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Abstract: Infections by carbapenem-resistant A. baumannii (CRAB), a widespread nosocomial path-
ogen, are becoming increasingly difficult to prevent and treat. Therefore, there is an urgent need
for discovery of novel antibiotics against CRAB. Programmable, precision antisense antibiotics, e.g.,
based on the nucleic acid mimic PNA (peptide nucleic acid) have shown promise in this respect in the
form of PNA-BPP (bacteria penetrating peptide) conjugates targeting essential bacterial genes. In the
present study, we designed and synthesized a series of PNA-BPPs targeting the translation initiation
region of the ftsZ, acpP, or rne gene of CRAB strains. The antimicrobial activity of the compounds and
effects on gene expression level was compared to that of analogous mismatch PNA controls. Three
antisense conjugates (KFF)3K-eg1-(acpP)PNA (5639), (KFF)3K-eg1-(ftsZ)PNA (5612), and (KFF)3-
K-eg1-(rne)PNA (5656) exhibited complete growth inhibition against several CRAB strains at 1–2,
2–8, and 2 µM, respectively, and the compounds were bactericidal at 1–2× MIC. The bactericidal
effect was correlated to reduction of target gene mRNA level using RT-qPCR, and the compounds
showed no bacterial membrane disruption activity at 1–2× MIC. PNA5612 was tested against a
series of 12 CRAB isolates and all were sensitive at 2–8 µM. In addition, the conjugates exhibited
no cellular toxicity in the HepG2 cell line (up to 20 µM) and did not shown significant antibacterial
activity against other Gram negatives (E. coli, P. aeruginosa). These results provide a starting point for
discovery of antisense precision designer antibiotics for specific treatment of CRAB infections.

Keywords: precision antibiotics; antisense; A. baumannii; carbapenem resistance; peptide nucleic
acid (PNA)

1. Introduction

Acinetobacter baumannii is a major cause of both community-associated and nosocomial
infections that are difficult to control and treat worldwide, and antibiotic resistance is
becoming a major problem in hospitals where outbreaks are reported frequently, especially
in intensive care units [1,2]. A. baumannii has a remarkable ability to rapidly develop
antibiotic resistance, which has led to multidrug resistant strains within a few decades [3].
Presently, a substantial proportion of these isolates are also carbapenem resistant, and the
mortality rates for the most common carbapenem resistant A. baumannii (CRAB) infections,
primarily hospital-acquired pneumonia and bloodstream infections, can approach 60% [4].
Currently used antimicrobials for CRAB (polymyxins and tigecycline) are far from perfect
therapeutic options due to toxicity issues and increasing resistance rates also against these
antibiotics [3,4]. Thus, discovery of new classes of antibiotics with novel molecular targets
and mechanism of action for treating and managing CRAB infections is urgently needed.

Exploitation of antisense antimicrobials in the form of short oligonucleotide analogous
and mimics that inhibit that expression of essential genes at the RNA level is a promising
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approach [5,6], which was introduced two decades ago using 9-12-mer PNA (peptide
nucleic acid) oligomers targeting the essential acpP gene in E. coli [7]. Subsequently, PNA
and PMO (phosphorodiamidate morpholino oligomer) antibacterial agents have been
studied extensively for targeting a multitude of genes in many bacterial species [8,9]. In
theory, this approach allows targeting of any expressed gene, thereby making it druggable,
and circumventing known resistance mechanisms. In addition, the intended target bacteria
can be programmed specifically via the chosen gene sequence with high precision.

PNA is a charge neutral, hydrophilic synthetic polymer with a pseudo-peptide
backbone exhibiting high sequence specific affinity for complementary RNA (and DNA)
molecules. In addition, PNA oligomers have very high biological stability being practically
inert to both nucleases and peptidases [10], but cellular (including bacterial) uptake is a
general challenge in the application of PNAs (as well as PMOs) as antisense agents. How-
ever, conjugation to bacteria penetrating peptides (BPPs) was discovered as a successful
way to ensure increased PNA uptake and thereby efficacy [7]. In the last two decades, many
mRNA encoding essential genes in clinically pathogenic bacteria have been validated as
possible targets for antisense antibacterial agents. The most effective antisense agents were
designed complementary to the mRNA around or proximally upstream of the translation
start codon [11]. Upon binding to the mRNA, PMO and PNA act through steric hindrance
of mRNA translation or processing, contrary to some other antisense oligonucleotides that
induce mRNA degradation via activation of RNase H.

In this study, we have investigated and characterized antisense specific antimicrobial
activity of the series of peptide–PNA conjugates targeting the essential acpP, ftsZ, and rne
genes in carbapenem resistant clinical Acinetobacter baumannii isolates with the ultimate
aim of discovering new precision antibiotics.

