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Background: Accurate glioma grading before surgery is of the utmost importance
in treatment planning and prognosis prediction. But previous studies on magnetic
resonance imaging (MRI) images were not effective enough. According to the
remarkable performance of convolutional neural network (CNN) in medical domain, we
hypothesized that a deep learning algorithm can achieve high accuracy in distinguishing
the World Health Organization (WHO) low grade and high grade gliomas.

Methods: One hundred and thirteen glioma patients were retrospectively included.
Tumor images were segmented with a rectangular region of interest (ROI), which
contained about 80% of the tumor. Then, 20% data were randomly selected and
leaved out at patient-level as test dataset. AlexNet and GoogLeNet were both trained
from scratch and fine-tuned from models that pre-trained on the large scale natural
image database, ImageNet, to magnetic resonance images. The classification task was
evaluated with five-fold cross-validation (CV) on patient-level split.

Results: The performance measures, including validation accuracy, test accuracy and
test area under curve (AUC), averaged from five-fold CV of GoogLeNet which trained
from scratch were 0.867, 0.909, and 0.939, respectively. With transfer learning and fine-
tuning, better performances were obtained for both AlexNet and GoogLeNet, especially
for AlexNet. Meanwhile, GoogLeNet performed better than AlexNet no matter trained
from scratch or learned from pre-trained model.

Conclusion: In conclusion, we demonstrated that the application of CNN, especially
trained with transfer learning and fine-tuning, to preoperative glioma grading improves
the performance, compared with either the performance of traditional machine learning
method based on hand-crafted features, or even the CNNs trained from scratch.

Keywords: deep learning, convolutional neural network (CNN), transfer learning, glioma grading, magnetic
resonance imaging (MRI)
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INTRODUCTION

Glioma is the most common central nervous system tumor,
which is classified into World Health Organization (WHO)
grades I–IV according to the invasively histopathology
results. The preoperative grading of glioma, particularly the
differentiation between lower grade glioma (LGG, grades II and
III) and higher grade glioma (HGG, grade IV) (Li-Chun Hsieh
et al., 2017), is of the utmost importance in treatment planning
and prognosis prediction (Wu et al., 2012; Wen and Huse, 2017).

Magnetic resonance imaging (MRI) has become the essential
way for glioma diagnosis before surgery. Both conventional
and advanced MRI modalities have been analyzed by extracting
statistical variances, histogram features or texture features at
region of interest (ROI) or pixel level (Liang et al., 2017;
Qi et al., 2017; Sharma et al., 2017; Zhao et al., 2017).
Although significantly different image features between groups
were identified and demonstrated promising sensitivity in glioma
grading, it is still far from the accurate personalized diagnosis.

In recent years, machine learning technique has been applied
in glioma grading (Wu et al., 2015; Li-Chun Hsieh et al., 2017;
Zhang et al., 2017), that the discrimination feature pattern
was automatically learned from a set of training data and the
corresponding model to predict the individual glioma grade was
established afterwards. In these studies, satisfying performances
were derived by extracting image features, including clinical
features, histogram features and texture features, from varied
parameter maps. Different feature normalization and selection
algorithms were applied to improve the efficacy of the
discrimination model. However, there are two main weaknesses
of the traditional machine learning method. First, imaging
preprocessing procedure is complex and time-consuming, which
highly dependent on the experience of the operators. Second, the
robustness of the discrimination model is low. These two factors
make the studies be in bench and are far away to bed.

The recent revived technique, deep learning, has shown its
potential in the assessment of medical problems, especially
convolutional neural network (CNN) (Gulshan et al., 2016;
Esteva et al., 2017). It is well-known by its promising robustness
and self-learning capability. Instead of extracting features
manually, deep CNN automatically learns deeper and abstracted
image features during the training procedure (Shen et al., 2017).
There have been lots of studies which take advantage of CNN
to solve medical problems, such as cancer detection (Ehteshami
Bejnordi et al., 2017; Wang et al., 2017) and classification
(Chen et al., 2017; Yasaka et al., 2017), and have got excellent
performance compared with the methods applied in previous
studies. As for glioma, deep learning has shown promising
capabilities in predicting key molecular markers such as 1p19q
codeletion and MGMT promoter methylation by using MRI
images (Akkus et al., 2017; Korfiatis et al., 2017). While, unlike
natural images, the major challenge in medical image domain is
the insufficient amount of training data.

Transfer learning is an effective method to solve this problem
and has been applied and evaluated in several studies (Li et al.,
2014; Shin et al., 2016; Tajbakhsh et al., 2016). Deep convolutional
activation features learned from the large scale natural image

database, ImageNet, had been successfully transferred to the
classification and segmentation of histopathology images with
little training data (Xu et al., 2017). Meanwhile, ImageNet pre-
trained CNNs had been used for detection in X-ray and CT
modalities and they had yielded the best performance results (Bar
et al., 2015; Ginneken et al., 2015). Yang et al. (2014) pointed
out that transfer learning reduced the data distribution mismatch
between the training and testing data, which was a main problem
for the low accuracy of traditional machine learning method.
Thus, we hypothesized that deep learning combined with transfer
learning method can achieve high accuracy in distinguishing
WHO grade in gliomas.

In this study, we aimed to train a CNN to non-invasively
classify LGG and HGG by analyzing on conventional MRI
images. First, we explored and evaluated the performance of
two CNN architectures (AlexNet and GoogLeNet), with varied
parameters and layers in glioma grading. Due to the relatively
small sample size, we then evaluated the influence of transfer
learning from ImageNet via fine-tuning. All the classification
performances were investigated and reported under the patient
level five-fold cross-validation.

MATERIALS AND METHODS

Patient Cohort
The study data of the current project derived from a
diagnostic trial that has been registered to ClinicalTrials.gov
(NCT026226201) with the trial protocol published (Liu et al.,
2017). A total of 113 histologically confirmed (Fuller and
Scheithauer, 2007) glioma patients were retrospectively enrolled,
approved by the Ethic Committee of Tangdu Hospital of the
Fourth Military Medical University (TDLL-20151013). Written
informed consent was obtained from all individuals. Each
participant underwent preoperative conventional and advanced
MRI scans on a 3.0T MRI scanner (Discovery 750, GE Healthcare,
Milwaukee, WI, United States) with an 8-channel head coil.

The study group comprised 52 patients (grade II: 25, grade
III: 27) with LGG and 61 patients with HGG. Number of raw
images with tumor in LGG and HGG group was 368 and 499,
respectively. The ages of the LGG and HGG cohort range from 10
to 66 years old and 13 to 87 years old, respectively. Lesion location
of the 113 glioma patients was summarized according to Vasari
MRI Visual Feature Guide in Table 1. Tumors located in frontal
lobe, temporal lobe and midline account for most of them.

Data Acquisition
The MR images were obtained on a GE discovery 750 3T MR
scanner with an eight-channel head coil. Conventional MRI,
including axial pre- and post-contrast T1-weighted imaging
(T1−C and T1+C, respectively), pre-contrast T2-weighted
imaging (T2WI) and pre-contrast Fluid Attenuated Inversion
Recovery (FLAIR) and functional MRI, including dynamic
contrast enhanced (DCE) MRI, diffusion weighted imaging
(DWI) and arterial spin labeling (ASL), were all obtained.

1https://www.clinicaltrials.gov/
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TABLE 1 | Patient baseline characteristics.

Tumor location Tumor number

Frontal lobe_R 23

Frontal lobe_L 18

Temporal lobe_R 18

Temporal lobe_L 16

Midline 11

Basal ganglia_R 4

Insular lobe_L 3

Parietal lobe_L 3

Bilateral multicentric 2

Cerebellar hemisphere_R 2

Insular lobe_R 2

Occipital lobe_R 2

Parietal lobe_R 2

Bilateral frontal lobe 1

Cerebellar hemisphere_L 1

Lateral ventricles_R 1

Occipital lobe_L 1

Temporo-parietal junction_L 1

Temporo-parietal junction_R 1

Thalamus_R 1

However, up to now, advanced MRI has not been applied in
routine clinical diagnosis. In this study, only the most useful
sequence, T1+C, was analyzed to make it more convenient
for doctors and closer to clinic. The images were acquired
using spoiled gradient recalled-echo inversion-recovery prepped
(SPGR-IR prepped) sequence (TR/TE = 1750/24 ms, slice
thickness = 5 mm, slice spacing = 1.5 mm, field of view
(FOV) = 24× 24 cm2, matrix = 256× 256, number of excitation
(NEX) = 1), after the completion of DCE MRI following a total
Gadodiamide dosage of 0.2 mmol/kg as described below.

Image Preprocessing
The study design, including image preprocessing, data sampling
and model training, is shown in Figure 1. In image preprocessing,
first, DICOM images were converted into BMP format without
annotation. Then, images containing tumor tissue were selected
by two experienced neuroradiologists (L Yan and Y Han). The
targeted tumor was segmented by a rectangular region of interest
(ROI), which contained about 80% area of the tumor area. Then,
20% data were randomly selected and leaved out on patient-
level as test dataset, including 10 LGGs and 13 HGGs, which
remains unchanged during the experiment. The classification
task was evaluated using the rest 80% data with five-fold cross-
validation (CV) on patient-level split, in order to avoid that
the slices from one subject appear in both training and test
data and lead to false positive results. It is more informative
for real clinical performance. Data augmentation plays a vital
role in the utilization of CNN in medical image, and can
efficiently improve the performance. The training data were
augmented 14 times by introducing histogram equalization,
random rotation, zooming, adding noise (salt and pepper) and
flipping (horizontal and vertical) using MATLAB 2016a (Akkus

FIGURE 1 | Study design. Patient underwent magnetic resonance imaging
(MRI) before surgery. Slices with tumor were selected and segmented as
rectangular region of interest (ROI) after images format conversion. Then, data
were split into training, validation and test dataset. The data used in five-fold
cross-validation were augmented 14 times, and keep the test dataset
unchanged. Finally, AlexNet and GoogLeNet were explored and evaluated by
training from scratch and fine-tuning from pre-trained model.

et al., 2017; Chang et al., 2017), and the test data was kept as
origin. Afterwards, the prepared data were converted into LMDB
format for caffe. During this step, the mean image of training
set was subtracted for every training and test image, which is
recommended in Stanford Tutorial for preprocessing of deep
learning.

Training Protocol
This whole procedure were modified and fine-tuned on the
NVIDIA Digits software, which simplifies common deep learning
tasks such as managing data, designing and training neural
networks on multi-GPU systems, monitoring performance in
real time with advanced visualizations, and selecting the best
performing model from the results browser for deployment2, with
CUDA 8.0/cuDNN 5.0 (Nvidia Corporation, Santa Clara, Calif)
dependencies for graphics processing unit acceleration. All the
experiments were conducted on four NVIDIA Tesla K80 cards.

AlexNet and GoogLeNet can be either trained from scratch or
fine-tuned from ImageNet pre-trained models. The comparison
between these two architectures is shown in Figure 2. For
training from scratch, all the parameters of the models were
initialized with random Gaussian distributions and trained for
30 epochs with the mini-batch size of 50 image instances.
Training convergence can be observed within 30 epochs. The
other hyperparameters are momentum: 0.9; weight decay: 0.0005;
base learning rate: 0.01, decreased by a factor of 10 at every 10
epochs. For fine-tuning, the base learning rate was set 10 times
smaller than the default learning rate, which was 0.001 (Razavian
et al., 2014; Girshick et al., 2016).

2https://developer.nvidia.com/digits
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FIGURE 2 | Network architectures. (A) AlexNet structure, where the blue blocks indicate convolutional layers, orange blocks indicate pooling layers, and yellow
blocks indicate fully-connection layers. (B-1) GoogLeNet structure, where the blue blocks indicate convolutional layers, orange blocks indicate pooling layers, and
gray blocks indicate inception structure. The specific inception structure was shown in (B-2). (C) Comparison table of AlexNet and GoogLeNet.

AlexNet
The AlexNet architecture (Figure 2A) achieved significantly
improved performance over the other non-deep learning
methods for ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 (Krizhevsky et al., 2012). This success has
revived the interest in CNNs in computer vision. It has
60 million parameters and 500,000 neurons, consists of
five convolutional layers followed by three fully connected
layers and a softmax classifier. The pooling layers were
placed after the first, second, and fifth convolutional layers.
During the training procedure, images were normalized to
224 pixels× 224 pixels to match the input dimension of the input
layer.

GoogLeNet
The GoogLeNet model (Figure 2B) is significantly more complex
and deep than all previous CNN architectures (Szegedy et al.,
2015). More importantly, it also introduces a new module
called “Inception” (Figure 2B-2), which concatenates filters of
different sizes and dimensions into a single new filter. