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Abstract

Inactivation of p27Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many
types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance
through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras
transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the
phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27Kip1

expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation
at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the
inactivation of p27Kip1. Our work reveals a novel functional link between Stat1 and p27Kip1, which act in coordination to
suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in
human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to
anticancer therapies aimed at activating Stat1 and its downstream effectors.
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Introduction

The signal transducers and activators of transcription (Stats) are

a family of cytoplasmic proteins that function as signal messengers

and transcription factors involved in cellular responses induced by

cytokines and growth factors [1,2]. Stat1, the prototype of the

family, is essential for innate immunity [2] and plays an important

role in immune surveillance of tumors [3]. Specifically, Stat1

knockout (Stat12/2) mice are highly susceptible to virus infection

[4,5] and more prone to the formation of tumors in response to

carcinogens than normal mice [6]. Stat1 is also an important

mediator of the anti-proliferative and pro-apoptotic functions of

interferon-gamma (IFN-c) and tumor necrosis factor-b (TNF-b)

through its ability to upregulate caspase 1 and the cyclin

dependent kinase (Cdk) inhibitor p21Cip1 [7–10]. At the molecular

level, cytokines and growth factors induce Stat1 phosphorylation

at tyrosine (Y) 701, which is essential for its homo-dimerization or

hetero-dimerization with other Stats and binding to DNA [1,2].

Tyrosine phosphorylation of Stat1 is mediated by cytokine

receptor associated Janus tyrosine kinases (Jaks) as well as by

receptor tyrosine kinases (RTKs) [2]. Phosphorylation of Stat1 at

serine (S) 727 is mediated by various pathways and is required for

the full induction of Stat1-dependent gene transactivation [11].

The Cdkn1b gene encodes for a 27 kDa protein (p27), which

belongs to the Cip/Kip family of cyclin-dependent kinase inhibitors

(CKIs) [12]. p27Kip1 acts in G0 and early G1 to inhibit cyclin-Cdk

holoenzymes, particularly cyclin E-Cdk2, and impair cell cycle

progression [12]. p27Kip1 levels decrease in response to mitogenic

signaling thus permitting cell cycle progression and cell proliferation

[12]. The human Cdkn1b gene is present on chromosome 12p13 and

loss of one allele has been observed in a number of human

malignancies [13]. Consistent with a tumor suppressor function,

mice lacking one or both copies of the Cdkn1b gene have increased

susceptibility to carcinogen-induced tumorigenesis [14]. p27Kip1

does not follow Knudson’s classic ‘‘two-hit hypothesis’’ of tumor

suppression because homozygous loss or silencing of the Cdkn1b locus

in human tumors is extremely rare [13]. The Cdkn1b gene is rarely

mutated in human cancers but decreased concentrations of p27Kip1

are implicated in human tumorigenesis [13]. There is an inverse

correlation between p27Kip1 levels and prognosis in a variety of

human cancers, including those of breast, colon, and prostate origin

[13]. Expression of the Cdkn1b gene is regulated at the transcrip-

tional, translational and post-translational levels. Transcription is

controlled by several factors including Sp1 [15], Phox2a [16],

members of the forkhead box (Fox) group of transcription factors

[17] and Stat3 [18,19]. Early findings provided evidence for a cell-

cycle dependent regulation of Cdkn1b mRNA translation [20].

Subsequent studies found that translation of Cdkn1b mRNA is

controlled by sequences within the 59 untranslated region (59 UTR)

[21,22] through a cap-independent mechanism [23] and the

utilization of an internal ribosomal entry site (IRES) [24]. The

post-translational control of p27Kip1 is fairly complex and involves

phosphorylation, changes in subcellular distribution as well as

proteasomal degradation [12].
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The anti-tumor properties of Stat1 have mainly been linked to

its function downstream of IFNs[3]. This prompted us to examine

whether Stat1 plays a role in oncogenic signaling in the absence of

an IFN effect. Herein, we present a novel functional link between

Stat1, p27Kip1 and oncogenic Ras. We demonstrate that Stat1

subverts the inactivation of p27Kip1 in Ras transformed cells by

positively regulating the transcription of the Cdkn1b gene. We

further demonstrate that induction of p27Kip1 expression by Stat1

is essential for the suppression of Ras-mediated oncogenesis in vitro

and in vivo via mechanisms that are affected by the phosphory-

lation of Stat1 at tyrosine 701 and serine 727.

Results

Stat1 counteracts the downregulation of p27Kip1 by
activated Ras

To examine the role of Stat1 in Ras transformation, we used

primary mouse embryonic fibroblasts (MEFs) from Stat1 and p53

double-knock out animals (p532/2Stat12/2 MEFs). We chose p53

deficient MEFs because p53 inactivation facilitates transformation

by expression of cytoplasmic oncoproteins including activated Ras

[25]. When primary p532/2 Stat12/2 MEFs were transfected

with a Myc-tagged form of Ha-RasG12V, we noted that activated

Ras decreased p27Kip1 levels as previously described [26] (Fig. 1,

panel a, compare lane 1 with 2, and lane 5 with 6). The expression

of p27Kip1 was affected by the density of the cells since p27Kip1

levels were proportional to the confluency of control cells (panel a,

compare lane 1 with 5) and downregulation of p27Kip1 by

activated Ras was more obvious in confluent than in sub-confluent

cell cultures (Fig. 1, panel a, compare lanes 1 and 2 with 5 and 6).

When the MEFs transfected with activated Ras were reconstituted

with an HA-tagged form of human wild type (WT) Stat1 by

retrovirus infection, we observed that Stat1 restored p27Kip1

protein levels in both sub-confluent and confluent cell cultures

(panel a, lanes 4 and 8). Contrary to this, p27Kip1 levels remained

low in MEFs infected with empty retroviruses (panel a, lanes 3 and

7). The expression of activated Ras (lane b) and reconstituted Stat1

(lane c) was not affected by the density of the cells as verified by

immunoblotting. These data provided evidence that Stat1 subverts

the donwregulation of p27Kip1 by activated Ras.

p27Kip1 expression is controlled by phosphorylated Stat1
at the transcriptional level

Previous findings showed that Stat1 is phosphorylated at Y701 and

S727 in Ras transformed cells [27,28]. To verify these observations,

we used NIH3T3 cells transformed with Ha-RasG12V by retrovirus

infection. We noted that activated Ras decreased Stat1 Y701

phosphorylation and increased Stat1 S727 phosphorylation com-

pared to control cells in a manner that was dependent upon cell

density (Fig. S1). To address the role of Stat1 phosphorylation in

p27Kip1 expression, the Ras-transfected p532/2Stat12/2 MEFs were

reconstituted with HA-Stat1 forms bearing either the Y701F or

S727A mutation by retrovirus infection. Immunoblot analysis of the

reconstituted MEFs verified that expression of the Stat1 mutants was

equal to that of Stat1 WT (Fig. 2A, panel a). When the MEFs were

maintained at different levels of confluency, we noted the induction of

p27Kip1 levels in cells expressing either HA-Stat1 WT or HA-

Stat1S727A but not in cells expressing Stat1Y701F or devoid of Stat1

(Fig. 2B, panel a). The induction of p27Kip1 was proportional to the

increased density of the cells and p27Kip1 levels were higher in cells

reconstituted with Stat1WT than Stat1S727A (Fig. 2B, panel A). In

parallel, we looked at the levels of p21Cip1 based on previous findings

that Stat1 regulates p21Cip1 at the transcriptional level [9] and that

p21Cip1 levels are upregulated by activated Ras [29]. We found that

unlike p27Kip1, p21Cip1 levels were induced by Stat1 WT only

(Fig. 2B, panel b) indicating that p21Cip1 expression in Ras transfected

cells requires Stat1 phosphorylation at both Y701 and S727.

To address the mechanism of regulation of p27Kip1 expression,

we first looked at a possible transcriptional effect of Stat1.

Northern blot analysis showed an increase in Cdkn1b mRNA levels

in Ras-transfected MEFs reconstituted with either Stat1 WT or

Stat1 S727A compared to control MEFs or MEFs reconstituted

with Stat1Y701F (Fig. 2C, panel a). To further substantiate this

finding, we assessed the transcriptional activation of the mouse

1.6-Kb Cdkn1b promoter by Stat1 in luciferase reporter assays

[30]. We found that transcription of the Cdkn1b promoter was

more highly induced in Ras-transfected MEFs expressing either

Stat1 WT or Stat1S727A than in control MEFs or MEFs

expressing Stat1Y701F (Fig. 2D). Consistent with the p27Kip1

protein levels (Fig. 2B), Stat1-dependent transcription from the

mouse Cdkn1b promoter was proportional to the increased density

of the MEFs (Fig. 2D). These data demonstrated a transcriptional

role for Stat1 in Cdkn1b gene expression.

Transcriptional induction of the Cdkn1b gene by Stat1
requires Stat3

The mouse Cdkn1b promoter contains a Stat-binding site located

at a position 1585 bp upstream of the transcription initiation site

[18,31]. To assess the role of the Stat-binding site in Cdkn1b

transcription by Stat1, we performed electrophoretic mobility shift

assays (EMSAs) using extracts from MEFs containing activated

Ras and reconstituted with the various forms of Stat1, and a probe

Figure 1. Stat1 prevents the decrease of p27Kip1 by activated
Ras. Primary p532/2Stat12/2 MEFs (lanes 1 and 5) were transfected
with Myc-Ha-Ras G12V (lanes 2 and 6) and reconstituted with HA-Stat1
WT by retrovirus infection (lanes 4 and 8). As control, Myc-Ha-Ras G12V
expressing MEFs infected with empty retroviruses were used (lanes 3
and 7). Polyclonal populations were harvested at 50% (lanes 1–4) or
90% confluence (lanes 4–8) and cell extracts (50 mg of protein) were
subjected to immunoblotting with anti-p27Kip1 monoclonal antibody
(mAb) (panel a), anti-Myc mAb (panel b), anti-Stat1a mAb (panel c ) and
anti-actin mAb (panel d).
doi:10.1371/journal.pone.0003476.g001
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encompassing the Stat-binding site of the Cdkn1b promoter [18].

To increase the detection of DNA-binding, EMSAs were

performed with protein extracts from 90% confluent cells in

which Cdkn1b promoter activity was maximal (Fig. 2D). We

detected the formation of a high molecular weight protein/DNA

complex, whose intensity was enhanced in MEFs reconstituted

with either HA-Stat1 WT or HA-Stat1 S727A (Fig. 3A, left panel,

a). The formation of the complex was abolished when EMSAs

were performed in the presence of a 100 fold excess of non-

radioactive oligonucleotide (Fig. 3A, right panels b, c and d, lane 2)

or when an oligonucleotide with mutations in the Stat-binding site

was used as a probe (right panels b, c and d, lanes 3 and 4). To

identify the proteins that form the complex, we performed the

assay in the presence of antibodies against Stat1 or Stat3. We

observed that formation of the complex in MEFs devoid of Stat1

was decreased by 50% after incubation with an antibody against

Figure 2. Induction of p27Kip1 by Stat1 in Ras-transformed cells depends on site-specific Stat1 phosphorylation. (A) Whole cell
extracts (50 mg of protein) from MEFs expressing Myc-Ha-RasG12V and reconstituted with the indicated HA-Stat1 proteins were subjected to
immunoblotting with anti-Stat1a mAb (panel a) or anti-Myc mAb (panel b). (B) MEFs were harvested at 50% (lanes 1–4), 70% (lanes 5–8), 90% (lanes
9–12), or 100% confluence (lanes 13–16). Whole cell extracts (50 mg of protein) were subjected to immunoblotting with an anti-p27Kip1 mAb (panel a),
anti-p21Cip1 rabbit polyclonal Ab (panel b) or anti-actin mAb (panel c). (C) Total RNA (15 mg) from MEFs harvested at 90% confluence were subjected
to Northern blot analysis using [a-32P] dCTP-labeled Cdkn1b cDNA (panel a) and [a-32P] dCTP-labelled glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, panel b) as probes. The radioactive bands were detected by autoradiography and quantified by densitometry using the NIH Image 1.54
software. (D) Sub-confluent MEFs were transfected with the pGL2 vector containing the firefly luciferase reporter gene under the control of the full-
length 1609-bp mouse Cdkn1b promoter. Forty eight or 72 hours after transfection, cells at 70% or 90% confluence were harvested and the luciferase
activity was determined. The activity of Renilla luciferase expressed from a pGL2 vector lacking the Cdkn1b promoter was used as an internal
transfection control. Results are expressed 6SD for 3 experiments performed in triplicate. **P,0.01.
doi:10.1371/journal.pone.0003476.g002
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Stat3 (right panel b, compare line 5 with 6) indicating the presence

of Stat3 in the complex. Contrary to this, incubation with an

antibody against Stat1 or rabbit IgG antibody, which served as a

negative control, did not affect binding strength (Fig. 3A, right

panel b, lanes 6 and 7). When the EMSAs were performed with

protein extracts from MEFs reconstituted with either Stat1 WT

(panel c) or Stat1S727A (panel d), we noted that the formation of

the complex was decreased after incubation with antibodies

against Stat3 (lane 6) or Stat1 (lane 7) but not after incubation with

the rabbit IgG antibody (lane 8). The reduction but not

elimination of complex formation after incubation with antibodies

against Stat1 or Stat3 is consistent with a previous study showing

that antibodies against Stat1 or Stat3 did not abolish binding of

the Stat1/Stat3 complex to the Stat-site of the Cdkn1b promoter in

mouse 32D lymphoid cells stimulated with G-CSF [18].

Nevertheless, the possibility remains that the Stat-site is also

occupied by a third protein, which forms a complex with DNA

and migrates with the same mobility as the Stat1/Stat3 complex in

the polyacrylamide gels.

To confirm the DNA-binding data, we employed chromatin

immunoprecipitation (ChIP) assays to assess binding of Stat1 and

Stat3 to the Cdkn1b promoter in vivo (Fig. 3B). We detected the

specific binding of Stat1 and Stat3 to the promoter in MEFs

reconstituted with either Stat1 WT (panel a, lanes 5 and 6) or

Stat1S727A (panel b, lanes 5 and 6). On the other hand, the

intensity of Stat1 or Stat3 binding was equal to the intensity of

binding detected after immunoprecipitation with irrelevant IgG in

control MEFs (panel a, lane 2) as well as in MEFs reconstituted

with Stat1Y701F (panel b, lanes 1 and 2). These data suggest a

weak binding of Stat3 to the promoter DNA in the absence of

Stat1 or in the presence of non tyrosine phosphorylated Stat1.

Collectively, the above data showed that both Stat1 and Stat3 are

bound to the Stat-binding site in the Cdkn1b promoter in a manner

that is dependent on Y701 phosphorylation of Stat1.

We further examined the effect of Stat1 and Stat3 on the

transcriptional activation of the Cdkn1b promoter. To this end, we

employed a vector containing a luciferase reporter gene under the

control of three tandem repeats of the Stat-binding site from the

Cdkn1b promoter [18]. As control, the same vector containing three

tandem repeats of a mutant form of the Stat-binding site was used

[18]. We found that luciferase expression from the wild type Stat-

binding site was significantly induced in Ras-transfected MEFs that

were reconstituted with either Stat1 WT or Stat1 S727A compared

to control MEFs or MEFs expressing the Stat1Y701F (Fig. 3C).

Interestingly, co-expression of Stat3-D, a Stat3 mutant defective in

transactivation activity that exerts a dominant negative effect [32],

impaired luciferase expression in MEFs reconstituted with either

Stat1 WT or Stat1S727A (Fig. 3C). The role of Stat3 was further

verified in transient transfections of the Ras-transfected MEFs with a

luciferase reporter gene under the control of the 1.6-Kb mouse

Cdkn1b promoter (Fig. 3D). We found that the induction of

expression of the reporter gene by Stat1 WT or Stat1S727A was

blocked by the co-expression of Stat3-D mutant (Fig. 3D).

Collectively, these data suggested that Stat1-dependent Cdkn1b gene

expression requires the activity of Stat3.

p27Kip1 contributes to the inhibition of cell cycle
progression by Stat1

To better understand the biological significance of our findings,

we looked at the localization of p27Kip1 in Ras-transfected MEFs.

Nuclear localization of p27Kip1 is required for inhibition of cell

cycle progression, which is counteracted in Ras transformed cells

by the increased nucleocytoplasmic export and proteasomal

degradation of p27Kip1 [12]. We found that p27Kip1 was both

cytoplasmic and nuclear in MEFs lacking Stat1 (control cells) as

well as in MEFs reconstituted with Stat1Y701F (Fig. 4A).

However, p27Kip1 was predominantly nuclear in MEFs expressing

either Stat1 WT or Stat1S727A compared to control MEFs or

MEFs containing Stat1Y701F (Fig. 4A). On the other hand, Stat1

and its phosphorylation mutants were both nuclear and cytoplas-

mic in the reconstituted Ras-transfected MEFs (Fig. 4A). To

determine whether increased p27Kip1 expression (Fig. 2B) had an

effect on cell cycle progression, we measured the activity of the

Cyclin E-Cdk2 complex, which is predominantly targeted by

p27Kip1 [12]. To this end, Cyclin E-Cdk2 was purified by

immunoprecipitation and subjected to in vitro kinase assays using

GST-retinoblastoma (Rb) as substrate [33]. We found that Cyclin

E-Cdk2 activity was reduced in Ras-transfected MEFs containing

either Stat1 WT or Stat1 S727A (Fig. 4B, panel a). Although

Cyclin E-Cdk2 activity declined with the increased density of all

MEFs, the ability of either Stat1 WT or Stat1S727A to further

inhibit CyclinE-Cdk2 activity was still evident in cells maintained

at high confluence (Fig. 4B, see quantification in right panel).

When we examined cell cycle progression by flow cytometry, we

observed a blockade at G0/G1 phase in MEFs reconstituted with

Stat1 WT when cells were maintained at either low or high

confluence (Fig. 4C). Inhibition of cell cycle progression was also

observed in confluent MEFs expressing Stat1S727A although to a

lesser extent than in Stat1 WT MEFs (Fig. 4C). This difference

between Stat1 WT and Stat1S727A can be explained by the

ability of Stat1WT to upregulate both p21Cip1 and p27Kip1 and

inhibit multiple Cyclin-Cdk complexes (Fig. 2B). These findings

provided evidence that p27Kip1 expression contributes to the

inhibition of cell cycle progression by Stat1 in a manner that is

dependent on Stat1 phosphorylation and cell density.