2. Materials and Methods

2.1. Bacterial Strains

Strains used in this study are listed in Table S1-A. Clinical isolates of carbapenem-
resistant A. baumannii (CRAB) were previously collected from Valiasr hospital (Arak-
Iran) [12]. Standard biochemical tests were performed to identify A. baumannii phenotypi-
cally. In addition, blaOXA-51 PCR was performed. Species-level identification of isolates was
reconfirmed by the MALDI Biotyper system (Statens Seruminstitute (SSI), Copenhagen,
Denmark). One CRAB strain (SSI1104) was kindly provided by Dr. Anette M. Hammerum
(SSI carbapenemase collection, Copenhagen-Denmark). A. baumannii ATCC 19606 was
used as a reference strain. Clinical isolates were previously tested for the presence of the
carbapenemase encoding genes such as blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58, blaIMP,
blaVIM, blaSPM, blaGES, blaSIM, and blaGIM according to the Ellington study (Table S1B) [13].

2.2. Antibiotic MIC

All minimum inhibitory concentration (MIC) determinations for antibiotics were
performed by the standard microdilution method in 96-well microplate (Thermo-Scientific,
Roskilde, Denmark) or by gradient test strips (Liofilchem, Italy) according to the Clinical
and Laboratory Standards Institute guidelines [14]. Escherichia coli ATCC 25922 was used
as control.

2.3. Computational Screening of Sequence Regions in the mRNA of Target Genes

Acinetobacter baumannii strains that were examined for designing antisense in this
study are shown in Table S2. Sequence alignment of target genes (obtained from GenBank
database updated January 2019) were carried out using the Basic Local Alignment Search
Tool (BLAST) on the National Center for Biotechnology Information (NCBI) website [15].

2.4. BPP-PNA Synthesis

Peptide–PNA conjugates (Tables S3–S5) were synthesized by continuous solid phase
synthesis using Boc-chemistry as previously described [7]. The conjugates were purified
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by reversed phase high-performance liquid chromatography (HPLC) on an RP18 column
using a 0–40% acetonitrile gradient in 0.1% trifluoroacetic acid. Characterization in terms
of purity and identity was done by HPLC and matrix-assisted laser desorption/ionization-
time of flight (MALDI-TOF) mass spectrometric analyses. All conjugates exhibited masses
within experimental error corresponding to the calculated mass and were >95% pure by
HPLC analysis (Figure S7).

2.5. BPP-PNA MIC

MIC values were determined by broth microdilution according to standard protocols
with a few modifications. An overnight bacterial cell culture was diluted to approximately
5 × 105 CFU/mL in non-cation-adjusted Muller Hinton Broth (MHB). Then, 180 µL bacte-
rial solutions were dispensed into a low-bind 96-well plate (Thermo-Scientific, Roskilde,
Denmark) along with 20 µL of BPP-PNA compound (BPP-PNA was serially diluted 2-fold
from 16 to 0.5 µM in a 96-well plate). The plate was incubated in a Tecan Genios plate
reader (GMI, Minnesota, Ramsey, USA) at 37 ◦C for 18 h with linear shaking, OD was
measured every 20 min at 595 nm. The MIC was determined as the lowest concentra-
tion, that inhibited visible growth (OD < 0.1) in the wells [16]. The minimum bactericidal
concentration (MBC) values were determined by plating 10 µL samples from the wells
with no visible turbidity onto Mueller–Hinton agar plates. The MBC is determined the
lowest concentration of BPP-PNA that reduces the viability of the initial bacterial inoculum
by ≥99.9% (3-log reduction in CFU/mL). A minimum of two independent experiments
(biological replicates) of the assay were conducted, and two technical replicates were used
in each experiment for each bacterium, compound, and concentration.

2.6. Time-Kill Assay

A. baumannii strains in logarithmic growth phase were diluted to ~106 CFU/mL and
incubated with different concentration (corresponding to the MIC-value) of the BPP-PNA
at 37 ◦C for 6 h.

Bacterial cultures were harvested at 0, 90 min, 3 and 6 h. The content of each well
was added to 0.9 mL of MHB and centrifuged at 9300× g for 5 min. Supernatants were
removed and the cell pellets were suspended in fresh pre-warmed MHB (100 µL). Tenfold
serial dilution were prepared, and 10 µL aliquots were plated on Mueller–Hinton agar and
incubated overnight at 37 ◦C to determine the CFU/mL [17].

2.7. HepG2 Cell Toxicity

The cell toxicity of selected BPP-PNAs was determined using HepG2 hepatocytes
grown in DMEM (low glucose) medium supplemented with 100 U/mL penicillin,
100 µg/mL streptomycin, 1% glutamax, and 10% fetal bovine serum (FBS) (Thermofisher
Scientific, Roskilde, Denmark), at 37 ◦C with 5% CO2. Then, 7000–10,000 cells were seeded
in each well of a 96-well plate. After 48 h, the BPP-PNAs were added (six replicates for each
concentration), followed by overnight incubation. Total amount of adenosine triphosphate
(ATP) was used as a measure of cell viability, according to the CellTiter-Glo luminescent
cell viability assay (Promega, Madison, WI, USA) kit. BPP-PNAs concentrations ranged
from 2.5 to 20 µM. Potassium dichromate (100 µM) was used as a positive control.

