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Abstract. Epithelial ovarian cancer (EOC) is the 5th leading 
cause of cancer‑associated death in females worldwide. 
Although 80% of cases respond well to initial treatment, 
>70% develop recurrent disease and become chemoresistant 
within the first two years. Therefore, there is a great need for 
predictive biomarkers to guide treatment. In the era of preci‑
sion medicine, organoids are studied as a functional method 
to predict treatment response to oncological treatment. The 
overall purpose of the present systematic review was to uncover 
the current status of patient‑derived organoids and their ability 
to perform drug screenings for EOC. A systematic search 
for studies investigating ovarian cancer and organoids was 
performed using PubMed and the Cochrane Library. A total of 
10 studies fulfilled the inclusion criteria. The growth rates of 
organoids were described in six studies and varied between 29 
and 90%. Only four studies included data on clinical outcomes 
and indicated a positive correlation between clinical response 
and drug screening results. Inter‑ and intratumoral heteroge‑
neity was examined in seven studies. They all suggested that 
the organoids recapture the tumor heterogeneity. Only one 
study performed drug screenings on organoids obtained from 
different tumor sites and metastasis from the same patient with 
EOC and revealed a different response to at least one drug 
for all patients. In conclusion, organoids may provide a plat‑
form for predicting the clinical response to chemotherapy and 
gene‑targeting therapy. However, the results are only explor‑
atory and the number of published drug screening studies is 
minimal. Further research is required to prove that organoids 
are able to support the choice of oncological treatment in 
patients with EOC.
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1. Introduction

Epithelial ovarian cancer (EOC) is the 5th leading cause of 
cancer‑associated death in females worldwide. In >70% of 
cases, it is diagnosed at an advanced stage [International 
Federation of Gynecology and Obstetrics (FIGO) stage III 
or IV], as the symptoms are frequently nonspecific  (1,2). 
Standard initial treatment is cytoreductive surgery followed by 
carboplatin and paclitaxel with bevacizumab as the first‑line 
treatment of ‘high‑risk’ patients to improve progression‑free 
survival (PFS). Although 80% respond well to initial treat‑
ment, >70% develop recurrent disease within the first two 
years and eventually become chemoresistant (2).

Treatment with bevacizumab [a monoclonal antibody that 
binds to vascular endothelial growth factor (VEGF inhibitor)] 
has improved the PFS (currently 3.3‑4.0 months) in EOC, 
whereas no significant difference in overall survival was 
reported  (3‑11). Unfortunately, no biomarker predictive of 
response to bevacizumab is currently available.

Poly(adenosine diphosphate ribose) polymerase (PARP) 
inhibitors have changed the clinical management of EOC 
by targeting the homologous recombination repair pathway. 
PARP inhibitors are successfully implemented in treating 
high‑grade serous ovarian carcinoma (HGSC) by leveraging 
inherent defects in DNA repair mechanisms presented in ~50% 
of HGSC (12). Several trials have confirmed the positive prog‑
nostic impact of maintenance treatment in platinum‑sensitive 
females harboring BRCA1/2 pathogenic mutations (13‑19). 
Despite these novel treatment strategies, the leading cause of 
death in HGSC remains chemoresistance. Predicting response 
to platinum‑based chemotherapy in the primary and the 
recurrent setting is not possible yet (20,21).

In this regard, organoids, a 3‑dimensional (3D) cell culture 
derived from stem cells, provide a novel in vitro platform to 
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predict drug response. Organoids are in vitro 3D cultures 
grown from stem cells and consisting of organ‑specific cell 
types (22‑24). Following this definition, the first organoids 
were described in 2009 in murine intestinal cells, further 
developed for other organs, and eventually translated into 
human cells (25). Patients' tumor biopsies are dissociated into 
fragments and cells, embedded in a 3D extracellular matrix 
scaffold (such as Matrigel) and cultured in a cocktail of growth 
and signaling factors, which must be defined and optimized for 
each cancer type (26). Organoids have evolved through the last 
decade and now closely reflect primary tissue's biology and 
pathology, enabling their use in a broad range of applications, 
such as drug development and drug screening (22,27‑29).

Furthermore, organoids may be cultured from tumor 
tissue and expanded within one month. Multiple organoids 
may be generated from different tumor areas to mimic tumor 
heterogeneity  (30,31). Of note, tumor organoids capture 
inter‑ and intratumor heterogeneity (29). The establishment 
of tumor‑derived organoids from various cancer types such as 
colon, pancreatic, gastric, prostate, breast, esophageal, bladder 
and endometrial cancers has been reported (30‑37). The rate of 
successful growth of organoid cultures varies by cancer type 
and is highest in colon cancer, reaching 65‑70% (28,38‑42).

Furthermore, organoids may be used for drug screening. 
For instance, drug screening of a library containing >50 drugs 
was performed with 19 colorectal cancer (CRC) organoids, 
demonstrating a correlation between drug sensitivity and 
genetic aberrations in patient‑derived organoids (PDOs) (43). 
Yan et al (32) screened 37 anticancer drugs in nine gastric 
cancer organoids, identifying possible responses toward 
novel targets. Recent studies have indicated that in‑vitro drug 
screening using PDOs predict patient response to chemo‑
therapy and targeted drugs in patients with CRC (28,38). In 
EOC research, organoid cultures have been steadily emerging 
throughout the last years. Regular fallopian tube and ovarian 
surface epithelium‑derived organoids that capture the genomic 
features of the respective tissues are established. They may 
offer a platform for studying cancer initiation from these 
potential origins (44‑46). In addition to the healthy organoid 
lines, both short‑ and long‑term organoid cultures from 
EOC have been established from several histologic subtypes 
(Table I). However, there are also obstacles to address in the 
use of PDOs. Reliable protocols are required to reproduce the 
tumor microenvironment, and there is currently a lack of large, 
well‑designed prospective studies examining drug screenings 
regarding clinical outcomes. This may be the reason why 
PDOs are still on an investigational level and not routinely 
used in the clinic for EOC and other cancer types (Fig. 1).

The present systematic review reported on the current 
status of PDOs and their use in EOC to predict treatment 
response.

2. Method

The search in PubMed and the Cochrane Library was 
performed on July 10, 2020 (Fig. 2). The following search 
criteria were used: ‘Ovarian Cancer’, ‘Organoids’ and ‘Cell 
culture techniques’ (Fig. S1‑S5). The literature search was 
combined with a screening of the reference sections of relevant 
studies, which did not add any new studies. The first author 

performed a screening of all identified articles by title and 
abstract. In total, 1,244 studies were screened and the full 
text of 123 studies was examined. Only original studies with 
successful EOC organoid growth and drug screening ability 
were included. Studies were excluded if they had included 
other cancer types than EOC, were not original studies or were 
performed on animals. Furthermore, studies in languages 
other than English, Danish, Swedish or Norwegian were 
excluded. One of the studies was included during the review 
process. Finally, a total of 10 studies were included in the 
present review (Fig. 2).

3. Overview of the publications

A recent study by Kopper et al (46) from 2019 published a 
breakthrough in EOC organoids (Table I). They presented a 
protocol capable of cultivating long‑term organoids of all major 
subtypes of EOC and established 56 organoids (success rate of 
growth was 65%) from 32 different patients. The organoids 
maintained the genomic landscape, histological aspects and 
tumor heterogeneity of the original tumor. Finally, they demon‑
strated that EOC organoids may be used for drug screening 
assays and capture different tumor subtype responses to stan‑
dard platinum‑based chemotherapy. Furthermore, organoids 
were tested for homologous recombination (HR) deficiency 
(HRD) using the recombination capacity test and it was deter‑
mined that cells with HRD were sensitive to PARP inhibitors.

In another recent publication by Phan et al (47), a method 
of cultivating organoids derived from four patients was 
performed, including one patient with high‑grade mixed type 
carcinoma with a component of HGSC (40%) and a clear cell 
carcinoma (60%), one patient with HGSC, one patient with 
ovarian carcinosarcoma and one patient with high‑grade peri‑
toneal carcinoma. Drug screening was achievable within one 
week from harvesting the original tumor. Tumor heterogeneity 
was preserved and multiple drugs were tested during the same 
period. Drug screening results reflected clinical outcomes 
and revealed a positive correlation; one patient had persistent 
disease despite aggressive debulking surgery and treatment 
with carboplatin and paclitaxel. Resistance to carboplatin was 
also observed in the high‑throughput assay. Another patient 
was diagnosed with progressive, platinum‑resistant HGSC 
and was heavily pretreated prior to sample procurement. The 
organoids from this patient were also platinum‑resistant, with 
no reduction of viability observed upon treating the cells with 
carboplatin.

