF-α KO mice, we showed that the
increased levels of inflammatory cytokines including Fas and
the granular exocytosis correlated with severe encephalitis and
fatal outcome. However, in WT mice, the apparent
immunopathological features were not observed in dying mice
13 days pi. Although it was difficult to identify dying and
surviving mice before 13 days pi by their clinical signs,
JaOArS982-infected mice showed varying levels of Fas and
granular exocytosis in the brains at 11 days pi and some of
them exhibited similar or higher levels compared with the TNF-
α KO mice (Figure S3D). Thus, fatal cases may exhibit severe
encephalitis caused by immunopathological responses during
the early phase of infection and thereafter severe clinical signs
may appear in some mice.

JaOArS982-infected mice exhibited a variety of immune
responses and different prognoses in individual mice. However,
it was not clear how the immune response differentiated
between dying and recovering mice. In order to explain these
variable immune responses, we previously showed that
specific T cell receptor (TCR) repertoires were present in dying
mice during TBEV infection [65]. Furthermore, we also showed
that specific TCR repertoires were detected in the dying mice
compared with the recovering mice following JaOArS982
infection (Shirai, et al., unpublished results). These data raise
the possibility that there may be a variety of specific T cell
clones effecting either protective or pathogenetic functions in
dying and recovering mice.

Dose independent mortality induced by encephalitic
flaviviruses has been recognized but has been an unresolved
problem since the 1940’s [27,47]. Recently, it was suggested
that induction of more vigorous innate immune responses
might control early virus dissemination following increasing
infectious challenge doses of virus [6,26,66]. We have also
recently discovered that interferon alpha receptor knockout
induces dose-dependent mortality following extraneural
infection with JaOArS982 (Hayasaka, et al., unpublished
results). In addition, we previously reported that late death
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following TBEV infection appears to be a key feature of dose
independent mortality within the encephalitic flaviviruses [48].
In the current study, JaOArS982-infected mice also displayed
increased times to death and the variation of acquired immune
responses which either showed protective or pathological
effects, appeared to be correlated with severe disease.
Therefore, we propose that in addition to innate immune
response, subsequent acquired immune responses, which
varied contingently in individuals, appeared to be a determining
factor associated with dose-independent mortality.

Interestingly, JaTH160-infected mice did not show increased
levels of TNF-α in the spleen at 5 and 9 days pi. However, it is
uncertain if the low level of TNF-α in the spleen directly
contributed to the subsequent CNS infection and the
neuropathogenesis during JaTH160 infection. It is important to
note that there were 17 amino acid differences in the genomic
sequences of JaTH160 and JaOArS982. Therefore, it will be
important to determine whether or not specific amino acid
substitutions can influence TNF-α expression and thus
contribute to the pathogenesis of the lethal process during
JaTH160 infection.

In conclusion, JaTH160-infected mice developed severe
encephalitis and all mice died due to severe infections of the
CNS (Figure 8). On the other hand, JaOArS982-infected mice
exhibited varying degrees of encephalitis and different
prognoses (Figure 8). We therefore propose that fatal outcome

is attributable both to immunopathological changes in addition
to high levels of CNS infection. At this stage we cannot define
the critical factors involved in the immunopathogenetic process
(Figure 8). Furthermore, up-regulation of TNF-α and IL-10 in
the brain appear to be important determinants of the
pathogenetic response (Figure 8). Clearly, further elucidation of
the contribution of immunopathology and the suppressive
impact of TNF-α, are important priorities to enable the
development of effective treatment strategies for JE.

Supporting Information

Figure S1.  Cytokine levels of spleen in B6 mice infected
with JaOArS982 and JaTH160.  (A) mRNA levels of IL-4 and
IL-5 quantified by real-time PCR in the brain cortex of B6 mice
infected with 104 pfu of JaOArS982 (Day 5: n=5, Day 9: n=12),
JaTH160 (Day 5: n=5, Day 9: n=5) and mock (n=8). P: Mann
Whitney test. (B) mRNA levels of TNF-α, IFNγ, IL-2, IL-10, IL-4
and IL-5 quantified by real-time PCR in the spleen of B6 mice
infected with 104 pfu of JaOArS982 (Day 5: n=5, Day 9: n=12),
JaTH160 (Day 5: n=5, Day 9: n=5) and mock (n=8). P: Mann
Whitney test.
(TIF)

Figure 8.  Proposed model of the mechanism of fatal disease following JEV infection in a mouse model.  
doi: 10.1371/journal.pone.0071643.g008
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Figure S2.  Cytokine levels of spleen in severe and mild
cases of JaOArS982-infected mice.  (A) mRNA levels of
TNF-α, IL-10, IFNγ, IL-2, IL-4 and IL-5 quantified by real-time
PCR in the brain cortex of JaOArS982-infected B6 mice at 13
days pi. Uninfected group: U (n=8), Severe group: S (n=8), Mild
group with high viral load of >106 pfu/g of brain tissue: MH
(n=11), Mild group with low viral load of <106 pfu/g of brain
tissue: ML (n=13). P: Kruskal-Wallis test, p: Mann Whitney test.
(B) The levels of IL-10, TNF-α and corticosterone measured by
enzyme-linked immunosorbent assay in the plasma of
JaOArS982-infected B6 mice at 13 days pi Uninfected group (U
group, n=6), Severe group (S group, n=6), Mild group with high
viral load of >106 pfu/g of brain tissue (MH group, n=7), Mild
group with low viral load of <106 pfu/g of brain tissue (ML
group, n=6). P: Kruskal-Wallis test, p: Mann Whitney test. (C)
CD4 and CD8 expressions of thymocytes from mock, mild and
severe cases of JaOArS982-infected B6 mice at 13 days pi.
Each experiment represents four and fifteen mice of severe
and mild cases, respectively.
(TIF)

Figure S3.  Cytokine levels of brains in TNF-α and IL-10 KO
mice infected with JaOArS982.  (A to C) mRNA levels of
IFNγ, IL-2, IL-4, IL-5 quantified by real-time PCR in the brain
cortex of WT, TNF-α and IL-10 mice infected with 104 pfu of
JaOArS982 at 11 (A) and 5 (B) days pi and uninfected mice
(C). (D and E) mRNA levels of perforin, granzyme A, granzyme
B and FasL in the brain cortex of WT, TNF-α and IL-10 mice
infected JaOArS982 at 11 days pi (D) and uninfected mice (E).
(TIF)

Figure S4.  Cytokine levels of spleens in TNF-α and IL-10
KO mice infected with JaOArS982.  (A) mRNA levels of IFNγ,
IL-2, IL-4, IL-5 quantified by real-time PCR in the spleen of WT,
TNF-α and IL-10 mice infected with mock (A) and 104 pfu of
JaOArS982 at 5 (B), 9 (C) and 11 (D) days pi. P: Kruskal-Wallis
test, p: Mann Whitney test.

(TIF)

Figure S5.  Cytokine levels of brain and spleen in TNF-α
and IL-10 KO mice infected with JaTH160.  (A) mRNA levels
of perforin, granzyme A, granzyme B and FasL in the brain
cortex of WT, IL-10 and TNF-α mice at 7 days pi. P: Kruskal-
Wallis test. (B) mRNA levels of IFNγ, IL-2, IL-4, IL-5 in the
spleen of WT, IL-10 and TNF-α mice at 5 days pi. P: Kruskal-
Wallis test, p: Mann Whitney test.
(TIF)
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