2.8. Envelope Disruption

A culture of A. baumannii ATCC 19606 was grown in MHB (195 rpm at 37 ◦C), until
OD595 = 0.4. Then, bacterial cells were pelleted by centrifugation, washed with 0.9% NaCl,
and resuspended in MHB at an OD595 = 0.1. Sytox green dye (Invitrogen) was added
to the bacterial culture at a concentration of 2 µM followed by incubation for 5 min at
37 ◦C, followed by addition of the desired amount of BPP–PNA in a 96-well plate format.
Fluorescence intensity (λex = 480 nm, λem = 520 nm) was measured every 5 min for 90 min
at 37 ◦C with continuous shaking. Colistin (Sigma Aldrich, Merck, Darmstadt, Germany)
at 1× and 2×MIC concentrations provided the positive control [18].
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2.9. Real-Time RT-PCR

Real time RT-PCR was used to determine the relative expression level of the target gene
upon treatment with match BPP-PNA compared to mismatch and untreated controls. The
primers for q-PCR were designed to match conserved gene sequences using the AlleleID7
software (Premier Biosoft, San Francisco, CA, USA) (Table S6). Additionally, for more
accurate expression of the genes at treatment and untreated conditions, the efficacy of target
gene and internal controls primers was calculated by using three consecutive dilutions of
the sample cDNA and drawing a standard curve through the slope of the line. NormFinder
software was used to select the most stable reference gene among polA, zipA, and 16S rRNA.
Statistical analysis was carried out on the gene expression levels normalized to the chosen
reference gene (16S rRNA) through −∆Ct analysis. The relative expression of each gene
was determined by the 2−∆∆CT method [19]. We used the GenEx standard (NormFinder
and GeNorm) software (bioMCC, Germany) for analyzing the data.

An overnight culture of bacteria was diluted 1:100 in MHB medium and was grown
with shaking (160 rpm) at 37 ◦C to reach the OD595 = 0.2. Then, the bacterial culture
was treated with different concentrations of BPP-PNA for 1 h and the bacterial cells were
harvested by centrifugation and the cell pellet used for RNA extraction [19].

Total RNA was isolated using the GeneJET RNA purification kit (ThermoFisher
Scientific, Roskilde, Denmark) following the manufacturer’s protocol. RNA samples
were treated with DNase for 30 min at 37 ◦C (Turbo DNA-free kit Ambion/Applied
Biosystems, Carlsbad, CA, USA) and then incubated at 72 ◦C for 5 min to inactivate the
DNase. The genomic DNA (gDNA) contamination was checked by polymerase chain
reaction (PCR). RNA concentrations were determined by Nanodrop spectrophotometry at
260 nm and purity was checked by determining the absorption ratios at 260/280 nm. Total
RNA (0.5 µg) was reverse-transcribed to yield cDNA as template for real-time quantitative
PCR using the Quanti Tect reverse transcription kit (Qiagen, Copenhagen, Denmark). The
cDNA was diluted 1:50 and used as a template in the reaction. The real-time polymerase
chain reaction was carried out with 5 µL of cDNA in a 20 µL reaction consisting of 4 µL
Light Cycler Fast Start DNA Master SYBER I Green (Roche), 0.5 µL of each primer (final
concentration = 0.25 µM), and 10 µL of water using Biorad CFX96 TouchTM real-time PCR
detection system (Bio-Rad Laboratories Inc., Hercules, CA, USA) under these conditions:
pre-incubation at 95 ◦C for 8 min, followed by 40 cycles with denaturing at 95 ◦C for 10 s,
annealing at 50 ◦C for 15 s, and elongation at 72 ◦C for 15 s and then 8 min final extension.

2.10. Statistics

All statistical analyses were carried out in SPSS 17.0 (SPSS, Chicago, IL, USA). Data
are expressed as mean ± standard deviation (SD) of the biological replicates and analyzed
using Student’s t-test and ANOVA. p values of ≤0.05 were considered significant.

3. Results

3.1. PNA Design for the mRNA of Target Genes

3.1.1. AcpP

The acpP gene is the original and to date most frequently used antibacterial antisense
target [7,16,17,20–22]. When searching the acpP gene in the NCBI (GenBank) and Genolist
databases, two lengths for this gene in different strains of A. baumannii were discovered
(Figures S2 and S4). The acpP coding gene in A. baumannii ATCC19606, AYE, and SDF
strains was 276 bp in length, while the length was 237 bp for both ACICU and ATCC17978
strains. The difference was related to 39 bases in the first part of the gene utilizing either of
two translation initiation sites (GTG at +1 or +40). Therefore, we designed PNAs targeting
both of these sites (Figure 1, Table 1).
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Figure 1. Sequence from the acpP mRNA and positions of the PNA targets.

Table 1. PNAs targeted to the acpP gene sequence of A. baumannii AYE are displayed with their designation numbers.
The MIC values (µM) for the four CRAB strains are presented compared to that for the standard, ATCC 19606 strain. m:
Match, mm: Mismatch. * in Sigma MHB medium without cation. ** in Oxoid MHB medium, cation adjusted. a According
to the start codon of the AYE, SDF strains. b According to the start codon of the ACICU, ATCC17978 strains. The gene
sequence obtained from GenBank database updated January 2019. c D-form peptide. The PNAs are written from their N to
C termini, and the N terminus corresponds to the 5′ end of a conventional oligonucleotide. K: lysine. F: phenylalanine. eg1:
8-amino-3,6-dioxaoctanoyl.

PNA No. Sequence N→C Target
Position

Peptide
MIC (µM)

ATCC
19606 AC44 AC46 SSI 1104 AC2

5652 (m) * ATATCGCTCAC +40 to +50 b H-(KFF)3K-eg1 4 4 4 4 4
5653 (mm) * ATACCGCTTAC H-(KFF)3K-eg1 4 4 4 4 4
5639 (m) * TGATTTGCCAC +1 to +11 a H-(KFF)3K-eg1 2 1 1 2 1–2

5640 (mm) * TGACTTGTCAC H-(KFF)3K-eg1 4 4 4 4 4
5639 (m) ** TGATTTGCCAC +1 to +11 a H-(KFF)3K-eg1 4 4 4 4 4

5640 (mm) ** TGACTTGTCAC H-(KFF)3K-eg1 4 4 4 4 4
5823 (m) * TGATTTGCCAC +1 to +11 a H-(kff)3k-eg1 c 4 4 4 4 4

5824 (mm) * TGACTTGTCAC H-(kff)3k-eg1 c 8 4 4 8 8

3.1.2. FtsZ

The ftsZ gene has frequently been used as an antibacterial antisense target [17,21,22]
and it is well conserved across A. baumannii species. BLAST results confirmed that the 5′

terminal region of the ftsZ gene including the ribosomal binding site and the start ATG
codon is conserved among A. baumannii species (Figure S1-A). A. baumannii strains and
target genes that were examined for designing antisense in this study are shown in Table S2.

3.1.3. RNase E

RNase E is an essential bacterial endoribonuclease involved in the turnover of messen-
ger RNA and the maturation of structured RNA precursors (rRNA and tRNA processing)
in E. coli [23,24]. The major initiator of bacterial mRNA decay is considered to be a multi-
protein complex termed the RNA degradosome. This complex is best characterized in
the Gram-negative model organism, Escherichia coli, and consists of at least four subunits:
RNA helicase B (RhlB), enolase, polynucleotide phosphorylase (PNPase), and RNase E.
RNase E is the central component of the E. coli degradosome, establishing a scaffold for the
assembly of other degradosome subunits and performing the initial endoribonucleolytic
event during substrate mRNA decay. Thus, RNase E may represent a promising novel
multi-function antimicrobial target. However, this enzyme has so far not been exploited
for antisense antibiotic discovery.

In the genome of A. baumannii AYE strain, the rne gene encodes the 1110-amino acid
protein (ABAYE3375). The BlastP analysis revealed an amino acid sequence identity of
60.5% with the E. coli RNase E. Thus, there is significant homology between RNase E
in E. coli and RNase E in A. baumannii, and in addition the rne gene is well conserved
across A. baumannii species. The BLAST results confirmed that the 5′ terminal region of
the rne gene including the ribosomal binding site and the ATG start codon is conserved
among A. baumannii species (Figure S1-B). In this study, four 11-mer targets overlapping
the translation start were chosen.
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3.2. MIC and Time Kill Kinetics

We evaluated the antibacterial activity of the compounds by determining the min-
imum inhibitory concentration (MIC) against several A. baumannii strains. The target
positions, PNA sequences, CPP, and MIC values are presented below. In case of acpP,
according to the variation in gene size (vide supra), we designed the antisense oligomers to
cover both possible start codon regions (Table 1). The MIC value for PNA 5652 targeting the
“downstream” GTG was 4 µM in all tested strains, but importantly, when an analogous mis-
match PNA control (5653) was tested, no difference in activity was found when compared
with the match PNA (5652) (Table 1). Thus, the antibacterial activity could not be assigned
to an antisense mechanism of action. However, significant difference between the MIC
values of PNA 5639 (targeting the upstream GTG start codon) was found compared with
the analogous mismatch control PNA (5640) (Table 1, Figure 1, Figure S5-A). In addition,
bactericidal activity of PNA 5639 was characterized against A. baumannii ATCC 19606
strain. The ATCC 19606 strain was exposed to 4 or 8 µM of PNA 5639 (and control) for 6 h.
As shown in Figure 2, this compound showed fast bactericidal activity resulting in a 4 log
reduction after 3 h treatment. The potency of this compound was 1–4-fold decreased when
tested in cation adjusted MHB (because divalent cations can stabilize bacterial membranes).
Finally, changing the BPP form the natural L-form to the D-form (PNAs 5823 and 5824)
reduced both activity and antisense (match/mismatch) specificity.
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Figure 2. Killing kinetics of anti-acpP peptide-PNA (5639) and anti-ftsZ peptide-PNA (5612) conjugates against A. baumannii
ATCC 19606. Strain was grown in the absence of peptide–PNA conjugate (control) or in the presence of MIC and 2×MIC of
anti-acpP peptide-PNA (5639) and anti-ftsZ peptide-PNA (5612). Each point value represents the mean of two independent
experiments with at least two technical replicates for each experiment. MHB without cation (Sigma) was used.

PNA 5612 (Figure 3) was the most active of the anti ftsZ PNAs. The MIC values for
this compound ranged from 4 to 8 µM and was 2–4-fold lower than for the corresponding
mismatch control PNA (5615) (Table 2), corroborating an antisense mechanism of action.
The bactericidal activity of PNA 5612 was characterized against the A. baumannii ATCC
19606, and as shown in Figure 2, the compound exhibited fast bactericidal activity yield-
ing more than three order of magnitude CFU reduction after 3 h at 4 µM. Furthermore,
PNA5612 showed good activity against 12 multidrug resistant clinical isolates with MIC
values ranging from 2–8 µM and exhibiting a 2–8-fold match/mismatch ratio (Table 3,
Figure S5-B). Finally, exchanging the (KFF)3K BPP for the (R-Ahx-R)4 BPP, which has been
used successfully e.g., in E. coli and Pseudomonas aeruginosa [17] yielded a significantly less
potent compound (PNA5613, MIC > 16M) (Table 2).
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Figure 3. Sequence from the ftsZ mRNA and positions of the PNA targets.

Table 2. PNAs targeted to the ftsZ gene of A. baumannii AYE are displayed with their designation numbers. Minimum
inhibitory concentrations (µM) of anti-ftsZ CPP-PNAs and mismatch control against CRAB strains. MHB without cation
(Oxoid) was used. m: Match, mm: Mismatch. The PNAs are written from their N to C termini, and the N terminus
corresponds to the 5′ end of a conventional oligonucleotide. K: lysine, F: phenylalanine. R: arginine. Ahx: 6-aminohexanoyl.
eg1: 8-amino-3,6-dioxaoctanoyl. nd: not determined.

PNA No Sequence N→C Target Position Peptide
MIC (µM)

ATCC
19606 AC44 SSI1104

5612 (m) GAGGCCATGAC −3 to +8 H-(KFF)3K-eg1 4 8 4
5615 (mm) GAGTCCAGGAC H-(KFF)3K-eg1 8 16 16
5613 (m) GAGGCCATGAC −3 to +8 H-(R-Ahx-R)4-Ahx >16 >16 nd

5616 (mm) GAGTCCAGGAC H-(R-Ahx-R)4-Ahx >16 >16 nd
5657 (m) ATGAGGCCATG −1 to +10 H-(KFF)3K-eg1 >16 16 nd
5658 (m) GGCCATGACCT −5 to +6 H-(KFF)3K-eg1 4 8 8

Table 3. Minimum inhibitory concentrations of the most potent Anti-ftsZ CPP-PNA (5612) and
mismatch control (5615) against the CRAB and ATCC 19606 strains. MHB without cation (Oxoid)
was used.

Strains H-(KFF)3K-eg1-ftsZ PNA(5612) H-(KFF)3K-eg1-ftsZ PNA(5615)

ATCC19606 4 µM 8 µM
AC1 4 µM 16 µM
AC2 2 µM 16 µM
AC3 4 µM 8 µM
AC4 8 µM 16 µM
AC5 4 µM 16 µM
AC6 4 µM 8 µM
AC7 4 µM 16 µM
AC8 8 µM 16 µM
AC9 2 µM 16 µM

AC44 8 µM 16 µM
AC46 8 µM 16 µM

SSI1104 4 µM 16 µM
MIC50 4 µM 16 µM

Finally, for the rne gene, four different (KFF)3K-PNAs were design targeting the start
codon in different registers (Figure 4, Table 4). MIC determination showed that PNA5656
(−5 to +6 register) was the most active, yielding a MIC of 2 µM and a four-fold mismatch
discrimination. Concentration dependent bactericidal activity was determined on the
highly antibiotic resistant clinical isolate AC46 in a concentration range from 1–8 µM
(Figure 5) and showed very significant CFU reduction by the match PNA compared to the
corresponding mismatch control PNA (5822), thus supporting that rne gene expression is
essential for A. baumannii survival.
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Figure 4. Sequence from the rne mRNA and positions of the PNA targets.

Table 4. PNAs targeted to the start-codon region of the rne gene of A. baumannii AYE are displayed with their designation
numbers. The MIC values (µM) for the four CRAB strains are presented compared to that for the standard ATCC19606
strain. m: Match, mm: Mismatch. The PNAs are written from the N to C termini, and the N terminus corresponds to the 5′

end of a conventional oligonucleotide. K: lysine. F: phenylalanine. eg1: 8-amino-3, 6-dioxaoctanoyl. nd: not determined.

PNA No Sequence N→C Target
Position

Peptide
MIC (µM)

ATCC
19606 AC44 AC46 SSI 1104 AC2

5637 (m) ACGTTTCATGG −2 to +9 H-(KFF)3K-eg1 1 1 1 nd nd
5638 (mm) ACGATTCTTGG H-(KFF)3K-eg1 2 2 1 nd nd
5654 (m) ATACGTTTCAT +1 to +11 H-(KFF)3K-eg1 2 1 2 2 2

5821 (mm) ATCCGTTTAAT H-(KFF)3K-eg1 4 1 2 2 2
5656 (m) TTTCATGGGTG −5 to +6 H-(KFF)3K-eg1 2 2 2 2 2

5822 (mm) TTTGATGTGTG H-(KFF)3K-eg1 8 8 8 8 8
5655 (m) GTTTCATGGGT −4 to +7 H-(KFF)3K-eg1 4 8 nd nd 8
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Figure 5. Minimum bactericidal concentration (MBC) assays for the BPP-anti-rne PNA (5656) and
mismatch control (5822) in antibiotic resistant clinical isolate AC46 after 24 h incubation and concen-
tration range from 1–8 µM. Dashed line represents the limit of detection.

3.3. Species-Selective Activity of BPP-PNAs

In principle, a specific antisense PNA-peptide conjugate should only show activity
against species that harbor the sequence target for the PNA in a sensitive essential gene
position (e.g., overlapping the ribosome binding site and/or the translation initiation
codon), and in which the conjugate is taken up. Thus, the A. baumannii active PNAs 5612,
5639, and 5652 were also tested for activity against E. coli and P. aeruginosa as a non-target
species where no obvious gene target match for the PNAs exists. The results (Table 5) also
clearly show that neither of these PNAs are active against E. coli and P. aeruginosa, thereby
illustrating species specific/selective activity of these precision antisense antibiotics. In
addition, a fourth analogous PNA (3965) without obvious target in any of the three species
likewise did not show activity against these either.
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Table 5. Antibacterial activity of the most active compounds, anti-ftsZ (KFF)3K-PNA and anti-acpP (KFF)3K-PNA, against
both target and non-target species. # In addition, the antibacterial activity of compound 3965 (designed against the ftsZ gene
in E. coli with two base mismatches) against ATCC and CRAB strains is shown here. MHB without cation (Oxoid) was used.
* Conjugated to H-(KFF)3K-eg1- at the N-terminal. m: Match. mm: Mismatch. nd: not determined.

Target PNA Sequence *
MIC (µM) MIC (µM) MIC (µM) MIC (µM)

P. aeruginosa
(PAO1)

E. coli K-12
MG1655

A. baumannii
ATCC 19606

A. baumannii
SSI1104

ftsZ (m) 5612 GAGGCCATGAC >16 µM >16 µM 4 µM 4 µM
acpP (m) 5639 TGATTTGCCAC >16 µM >16 µM 2 µM 2 µM
acpP (m) 5652 ATATCGCTCAC 16 µM 16 µM 4 µM 4 µM

ftsZ (mm) # 3965 TTCTAACAAAGT nd 16 µM 16 µM ≥16 µM

3.4. Cytotoxicity

It is well established that cationic peptides in general can exhibit mammalian cellular
toxicity. Thus, a toxicity characterization was performed in a standard in vitro HepG2 cell
culture assay based on mitochondrial activity. These results showed significant difference
in eukaryotic cell toxicity between PNA 5612 and 5639 compared to PNA 5613 (Figure 6).
After 24 h of exposure to 20 µM of BPP-PNAs, the highest concentrations of BPP-PNAs
tested resulted in 8–20% reduction in cell viability for BPP-PNAs 5639 and 5612, while
exposure to the MIC50 concentration (2–4 µM) resulted in no reduction in viability for both
PNAs 5639 and 5612. Notably, the H-(R-Ahx-R)4-Ahx-PNA 5613 showed very significant
toxicity at 10 µM (EC50 was between 5 and 10 µM).
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Figure 6. Cell viability assay of anti-acpP (KFF)3K-PNA 5639, anti-ftsZ (KFF)3K-PNA 5612, and anti-ftsZ(R-Ahx-R)4-Ahx-
PNA 5613 in HepG2 cell culture. Cell viability was quantified by ATP level. The data are presented as the mean of
normalized percentage of two individual experiments (each comprising six replicates for each concentration) relative to
untreated cells (error bars represent SEM). Potassium dichromate (100 µM) was used as a positive control.
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3.5. Envelope Disruption

Structurally BPPs are related to antimicrobial peptides containing both cationic and
hydrophobic amino acids (exemplified by lysine and arginine, and phenylalanine and
amino hexanoic acid in the peptides used here) and some antimicrobial peptides may even
be employed as BPPs [20,25]. Therefore, non-antisense-related activity as seen for some of
the BPP-PNAs in this study could be due to membrane/envelope disruption. This may be
tested using the DNA binding fluorescent dye Sytox, which is not taken up by live, intact
bacteria. However, cell envelope disruption leads to cellular uptake of the Sytox, resulting
in an enhanced fluorescence due to DNA binding of the dye which can be observed in both
a concentration- and time-dependent manner. Colistin, a known membrane-disrupting
agent, was used as a positive control. However, the Sytox uptake assay gave no indication
of membrane disruption activity of the anti-acpP (KFF)3-K-PNA 5639 and anti-ftsZ (KFF)3-
K-PNA 5612 even at 2×MIC concentration (4 µM), and only a minimal effect at 8 µM, in
sharp contrast to the effect of colistin (Figure 7).
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was used as positive control.

3.6. Effect on Target mRNA

The molecular antisense mechanism of PNA oligomers in bacteria is believed to rely
on translation inhibition via steric blockage of ribosome assembly on the mRNA. In other
words, antisense PNA silencing in bacteria leads to translation repression and presumably
unmasking of the mRNA. The mRNA unmasking may in turn lead to (nonsense mediated)
decay [24]. In order to address whether such a mechanism is involved in the activities
observed with the present BPP-PNAs, mRNA levels for the target genes were determined
by RT-real time PCR. Specifically, the impact of different concentrations of anti-acpP (KFF)3-
K-PNA 5639 and the corresponding mismatch control 5640 on the expression level of the
acpP mRNA was analyzed (Figure 8). A significant reduction in the level of the acpP mRNA
was observed upon treatment with BPP-PNA 5639 (>34-fold reduction) (Figure S6-A),
while only a minor reduction was observed with the corresponding mismatch control
BPP-PNA 5640 (4-fold reduction) (Figure S6-B). The differences in the relative expression
of the acpP gene upon treatment with BPP-PNA 5640 was not statistically significant
(p-value = 0.059, two-tailed Student’s t-test). We also find a reduction (up to 60%) in ftsZ
mRNA 1 h after treatment with anti-ftsZ (KFF)3K-PNA 5612 (match) in the AC44 strain,
while only a minor reduction was observed with the corresponding mismatch control PNA
(up to 28%, Figure 8).
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Figure 8. The acpP mRNA level in the CRAB AC44 strain after one hour treatment with anti-
acpP (KFF)3K-PNA 5639 (match) or anti-acpP (KFF)3K-PNA 5640 (mismatch) compared with the
untreated control. Gene expression levels were normalized to 16S rRNA through -∆Ct analysis
and are presented as fold change versus control (untreated sample) calculated by the-∆∆Ct method.
The ftsZ mRNA level in the CRAB AC44 strain after one hour treatment with anti-ftsZ (KFF)3K-
PNA 5612 (match) or anti-ftsZ (KFF)3K-PNA 5615 (mismatch) compared with the untreated control.
Error bars depict standard error of the mean. The presented data represents averages of triplicate
determinations, performed at least two times. Comparison of each treatment with a control was done
via two-tailed Student’s t-test (* = p ≤ 0.05, ** = p ≤ 0.01). As well, a comparison between BPP-PNA
match and BPP-PNA mismatch with an untreated sample was performed via a one way ANOVA.

4. Discussion

The present study has identified three antisense (KFF)3-K-PNA conjugates targeting
the translation initiation site of the mRNA of the acpP (PNA5639), ftsZ (PNA5612), and
rne (PNA5656) genes, respectively, which exhibit bactericidal activity against carbapenem-
resistant A. baumannii at 4 µM, while showing no significant cytotoxicity in HepG2 cells
at 20 µM. An antisense mechanism of action was corroborated by the significantly lower
activity of double mismatch controls, reduction of target mRNA levels upon PNA treatment,
as well lack of membrane disruption activity. In addition, analogous BPP-PNAs based
on the D-form (KFF)3-K peptide or the frequently used arginine rich (R-Ahx-R)4 showed
inferior antibacterial activity. Finally, the anti-ftsZ PNA5612 was active against 12 CRAB
clinical isolates.

Previously, several essential as well as non-essential genes have been targeted by
BPP-PNA oligomers in A. baumannii [21,26–28]. Rose et al. [28] tested a (RXR)4XB-carA
PNA oligomer (targeting carA as an essential gene) against four clinical strains of MDR-A.
baumannii in minimal medium (M9). The MIC results demonstrated that all four strains
were inhibited at a concentration of 1.25 µM (the low MIC most probably is related to
the use of M9 minimal medium, as discussed below). In addition, in vivo testing of the
BPP-PNA oligomer was done using a Galleria mellonella model of sepsis caused by one
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of the clinical strains. Unfortunately, this study suffers from the absence of an antisense
mismatch control, and it is therefore not possible to ascribe the effects to an antisense
mechanism of action. Guitian et al. [26] in another study found that the lpxB gene is a
possible target for A. baumannii. They showed that a (KFF)3K-lpxB PNA inhibiting lpxB
expression is bactericidal and found that this PNA showed higher antimicrobial activity
in M9 compared to LB medium and ascribed the enhanced activity in M9 to the lower
bacterial growth rate due to nutrient limitations in the M9 medium. We observed that using
the M9 medium (with added glucose), overnight cultures only reached OD595 between 0.1
to 0.2, and therefore considered this unsuitable for MIC analyses.

Geller et al. [21] examined the effects of BPP-PMO oligomers targeting several essential
genes (acpP, ftsZ, and rpsJ) against two ATCC strains (ATCC17978 and ATCC19606) and
three clinical strains (AYE, M9, and AB0057) of A. baumannii. The most active anti acpP
PMO was an R-Ahx conjugate (R-Ahx-R)4-Ahx-acpP; 08-0163 in the study) which exhibited
MIC values of 8 µM (for ATCC strains) and 2 to 4 µM for clinical strains of A. baumannii.
It is noteworthy that this PMO was designed to target the ATG codon at position +25 in
the present database annotation (see Figure 1) [21], and therefore probably is not optimal
for translation inhibition. Additionally, the mammalian cellular toxicity (in vitro) of the
(R-Ahx-R)4-Ahx-acpP-PMO was not addressed, and a general, random sequence control
instead of a specific mismatch control was used to demonstrate target specificity. In vivo
experiments in a pulmonary infection model using intranasal administration showed
efficacy of the compound, but significant effect was also observed for the random sequence
control [21].

In our study, we selected new regions of acpP mRNA in accordance with the newly
annotated translation initiation site(s) in the A. baumannii acpP gene and find that a KFF-
based anti acpP-PNA which has not been studied before in A. baumannii shows higher
antibacterial activity than the (R-Ahx-R)4-Ahx-acpP-PMO reported by Geller study [21]. For
instance, the MIC of most active anti acpP compound in Geller study against ATCC19606
was 8 µM, while in our study, the MIC of the (KFF)3-K-eg1-acpP PNA (5639) against
ATCC19606 was 2 µM.

In the case of the ftsZ gene, Geller et al. [21] studied only one region of the ftsZ
mRNA (+4 to +14 (see Figure 3)) using an (RFF)3R-PMO. The MIC values of this PMO
compound ranged from 16 to 64 µM against different strains of A. baumannii (because
of the high MIC value, they did not report further studies on the compound). In the
present study, antimicrobial activity optimization of several BPP-PNA oligomers targeting
different regions of the ftsZ gene (near the start codon and RBS) resulted in an anti ftsZ
PNA with MIC values ranging from 2 to 8 µM against a broad panel of clinical CRAB
isolates. Surprisingly, the analogous (R-Ahx-R)4-Ahx PNA (5613) did not show significant
antibacterial activity.

RNase E, coded for by the rne gene, is a central enzyme in RNA processing and
metabolism [23,29], and therefore constitute a possible and interesting, but unexplored
target for future precision antisense antibiotics. The present results demonstrate that
antimicrobial anti-rne BPP-PNAs with MIC values of 2 µM against CRA can be found and
may indeed be worth pursuing further.

Unfortunately, no systematic studies are yet available comparing directly the efficacy
of fully analogous PNA and PMO antibacterial agents. Similarly, systematic comparison
of the individual BPP carrier efficiency in different bacterial species is not available either.
However, several studies have clearly shown that different bacterial species do respond
differently to BPPs. For instance, the (KFF)3K peptide which is effective in e.g., E. coli
as well as A. baumannii (as shown here) is not efficient in P. aeruginosa [17], whereas the
(R-ahx-R)4 peptide is a potent BPP in both E. coli and P. aeruginosa. Likewise, analogous
BPP/bacteria activity differences have been reported for Burkholderia versus Pseudomonas
and Acinetobacter [30–32]. Furthermore, some peptides seem to work better in Gram-
positive than in Gram-negative species [32], as can be expected from the significantly
different envelope structures, Finally, although the PNA has extremely high biostability, the
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peptides are much less stable as exemplified by the (KFF)3K peptide, which has a half-life
of less than 5 min in exponential bacterial culture [33]. This undoubtedly will vary with
bacterial strain, medium, and bacterial density, and should also be taken into consideration
when comparing and evaluating BPPs.

5. Conclusions

In conclusion, a series of new antisense PNA-peptide conjugates targeting translation
of essential genes (acpP, ftsZ, and rne) have been identified and characterized in terms of low
micromolar in vitro antibacterial activity against clinical isolates of carbapenem-resistant
Acinetobacter baumannii. Therefore, these results provide new gene sequence targets and
antisense BPP-PNA conjugate hit compounds for possible future development of precision
antibiotics for treatment of infections by carbapenem-resistant Acinetobacter baumannii. The
use of precision antibiotics will require genetically-based (PCR) diagnostics, and because
predominantly the target pathogen is affected, any broad resistance development should be
minimized. Further optimization of the compounds in the preclinical studies includes sys-
tematic gene walk around the identified target, also including target length variation [16].
In addition, structure activity relation (SAR) studies in terms of the delivery peptide part
are required in order to optimize both antibacterial potency, but especially pharmacoki-
netics and pharmacodynamics (including in vivo toxicity) in appropriate animal (mouse)
infection models.
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