Maru et al (48) reported on the propagation of nine ovarian 
organoid cultures derived from HGSC, mucinous and endome‑
trioid ovarian carcinoma with an overall growth success rate of 
60%. These organoids were long‑term cultured. However, the 
exact duration of the cultivation was not specified. Intratumor 
heterogeneity was maintained and represented the original 
histological and genetic features. Maru et al (48) also estab‑
lished a drug sensitivity assay using spheroids derived from 
the ovarian organoids.

Jabs et al (49) harvested organoids for drug testing from 
2D cell cultures of HGSC. However, these organoids were 
grown within 10 days. They screened cells from nine patients 
with HGSC with clinically relevant drugs and determined 
that homologous recombination deficiency scores correlated 
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with drug effects in organoids. The HRD score in this study 
was defined as the number of loss of heterozygosity regions 
observed in a tumor sample. HRD scores in this study varied 
between 3 and 22. They correlated with cytotoxic responses 
to carboplatin and all its combinations and paclitaxel, azacyti‑
dine and decitabine responses. However, these drugs do not 
directly affect DNA structure or repair. Furthermore, positive 
HRD scores (≥10) determined for tumor tissues co‑occurred 
with high drug‑induced cytotoxicity and fast organoid growth.

Hill et al (50) reported on short‑lived (2 weeks) HGSC 
organoids for drug testing. The organoids maintained their 
parent heterogeneity and did not develop any novel mutations. 
This group used organoids to assess DNA damage repair 
defects and their influence on immune‑oncologic agents, 
apparently providing a possible tool to predict patient response 
to therapy. By testing the HR defects of 33 organoids (growth 
success rate 80‑90%) in 22 patients, the study confirmed 
that HRD in the organoids is related to sensitivity to PARP 
inhibitors regardless of the mutation status of DNA repair 
genes.

Hoffmann et al  (51) created 15 organoids (growth rate, 
29%) from 13 primary deposits from patients with advanced 
HGSC. They indicated that the mutational and phenotypic 
profile of the organoids closely matched those of the parental 
tumor. Preliminary tests with carboplatin indicated individual 
differences in drug response of organoids from three patients.

Maenhoudt et  al  (26) established organoid cultures of 
tissue from patient‑derived EOC, particularly from HGSC. 
A total of 27 patients were included and twelve organoids 
were established. The overall growth rate was 36% for 
patients with HGSC and 44% for all patients. The organoids 
established exhibited tumor‑associated morphology and 
disease characteristics and recapitulated the parent tumors' 

marker expression and mutational landscape. Furthermore, 
the organoids displayed tumor‑specific sensitivity to clinical 
chemotherapeutic drugs.

Nanki et al (44) established seven patient‑derived EOC 
organoids in <3 weeks with a growth rate of 80%. These 
organoids captured the characteristics of histological cancer 
subtypes and replicated the mutational landscape of the 
primary tumors. Seven pairs of organoids (three HGSC, one 
clear cell, three endometrioid) and original tumors shared 59% 
of the variants identified. Furthermore, drug screening was 
possible and the organoid harboring a BRCA1 mutation had 
a higher sensitivity to olaparib and platinum drugs than the 
other organoids. They also compared the time to recurrence 
after completion of the first‑line platinum regimen against 
drug screening results in two patients and observed concor‑
dance between the results. Of note, one patient was sensitive 
to paclitaxel, docetaxel, topotecan, SN‑38, gemcitabine and 
trabectedin, and her time to recurrence after completing the 
first‑line platinum regimen was 18 months. The time to recur‑
rence in another patient who exhibited resistance to all tested 
drugs, except trabectedin, was nine months.

de Witte et al  (27) included 36 organoids [29 of which 
have been established previously by Kopper et al (46) from 
23 patients with EOC. PDOs resembled the tumors from which 
they were derived, with an average overlap of 67% of single 
nucleotide variants and similar copy number alteration profiles. 
Intra‑patient tumor heterogeneity assessment in seven patients 
with organoids derived from multiple tumor locations revealed 
a differential response to at least one drug for all patients. 
Furthermore, organoids displayed inter‑ and intra‑patient drug 
response heterogeneity to chemotherapy and targeted drugs. A 
total of seven PDOs (derived from five patients) were exposed 
to carboplatin and paclitaxel combination treatment in vitro. 

Figure 1. Main advantages and obstacles to overcome in PDOs. PDOs, patient‑derived organoids.
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It was possible to directly compare their response with the 
patient's clinical response. These PDO drug responses had a 
statistically significant correlation with the clinical response, 
as measured by the chemotherapy response score, normaliza‑
tion of the serum biomarker carbohydrate antigen‑125 and 
radiological responses [response evaluation criteria in solid 
tumors (RECIST)] (52). Furthermore, they demonstrated that 
organoid establishment and drug screening are feasible within 
three weeks.

Sun  et  al  (53) established organoids (n=10) from 
cisplatin‑sensitive and cisplatin‑resistant ovarian cancer 
tissues. The PDOs verified chemosensitivity to cisplatin. 
RNA sequencing was employed to compare the expression 

of chemosensitivity‑related genes in four cisplatin‑sensitive 
and six cisplatin‑resistant PDOs. Significantly higher 
expression levels of Aurora‑A were observed in PDOs from 
cisplatin‑resistant patients.

4. Discussion

In recent years, there has been an increased interest in EOC 
organoids, reflected in a large number of published studies. 
The present review aimed to uncover the current status of 
PDOs and their ability to perform drug screenings in EOC 
and thereby predict treatment response. A total of 10 studies 
fulfilled the inclusion criteria for this review. In all studies, 

Figure 2. Flow diagram of the literature search in PubMed and Cochrane Library database made on July 10, 2020. EOC, epithelial ovarian cancer.
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attempts to grow EOC‑organoids were successful, which 
were able to recapture the genomic and mutational profile and 
heterogeneity of the donor tissue, and drug screenings were 
performed (26,27,44,46‑52).

Other recent reviews have examined the use of PDOs in 
EOC (54,55). A total of two studies focused on EOC, also 
included in the present review (27,47). Both reviews concluded 
that PDOs were able to predict treatment response and may 
guide therapeutic decisions in the future. Yet, they also 
concluded that PDOs require to be generated and expanded 
efficiently to enable drug screening in a clinically meaningful 
time window. In addition to these reviews, the present study 
discussed how the growth rates may be improved and whether 
the histological subtypes may have a role in this context. 
Furthermore, the lack of clinical outcomes in numerous studies 
included was addressed, which is critical for the clinical use of 
PDOs.

Data are still limited, which is reflected by the small 
number of studies and number of patients. Furthermore, 
there is a considerable variation in the reported growth rates 
(29‑90%) and in four studies, the growth rates were not stated 
(Table I). The number and success rates of organoids used for 
drug screens were not reported in any of the studies included. 
Furthermore, there are differences in histological diagnoses. 
While the studies by Kopper et al (46), Maru et al (48) and 
de Witte et al (27) comprised all major histological subtypes 
of EOC, Hoffmann et al (51) and Jabs et al (49) only included 
patients with HGSC (Table  I). At the same time, none of 
the studies examined the differences in growth between the 
different histological subgroups. The number of tissue samples 
was unknown and the histological subgroups were too small 
for a conclusive statistical analysis (46). It is well known that 
EOC consists of several distinct subtypes that differ in their 
clinical and molecular profile and should be considered and 
treated as uniform entities in clinical and research settings (2). 
Thus, optimally, organoid studies should obtain a homogenous 
study population by including specific subtypes of EOC to 
optimize growth conditions and growth rates by adapting 
growth medium according to histologic subtypes. Comparing 
these results with organoid studies from patients with gastro‑
intestinal cancers, it was indicated that the growth rate of 
organoids was consistently 65‑70% in these studies (28,38‑42). 
Furthermore, success rates of drug screenings (25‑80%) were 
mentioned and causes of failed organoid growth, such as no 
or few tumor cells in the biopsies, quality control problems 
or bacterial infections, were addressed. Clinical parameters 
such as sex, biopsy location and prior systemic treatment were 
also examined and it was determined that they did not influ‑
ence the success of culture. However, even in CRC, where the 
use of organoids is included in clinical studies, there is still a 
substantial fraction of patients for whom no organoid‑informed 
decision may be made. Growth rates may be further improved 
by obtaining multiple core biopsies, together with a patholo‑
gist's direct evaluation of the biopsies to identify samples with 
low cellularity, as suggested by Vlachogiannis et al (28).

One of the explanations for the higher growth rates observed 
in gastrointestinal cancers may be that they are morphologi‑
cally more homogenous than EOC (56,57). Only one study on 
pancreatic cancer stated the histopathological diagnoses 
as adenocarcinomas, accounting for 98% of cases (42). The 

growth media used in all EOC studies consisted mainly of 
the same components such as noggin, R‑spondin, EGF, Wnt, 
antibiotics and ROCK inhibitor (Table SI). However, minor 
differences in components, such as insulin, hydrocortisone 
and β‑estradiol, exist. The study by Maru et al  (48) is the 
only one that has attempted to optimize the growth medium. 
Their initial growth rate was 45%, which rose to 83% after 
introducing a seven‑minute digestion step with Accumax, a 
potent proteolytic and collagenolytic enzyme with DNAse 
activity, following the routine digestion of tumors with dispase 
and collagenase. This growth rate is comparable to the growth 
rate of 80% obtained by Nanki et al (44). Compared with the 
growth medium used by Kopper et al  (46), heregulin β‑1, 
nicotinamide, forskolin, hydrocortisone and estradiol were 
replaced by gastrin and insulin‑like growth factor. These 
examples highlight that growth rates may be improved with 
growth media modifications and emphasize the requirement 
for medium optimization in EOC.

Another major limitation of the reviewed studies is that 
only four included data on clinical outcomes (27,44,47,53). 
All studies indicated a positive correlation between clinical 
response and drug screenings. de Witte et al  (27) exposed 
seven PDOs to carboplatin and paclitaxel and determined a 
significant correlation with clinical response. Nanki et al (44) 
found concordance between drug screening results and time 
to recurrence in two patients tested for drugs, including pacli‑
taxel, docetaxel and olaparib. Phan et al (47), using PDOs from 
two patients with persistent disease, indicated that the cancers 
were platinum‑resistant, in concordance with Sun et al (53). 
PDOs were established from platin‑sensitive and platin‑resis‑
tant patients and their chemosensitivity was verified (44,47). 
However, none of the studies mention the number of organoids, 
which failed to perform drug screens.

Furthermore, the number of drug‑screened organoids 
is minimal and thus, the results are only exploratory and 
require to be validated in larger studies. In gastrointes‑
tinal cancers, various studies have compared PDO drug 
screenings with clinical outcomes in primary and recurrent 
settings (28,38,42,58,59). Results from these studies suggested 
that PDOs mainly recapitulate patient response to treatment. 
Only in one study, the results of drug screens did not correlate 
for one out of three chemotherapeutics (38). A multicenter 
cohort study on metastatic breast, colon and non‑small cell 
lung cancers is being conducted by the Foundation Hubrecht 
Organoid Technology (TUMOROID trial) in the Netherlands. 
This study is ongoing and has so far indicated a positive corre‑
lation between drug response in organoids and the clinical 
response of patients according to the RECIST criteria (60‑62). 
The small number of studies and cases of EOC and the fact 
that the studies did not compare drug responses with clinical 
outcomes in a standardized manner are prone to type two errors, 
yielding insignificant and inconclusive results. Furthermore, it 
raises concerns about publication bias, as studies with no corre‑
lation between drug screens and clinical outcomes may not be 
published. These parameters and the lack of information may 
give a misleading picture of the organoids' ability to predict 
the treatment effect of chemotherapy and targeted therapy and 
thus overestimate their success in a clinical context.

A high degree of inter‑ and intratumor heterogeneity has 
been described even within specific subtypes of EOC, which 
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means that the molecular profile may be different, depending 
on the location of the tumor sample (61). Thus, molecular 
analysis of a single biopsy from a tumor may not represent 
other tumor parts. Therefore, treatment based on analysis 
from a single biopsy may have limited benefit as molecular 
pathways active in other tumor parts will lead to tumor 
growth. Inter‑ and intratumor heterogeneity was examined 
in seven studies (Table I). Only one study performed drug 
screenings on organoids obtained from different tumor sites 
and metastasis from the same patients. They derived two to 
four PDOs from distinct cancer lesions in seven patients and 
revealed a differential response to at least one drug for all 
patients (27). In CRC and pancreatic cancer, patients' organ‑
oids were established from multiple locations from tumor and 
metastasis. It was reported that responses to individual agents 
differed substantially between lesions in a single patient, 
which further complicates the use of PDOs to predict treat‑
ment response (38,58).

Another limitation of the studies included is the lack of 
uniform statistical analyses. A total of four studies lacked 
statistical analyses  (44,47,48,50), while three studies use 
one‑way ANOVA to calculate significant variation between 
two experimental groups (44,49,53). However, none of these 
three studies reported the F‑values, which is critical in an 
ANOVA test, as it tells whether the difference in the two 
groups is significant.

Other factors such as biopsy localization and size may 
also have an impact on organoid growth. In addition, the 
time from tissue sampling to arrival and handling in the 
laboratory, including the time stored refrigerated, may also 
impact the growth rates. None of the studies mentioned these 
circumstances.

In addition, large, well‑designed prospective studies exam‑
ining standardized organoid‑based drug screenings regarding 
relevant clinical outcomes are currently lacking but urgently 
required prior to the implementation of drug screenings based 
on resistance patterns of organoids in a clinical setting (52). 
Indeed, standardization of drug screenings and transparency 
in all stages from growth to drug screenings is needed. This 
method must meet the quality criteria for a good test, such 
as reproducibility, consistency, validity, cost‑effectiveness, 
non‑invasiveness, and high sensitivity and specificity. So far, 
the most robust empirical demonstration of the utility of a 
medical test is a properly designed randomized controlled trial. 
Therefore, the already published data must be validated more 
extensively in future studies before randomized controlled 
trials with power are initiated in a clinical setting (Fig. 1). 
Another factor of importance in future studies is the time 
frame from tissue sampling to drug screenings. These results 
should be available prior to relevant oncological treatment 
in a clinical setting (62). At present, sequencing results and 
molecular profiles are available within few days. Therefore, 
PDO‑based drug screens performed within a few weeks to 
supplement molecular analyses should be mandatory.

In addition to drug screens, organoids may also provide 
valuable insight into the pathogenesis of EOC. The reported 
high genetic stability of healthy organoid cultures over a 
long period enables the study of mutagenic processes in 
detail (39,63). Particularly the role of fallopian tube epithelium 
and ovarian surface epithelial cells in the development of 

EOC is yet to be fully elucidated (64). In the future, organoid 
biobanks developed from cancer patients' tissues may be a 
powerful tool to enforce organoids and improve the possibility 
of validating drug screening results. A combined effort of 
the US National Cancer Institute, Cancer Research UK, the 
UK Wellcome Trust Sanger Institute and the foundation of 
Hubrecht Organoid Technology, Netherlands‑known as the 
Human Cancer Models Initiative‑is ongoing to generate a 
large, globally accessible bank of novel cancer cell culture 
models, including organoids, available for the research 
community (39). This library of cultures and corresponding 
clinical data is created to aid basic research, find leads for new 
compounds and help explore novel therapeutic strategies (26). 
Organoids may be an attractive tool for developing precise 
treatment strategies. They are already used to select optimal 
therapy in a metastatic setting for gastrointestinal cancers 
and may be used as a future platform for EOC drug testing 
as well. The major advantages of organoids are clonality, the 
possibility for high‑throughput screening and reduced cost 
compared to animal models (22) (Fig. 1).

Currently, clinical diagnostic molecular approaches such 
as next‑generation sequencing are used to guide treatment 
decisions based on mutations and fusions that may be biologi‑
cally targeted. While it remains challenging to predict the 
response of treatment, organoids may add essential knowledge 
regarding treatment response and eventually help determine 
optimal treatments, particularly in the setting of a recurrent 
disease course. However, drug screening results from organ‑
oids cannot stand alone and there is still a requirement for 
molecular analyses such as sequencing upfront to identify 
druggable targets.

5. Conclusion

Organoid growth in EOC is possible, although growth rates 
vary. The grown organoids appear to recapitulate the molec‑
ular features and heterogeneity of the original tumor. They 
are suitable for drug screening assays but the success rate of 
drug screening is still low and must be improved before imple‑
mentation in the clinic may be considered. Furthermore, drug 
screening results must be held against clinical outcomes and 
examined in adequately designed randomized clinical trials. 
Thus, standardization and transparency in all stages, from 
growth to drug screenings, are required. Using organoids for 
diagnostic insight or biobanking may be the next step forward. 
Combining this technology with molecular approaches may 
add to the current knowledge regarding the treatment of EOC 
in the future.
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