Phosphorylated Stat1 inhibits Ras-mediated
transformation

Next we examined the transforming potential of the Ras-

transfected MEFs expressing various forms of Stat1. First, we

observed that all MEFs propagated at similar rates when they were

maintained at sub-confluent levels. However, in cells at high

density, we observed a significant (50%) inhibition in the

proliferation of MEFs reconstituted with either Stat1 WT or Stat1

S727A (Fig. 5A). Morphologically, Stat1 WT-expressing MEFs

exhibited altered adhesive/spreading properties compared to

control MEFs lacking Stat1 or MEFs reconstituted with each of

the Stat1 phosphorylation mutants (Fig. 5A, left panels). When we

looked at the growth of these cells in soft agar, we observed

significant differences (Fig. 5B, right panels). Specifically, Ras-

transfected MEFs reconstituted with either Stat1 WT or Stat1

S727A formed fewer colonies than control MEFs or MEFs

reconstituted with Stat1Y701F (Fig. 5B, right panels). Further-

more, Ras-transfected MEFs with either Stat1 WT or Stat1 S727A

yielded colonies that were smaller in size by 80% than the colonies

derived from the control MEFs. On the other hand, MEFs

reconstituted with Stat1 Y701F produced both the highest number

of colonies and the largest colonies (Fig. 5C). Decreased colony

formation by Stat1 WT or Stat1 S727A was not due to induction

of Stat1-dependent apoptosis [34] as verified by annexin V

staining and FACS analysis (Fig. S2). The differences in soft agar

growth prompted us to examine the tumorigenic potential of the

Ras-transfected MEFs. Tumor growth was assessed by the

subcutaneous injection of the cells in athymic nude mice (Balb/c

nu/nu). We found that control MEFs produced larger tumors than

Stat1WT MEFs, which yielded ,50% smaller tumors (Figs. 5D

and E). On the other hand, MEFs reconstituted with Stat1Y701F

yielded the largest tumors of all (Figs. 5D and E). Interestingly,

Stat1 and Ras Tumorigenesis
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MEFs expressing Stat1S727A did not produce tumors within the 3

week observation period (Figs. 5D and E) but yielded detectable

tumors (,2 mm) approximately 2.5 months after injection (data

not shown). Histochemical analysis indicated that all tumors were

high grade soft tissue sarcomas (data not shown). These data

demonstrated that Stat1 functions as a suppressor of Ras-mediated

oncogenesis in a manner that is dependent on site-specific Stat1

phosphorylation.

p27Kip1 contributes to the inhibition of Ras-mediated
transformation by Stat1

Previous findings established an essential role of p27Kip1 in the

inhibition of Ras-mediated tumorigenesis [35]. To determine

whether inhibition of Ras transformation by Stat1 involves

p27Kip1, we assessed the transforming activity of the MEFs when

endogenous p27Kip1 levels were decreased by shRNA. To this end,

knockdown of p27Kip1 was achieved by infection of Ras

transfected MEFs with retroviruses bearing Cdkn1b shRNA and

the green fluorescence protein (GFP) as a marker [36]. As control,

retroviruses bearing GFP and a shRNA against the luciferase

reporter gene were used [36]. Decrease of p27Kip1 in the shRNA-

treated MEFs was verified by immunoblotting (Fig. 6A). When the

cells were plated in soft agar, we observed that anchorage-

independent growth was restored in MEFs reconstituted with

either Stat1 WT or Stat1S727A in which p27Kip1 was targeted by

shRNA as indicated by the growth of the GFP-positive (green)

colonies (Fig. 6B). On the other hand, decreased p27Kip1 levels did

not further increase the ability of control MEFs lacking Stat1 or

MEFs reconstituted with Stat1Y701F to form colonies in soft agar

(Fig. 6B). The role of p27Kip1 in the inhibition of Ras-mediated

tumorigenesis by Stat1 was further evaluated in nude mice. That

is, tumor growth after subcutaneous injection of the MEFs in nude

mice was significantly enhanced for MEFs reconstituted with

either Stat1 WT or Stat1S727A and treated with shRNA against

p27Kip1 (Fig. 6C). Contrary to this, downregulation of p27Kip1 in

control MEFs or MEFs reconstituted with Stat1Y701 did not

further enhance tumor growth (Fig. 6C). These finding demon-

strated a major role of p27Kip1 in the inhibition of Ras-mediated

oncogenesis by Stat1.

To further substantiate the importance of p27Kip1 and Stat1 in

the suppression of Ras transformation, we examined the

susceptibility of Stat1+/+ and Stat12/2 mice to urethane-induced

tumorigenesis. Specifically, urethane treatment results primarily in

the development of lung tumors that carry an activating mutation

at codon 61 of K-Ras [37,38]. Loss of p27Kip1 was shown to

significantly increase the incidence and growth of lung tumors of

mice treated urethane [39]. When Stat1+/+ and Stat12/2 mice

were treated with a single intraperitoneal injection of urethane, we

observed the development of tumors in both animal groups 28

weeks after treatment (Fig. 7A). However, only 50% of the animals

in the Stat1+/+ group (8 out of 16) developed small tumors

(,0.7 mm) as opposed to the Stat12/2 group in which all animals

(n = 12) developed large tumors (.2 mm). Histological analysis

indicated that the lung tumors were a mixture of bronchioalveolar

adenomas and papillary adenomas (Fig. 7B). Immunohistochem-

ical analysis further showed a high amount of p27Kip1 in lung

tumors from Stat1+/+ mice compared to lung tumors from Stat12/

2 mice (Fig. 7C). Consistent with tumor growth, we detected a

higher amount of phosphorylated Erk1/2 in Stat12/2 than in

Stat1+/+ lung tumors, which indicated the induction of the Ras-

MAPK pathway by activated K-Ras (Fig. 7C). Interestingly, Erk1/

2 phosphorylation levels were inversely proportional to p27Kip1

levels in the lung tumors as detected by immunohistochemistry

(Fig. 7C) and immunoblotting (Fig. 7D). These data further

indicated that both p27Kip1 and Stat1 function together to

suppress Ras-mediated oncogenesis in vivo.

Discussion

Our findings uncover an important function of Stat1 in the

regulation of p27Kip1 with implications in Ras-mediated tumor-

igenesis. The ability of Stat1 to act upstream of p27Kip1 is a

property of Ras transformation because Stat1 did not exhibit

similar effects on Cdkn1b gene transcription or expression and

localization of p27Kip1 in immortalized MEFs (Fig. S3). Moreover,

induction of Cdkn1b gene transcription by Stat1 in Ras-

transformed MEFs is independent of p53 (Fig. S4). The

transcriptional effect of Stat1 on the Cdkn1b promoter depends

on Y701 phosphorylation but is independent of S727 phosphor-

ylation. Given the essential role of S727 phosphorylation in the

transactivation properties of Stat1 in response to IFNs [40,41], the

dispensable role of S727 phosphorylation in the induction of the

Cdkn1b gene indicated that transactivation of the Cdkn1b promoter

was mediated by a protein other than Stat1. Consistent with this

notion, our data demonstrated that the transcriptional induction of

the Cdkn1b gene by Stat1 occurs in cooperation with Stat3. Stat3

was previously shown to activate the Cdkn1b gene during myeloid

cell differentiation in response to IL-6 and G-CSF [18,42]. The

ability of Stat1 to cooperate with Stat3 in the transcriptional

activation of the Cdkn1b gene suggests that Stat1 is capable of re-

programming the biological function of Stat3 by converting it

from a positive to a negative regulator of cell proliferation. At first

glance, the ability of Stat3 to induce the expression of p27Kip1 in

Ras transformed cells was not in line with its well characterized

role as a positive regulator of cell proliferation and tumorigenesis

[43,44]. However, recent findings support the notion that Stat3

also possesses the capacity to impair cell proliferation and

oncogenesis in a manner that depends on the signalling pathway

and the genetic background of the target cells [45]. Although

transcriptional control of the Cdkn1b gene by Stat1 plays a major

role in regulating p27Kip1 levels in Ras transformed cells, the

Figure 3. Transcriptional induction of Cdkn1b gene by Stat1 requires Stat3. (A) (Left panel) Protein extracts from MEFs harvested at 90%
confluence (panel a, lanes 1–4) were subjected to EMSA using a [32P]-labelled double-stranded oligonucleotide containing the Stat-binding site within the
mouse Cdkn1b promoter. (Right panels) The same protein extracts from control MEFs (panel b) and MEFs reconstituted with either Stat1 WT (panel c) or
Stat1S727A (panel d) were subjected to EMSAs with various specificity controls as indicated. (B) Detection of Stat1 and Stat3 binding to the Cdkn1b
promoter by ChIP assays. Detection of Cdkn1b promoter DNA after immunoprecipitation with anti-Stat1, anti-Stat3 or rabbit IgG antibodies was
performed by PCR. Primers were designed to amplify a 201 bp fragment containing the Stat-binding site of the promoter as indicated. Input gDNA refers
to PCR amplification of the 201 bp fragment from genomic DNA purified from each type of MEFs. Quantification of Stat1 and Stat3 binding from 3
independent experiments is shown (graph in blue). (C and D) MEFs were transfected with either the pGL3 vector containing the firefly luciferase gene
under the control of three tandem repeats of Stat-binding sites of the Cdkn1b promoter (C) or the pGL2 vector containing the firefly luciferase reporter
gene under the control of the full-length 1609-bp mouse Cdkn1b promoter (D). As control, the same pGL3 vector with mutations in the Stat binding sites
was used (C). Transfections included the Stat3-D cDNA expressed from the pcDNA3 vector. Firefly luciferase activity was measured 48 hours in confluent
(C) or sub-confluent cells (D). The firefly luciferase levels were normalized to Renilla luciferase driven from the minimal promoter in the pGL3 vector utilized
as an internal control. Results are expressed 6SD for 3 experiments performed in triplicate. ** P,0.01.
doi:10.1371/journal.pone.0003476.g003
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Figure 4. p27Kip1 contributes to the inhibition of cell cycle progression by Stat1. (A) MEFs maintained at 70% confluence were subjected to
immunostaining with an anti-p27Kip1 mAb and a goat anti-mouse IgG conjugated to Alexa Fluro 488 (green). The nucleus was visualized by 4,6-
diamidino-2-phenylindole (DAPI) staining. (B) Protein extracts (500 mg) from MEFs that reached 50% (lanes 1–4) or 90% confluence (lanes 5–8) were
subjected to immunoprecipitation with an anti-Cyclin E antibody followed by in vitro kinase assays using GST-Rb (1 mg) and 1 mCi of [c-32P] ATP
(panel a). GST-Rb protein levels were visualized by Commassie blue staining (panel b). The levels of Cyclin E (panel c) and p27Kip1 (panel d) in the
kinase assays were detected by immunoblotting. CyclinE-Cdk2 activity was assessed by normalizing GST-Rb phosphorylation levels to GST-Rb protein
levels. The graph shows results expressed as 6SD from 3 independent experiments (*P,0.05; **P,0.01). (C) Cells were harvested at 50% (upper
panel) or 90% confluence (lower panel), stained with propidium iodide and analyzed for DNA content by flow cytometry. The data shown represent
one out of three reproducible experiments.
doi:10.1371/journal.pone.0003476.g004
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possibility that Stat1 can also regulate Cdkn1b gene expression at

the post-transcriptional level can not be ruled out. This notion is

supported by the observation that p27Kip1 is more highly

expressed in Ras transformed MEFs reconstituted with Stat1

WT than with Stat1S727A (Fig. 2B) although both Stat1 proteins

induce Cdkn1b gene transcription at comparable levels (Figs. 2C

and D). Possible post-transcriptional regulation of Cdkn1b gene

expression may occur at the level of mRNA translation and/or

protein stability. At the translational level, Stat1 was previously

shown to signal to the cellular translational machinery via physical

and functional interactions with the eIF2a kinase PKR [46,47]. At

the post-translational level, the potential effects of Stat1 may be

exerted through its ability to inhibit the transcription of c-myc [48],

which induces the expression of proteins, including Cyclin D1,

that sequester and inhibit p27Kip1 [13]. This is consistent with

previous findings showing that Stat1 impairs c-myc and induces

p27Kip1 expression in human monocytic U-937 cells in response to

all-trans retinoid acid [49].

The anti-proliferative effects of Stat1 in response to IFNs are

partly mediated by its ability to inhibit cell cycle progression

[9,48]. Our findings show that Stat1 is required for the

upregulation of both p21Cip1 and p27Kip1 in Ras transformed

cells in the absence of IFN treatment. It has been well documented

that mitogens increase p21Cip1 levels through the activation of Ras

and Raf-MAPK signalling [29] which results in increased

transcription of the Cdkn1a gene [50]. Consistent with these

findings, we found that induction of p21Cip1 in Ras transformed

cells is dependent on Stat1 and is mediated at the transcriptional

level (data not shown). However, unlike p27Kip1, the induction of

p21Cip1 levels in Ras transformed cells depends on both tyrosine

and serine phosphorylation of Stat1. Although Stat1 upregulates

p21Cip1 and p27Kip1 levels in Ras transformed cells through

separate mechanisms, both Cdk inhibitors appear to be involved in

G0/G1 arrest (Fig. 4). It is of interest that the cell cycle inhibitory

effects of Stat1 were increased in confluent cell cultures indicating

a role of intercellular adhesion signalling in this process. Consistent

with this observation, it was shown that Stat1 becomes activated

by the focal adhesion kinase (FAK) with important implications in

the regulation of cell adhesion and migration [51]. Given that

p27Kip1 plays an important role in cell motility independent of its

cell cycle regulatory functions [52], regulation of p27Kip1 levels by

Stat1 may also have profound roles in cell migration and tumor

metastasis [53].

Several findings support the anti-tumor function of Stat1

[43,44]. Specifically, Stat12/2mice are more prone to chemical

induced carcinogenesis than Stat1+/+ mice, and Stat12/2 mice

bred onto p532/2 background develop spontaneous tumors more

rapidly than the p532/2 mice [6]. The high incidence of tumor

formation in Stat12/2 animals is partly explained by impaired

tumor immunosurveillance caused by defects in IFN-c-signalling

and natural killer cell activity [3]. Previous work established that

the sensitivity of tumors to IFN-c is required for the development

of an anti-tumor response in immunocompetent hosts [6]. Because

nude mice are not completely immunodeficient [54], the observed

differences in tumor growth of the Ras transformed MEFs might

have been attributed to their responsiveness to IFN-c. However,

we found that the responsiveness of the Ras transformed MEFs to

IFN-c did not correlate with their growth properties in nude mice.

That is, although IFN-c-mediated gene transactivation was

impaired in Ras transformed cells expressing Stat1S727A (Fig.

S5), these cells were barely tumorigenic in nude mice (Fig. 5).

These observations argued against a role of tumor immunosur-

veillance in regulation of tumor growth in nude mice in our

system. Also, growth of Ras-transformed cells in soft agar

correlated with their growth in nude mice (Fig. 5) further

supporting a direct role of Stat1 in suppression of Ras-mediated

tumorigenesis. Our approach with shRNA clearly demonstrated

that the anti-tumor activity of Stat1 is dependent on p27Kip1

(Fig. 6). It is of interest that tumor growth of Ras-transformed

MEFs in nude mice is more highly suppressed by Stat1S727A than

Stat1 WT (Fig. 5). Inasmuch as both Stat1 [53] and p27Kip1 [55]

are involved in suppression of angiogenesis and Stat1 phosphor-

ylation is affected by tumor hypoxia [56], tumor microenviron-

ment may have more pronounced effects on the inhibition of

tumor growth of Ras-transformed cells containing Stat1S727A

than cells containing Stat1 WT. The effects of Stat1 are not

confined to Ras-transformed MEFs only since activation of the K-

Ras pathway in lung tissue by urethane results in a higher tumor

incidence in Stat12/2 than in Stat1+/+ mice (Fig. 7). Although the

increased tumor formation in urethane treated Stat12/2 mice

could partly involve defects in tumor immunosurveillance [54], the

higher incidence of lung tumor formation in Stat12/2 compared

to Stat1+/+ mice was proportional to Ras-MAPK activation and

inversely proportional to p27Kip1. Given that urethane-treated

Cdkn1b2/2 mice were more prone to lung tumorigenesis than

Cdkn1b+/+ mice [57], together these data suggest that Stat1 and

p27Kip1 act in the same pathway to inhibit Ras-mediated

oncogenesis. It is of interest that ERK1/2 phosphorylation was

diminished in lung tumors containing Stat1 compared to tumors

devoid of Stat1 (Fig. 7C and D). This result indicated that Stat1

may have an inhibitory effect on Ras-MAPK signalling. Consistent

with this notion, we noted that reconstitution of Ras-transfected

Stat12/2p532/2 MEFs with Stat1 WT resulted in a significant

inhibition of ERK1/2 phosphorylation compared to control MEFs

or MEFs reconstituted with each of the Stat1 phosphorylation

mutants (Fig. S6). The molecular basis of this inhibition is not

immediately clear and represents the focus of future experiments.

Given that activation of the Ras-MAPK pathway results in the

degradation of p27Kip1[13], inhibition of the Ras-MAPK pathway

by Stat1 may also reveal its ability to regulate p27Kip1 at the post-

translational level.

There has been an established link between Stat1 phosphory-

lation and human cancer [44]. Specifically, Stat1 is constitutively

phosphorylated at Y701 in many blood tumors including multiple

myeloma, erythroleukemia and acute myelogenous leukemia

(AML) [58]. In the case of solid tumors, Y701 phosphorylation

of Stat1 has been detected in breast as well as in head and neck

cancers [44]. Moreover, S727 phosphorylation of Stat1 is induced

in chronic lymphocytic leukemia (CLL) [58], in Wilms’ tumors

[59] as well as in tumor cells deficient in tuberous sclerosis

complex (TSC) 1 and 2 [60]. Given that phosphorylation is

essential for Stat1 activation, detection of phosphorylated Stat1 in

human tumors appears to be inconsistent with its anti-proliferative

and tumor suppressor activities. However, recent findings showed

that the anti-tumor function of Stat1 is determined by the type of

the tumor and the oncogenic signalling within it. That is, Stat1 was

shown to act as a promoter of leukemogenesis induced by v-abl

and TEL-Jak2 oncogenes [61]. Our findings suggest a different

regulation of the anti-tumor activity of Stat1 by site-specific

phosphorylation. That is, activated Ras has the capacity to

decrease Y701 phosphorylation and increase S727 phosphoryla-

tion of Stat1 (Fig. S1). These differences in Stat1 phosphorylation

may significantly contribute to Ras-mediated tumorigenesis based

on the ability of Stat1S727A or Stat1Y701F to compromise or

promote the transforming activity of Ras in MEFs respectively

(Figs. 5, 6). As such, it is reasonable to speculate that differences in

the equilibrium between serine and tyrosine phosphorylation of

Stat1 could determine the outcome of an oncogenic insult and the
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Figure 5. Stat1 inhibits Ras-mediated transformation. (A) Growth rates of the MEFs were determined by counting the number of cells for the
indicated periods of time. The results represent 6SD from two reproducible experiments performed in duplicate. (B) Morphological characteristics of
MEFs grown on tissue culture dishes (left panel) or in soft agar (SA) (right panel). Bar, 100 mm. (C) Ras-transfected MEFs reconstituted with various
Stat1 were plated in soft agar and let grow for 2 weeks. Colony formation of MEFs in soft agar was evaluated for clones larger than 100 mm. Data
shown are 6SD from three independent experiments. *P,0.05; ** P,0.01. (D) MEFs were injected into 12 female athymic nude mice (Balb/c nu/nu).
Each mouse received two subcutaneous injections (16106 cells for each of the 2 sites of injection) in the abdominal area proximal to the rear limbs
(n = 2612 = 24 injections). Mice were observed for tumor formation for ,3 weeks until the largest tumor size became 2 cm in size at which point
animals were sacrificed and tumors were excised and weighed. (E) Statistical analysis of tumor formation at 3 weeks post-injection. The average
tumor weight (g) and 6SD are shown. **P,0.01.
doi:10.1371/journal.pone.0003476.g005
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Figure 6. p27Kip1 mediates the inhibition of Ras-mediated transformation by Stat1. (A) MEFs were infected with retroviruses bearing a
shRNA against luciferase reporter gene (control shRNA) or shRNA against mouse Cdkn1b mRNA. Protein extracts (50 mg) were subjected to
immunoblot analysis for p27Kip1 (panel a) and actin (panel b). (B) Cells expressing control shRNA or Cdkn1b shRNA were plated in soft agar and let
grow for 2 weeks. Colonies expressing GFP (green) were evaluated for their ability to grow larger than 100 mm in size. Data shown are 6SD from
three independent experiments. Colony formation (%) represents the number of cells forming colonies larger than 100 mm out of hundred plated
cells. *P,0.05; **P,0.01. (C) MEFs treated with control shRNA or Cdkn1b shRNA were injected into 3 female athymic nude mice (Balb/c nu/nu). Each
mouse received two subcutaneous injections (16106 cells per site of injection) in the abdomen proximal to the rear limbs. One injection contained
MEFs treated with control shRNA (left side, white arrow) and the other injection contained MEFs treated with Cdkn1b shRNA (right side, red arrow).
Mice were observed for tumor formation for ,3 weeks until the largest tumor size became 2 cm in size at which point animals were sacrificed and
tumors were excised and weighed. Statistical analysis of tumor formation at 3 weeks post-injection is shown in the graph. The average tumor weight
(g) and 6SD are indicated. **P,0.01.
doi:10.1371/journal.pone.0003476.g006
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efficacy of chemotherapies aimed at inducing Stat1 phosphoryla-

tion [62–65]. Although Stat1 phosphorylation mutants have not

been identified in human cancers, our findings indicate that Stat1

phosphorylation in tumors may interfere with the normal function

of Stat1 and that the occurrence and frequency of site-specific

phosphorylated Stat1 in human cancers could be of significant

diagnostic and prognostic value. Consistent with this notion,

tyrosine phosphorylation of Stat1 was shown to be a marker in the

prognostic evaluation of breast tumors [66] as well as of head and

neck tumors [67].

Materials and Methods

Animals and treatments
BALB/c Stat12/2 mice [4] and wild type BALB/c mice from

Harlan labs were maintained as previously described [4]. Athymic

mice (Balb/c nu/nu), female and 4–6 weeks old, were provided by

Charles River. Urethane treatment was carried out using a

previously described protocol [57]. Mice were sacrificed after 28

weeks, dissected and examined for lung tumors. Lungs were fixed

in formalin, embedded in paraffin, and slides (4 mm thick) were

subjected to immuno-histochemical analysis. Tumors in athymic

mice were monitored daily for ,3 weeks to ensure that the

conditions and good welfare of the animals were not compro-

mised. The mice were sacrificed when the tumor size reached

2 cm at which point they became cumbersome or necrotic. The

animal experiments were performed in accordance with approved

protocols and regulations by the Animal Welfare Committee of

McGill University (protocol #3271).

Cell culture procedures
Mouse embryonic fibroblasts (MEFs) and NIH3T3 cells (ATCC

CRL-1658) were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) (Gibco) supplemented with 10% calf serum

and antibiotics. Infection with pBabe-expressing retroviruses was

described elsewhere [47]. The luciferase assays were performed

with the Dual-Luciferase Reporter Assay System (Promega) using

Renilla luciferase as an internal control. Soft agar growth assays

were performed as described [68].

Plasmids and antibodies
Myc-tagged Ha-RasG12V cDNA was subcloned into the EcoRV

site of pcDNA3.1/Hygro (Invitrogen). The pBabe vector containing

wild type (WT) HA-Stat1 was described previously [47]. HA-

Stat1S727A was produced by the QuickChange site-directed

mutagenesis (Stratagene) using the primers 59- CAACCTGCTC-

CCCATGGCACCTGAGGAGTTTGACGAGG-39 and 59-CC-

TCGTCA AACTCCTCAGGTGCCATGGGGAGCAGGTTG-

39 on wild type template vector. HA-Stat1S727A and HA-

Stat1Y701F cDNA [69] were subcloned into the SnaB I site of the

pBabe vector. Cdkn1b shRNA and luciferase shRNA in a pSIREN

vector were reported elsewhere [36]. The pGL2 vector containing

the luciferase reporter gene under the control of full length mouse

Cdkn1b promoter (21609 to + 178 bp) was described [30]. The

PGL3 vectors containing the luciferase gene under the control of

wild type or mutant Stat-binding site of the Cdkn1b promoter was

described [18]. The Stat3-D cDNA in pcDNA expression vector was

previously described [32].

Anti-Stat1a p91(C-111), anti-Myc (9E10), anti-Stat3(C-20),

anti-Stat1(M-23) and anti-p21(C-19) antibodies were purchased

from Santa Cruz Biotechnology; anti-pY701-Stat1, anti-pS727-

Stat1 and phosphor-p44/p42 MAPK (Thr202/Tyr204) antibodies

from Cell Signalling; anti-actin (C4) from Biosource International;

anti-p27Kip1 antibody from BD Transduction Laboratories; anti-

Cyclin E rabbit serum was provided by Dr. A. Besson. The

horseradish peroxidase (HRP)-conjugated anti-mouse IgG anti-

body and HRP anti-rabbit IgG antibody were from Amersham

Pharmacia Biotech. The Alexa Fluor 488 conjugated goat anti-

mouse IgG and Alexa Fluor 546 conjugated goat anti-rabbit IgG

antibodies were from Molecular Probes.

Immunoblottings, immunoprecipitations,
immunofluorescence and flow cytometry

Immunoblottings and immunoprecipitations were performed as

described [70] whereas cell cycle analysis was based on a

established protocol [71]. Immunofluorescence analysis was

performed as reported [72].

Northern blotting and electrophoretic mobility shift
assays (EMSAs)

Northern blotting using 15 mg of total RNA was performed as

described [70]. EMSAs were performed based on a previously

established protocol [46] using an oligonucleotide encompassing

the Stat-binding site of the mouse Cdkn1b promoter in wild type

form (59-TTAATTTCCTGTAACATG-39) or in its mutant form

(59- TTAATTGTCTGCGACATG-39; mutations are underlined)

as reported [18].

Chromatin immunoprecipitation (ChIP) assays
ChIP assays were carried out based on a protocol described

elsewhere [73]. Polymerase chain reaction (PCR) was performed

using the Cdkn1b forward primer 59-GTGGCTAAGAAAACA-

AGTCAAT-39 and reverse primer 59-TAGCCAGGCCTGTCG-

TATCTCA-39. The conditions were: 94uC for 5 min, 30 cycles at

94uC for 1 min, 55uC for 1 min, 72uC for 30 sec and a final

elongation at 72uC for 10 min.

Cyclin E –Cdk2 kinase assay
Immunoprecipitation of Cyclin E-Cdk2 and in vitro kinase assays

using GST-Rb were performed as previously described [33].

Supporting Information

Figure S1 Control of Stat1 phosphorylation by activated Ras. NIH3T3

cells were infected with pBabe retroviruses lacking (control; Con)

or bearing activated Ha-RasG12V. After selection in 2 mg/ml

puromycin for 2 weeks, polyclonal populations were maintained at

different levels of confluency (50–100%). Protein extracts (50 mg)

were subjected to immunoblot analysis for Stat1 phosphorylated at

Figure 7. Stat1 inhibits lung tumor formation by activated K-Ras. (A) Lungs were dissected and tumors (indicated by arrows) were counted
by visual inspection 28 weeks after urethane treatment. Tumor multiplicity was increased in Stat12/2 mice (n = 12) compared to Stat1+/+ mice (n = 15).
** P,0.01. (B) Eosin and hematoxylin staining of lungs tissues from Stat1+/+ and Stat12/2 mice. The location of tumors in the stained lung tissue is
indicated by arrows. Tumors were classified as bronchioalveolar adenomas and papillary adenomas. (C) Lung tissue from urethane-treated Stat1+/+ or
Stat12/2 mice was subjected to immunohistochemical analysis for p27Kip1(top panels), phospho-(p)Erk1/2 (middle panels) and proliferating cell
nuclear antigen (PCNA) (bottom panels). Staining of the areas in rectangles is shown in higher magnification in the right panels. The location of
tumors is indicated by arrows. (D) Protein extracts (50 mg) from Stat1+/+(T1, T2) and Stat12/2(T3, T4) lung tumors were separated by SDS-PAGE and
subjected to immunoblot analysis for Stat1, p27Kip1, phospho(p)-Erk1/2, total Erk1/2 and actin.
doi:10.1371/journal.pone.0003476.g007
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Y701 (panel a) or S727 (panel b), total Stat1 (panel c), ERK1/2

phosphorylated at Thr202/Tyr204 (panel d), total ERK1/2 (panel

e) or actin (panel f). The doublet recognized by the Stat1 Y701

phosphospecific antibody most likely represents the two isoforms

(a and b) of Stat1.

Found at: doi:10.1371/journal.pone.0003476.s001 (6.40 MB TIF)

Figure S2 Evaluation of apoptosis in Ras-transformed Stat12/2p532/2

MEFs reconstituted with the various forms of Stat1. Sub-confluent Ras-

transformed Stat12/2p532/2 MEFs lacking (Control) or recon-

stituted with either Stat1 WT or Stat1S727A were subjected to

staining with Annexin V-propidium iodide (PI) staining according

to the manufacturer’s specifications (Biosource). Cells were then

subjected to flow cytometry analysis by using FACScan (Becton

Dickinson), and data were analyzed by using WinMDI version 2.8

software (The Scripps Institute). The data represent one out of two

reproducible experiments.

Found at: doi:10.1371/journal.pone.0003476.s002 (4.84 MB TIF)

Figure S3 Detection of p27Kip1 localization and Cdkn1b mRNA levels

in immortalized MEFs containing Stat1 WT or Stat1 phosphorylation

mutants. (A) Spontaneously immortalized isogenic Stat12/2 MEFs

as well as Stat12/2 MEFs reconstituted with Stat1 WT were

subjected to immunostaining for endogenous p27Kip1 and Stat1 as

described in Fig. 4A. (B) Immortalized Stat12/2 MEFs reconsti-

tuted with either Stat1 WT or Stat1 phosphorylation mutants (i.e.

Stat1Y701F, Stat1S727A) were maintained at 90% confluency

and subjected to Northern blot analysis for detection of

endogenous Cdkn1b (a) and GAPDH mRNA levels (b) as described

in Fig. 2C. The levels of reconstituted Stat1 proteins were detected

by immunoblot analysis (panel c). The data represent one out of

two reproducible experiments.

Found at: doi:10.1371/journal.pone.0003476.s003 (5.93 MB TIF)

Figure S4 Examination of the role of p53 in induction of Cdkn1b gene

transcription by Stat1. Ras-transformed Stat12/2p532/2 MEFs

(Control) and Ras-trasnformed Stat12/2p532/2 MEFs reconsti-

tuted with Stat1 WT (Stat1 WT) were transfected with pCL2

vector containing the firefly luciferase reporter gene under the

control of the full length mouse Cdkn1b promoter (Cdkn1bWT)

together with the pcDNA3.0 vector lacking (pcDNA3) or

containing the mouse wild type p53 cDNA (p53). As control,

pCL2 vector containing the firefly luciferase gene but lacking the

Cdkn1b promoter was used. The firefly luciferase levels were

normalized to Renilla luciferase driven from the minimal

promoter in the pGL3 vector used as an internal control. Results

are expressed 6SD for 3 experiments performed in triplicate.

Found at: doi:10.1371/journal.pone.0003476.s004 (3.95 MB TIF)

Figure S5 Control of IFN-c-mediated gene transactivation in Ras-

trasnfected MEFs. MEFs were transiently transfected with a firefly

luciferase reporter gene under the control of a promoter

containing two IFN-c-activated sites (GAS) from the IFP53 gene

(pGL-2XIFP53 GAS luciferase). Thirty two hours post transfec-

tion cells were left untreated or treated with 500 IU/ml of mouse

IFN-c (Biosource) for 12 hours. Cells were harvested and assayed

for firefly luciferase activity and normalized to an internal control

consisting of a renilla luciferase reporter. Results are expressed

6SD for 3 experiments performed in triplicate.

Found at: doi:10.1371/journal.pone.0003476.s005 (3.37 MB TIF)

Figure S6 Detection of ERK1/2 phosphorylation in Ras-transfromed

MEFs. Protein extracts (50 mg) from confluent cells were subjected

to immunoblotting for ERK1/2 phosphorylated at Thr202/

Tyr204 (panel a) as well as for total ERK1/2 (panel b). The ratio

of phosphorylated to non-phosphorylated ERK1/2 for each lane is

indicated. The data represent one out of two reproducible

experiments.

Found at: doi:10.1371/journal.pone.0003476.s006 (3.77 MB TIF)
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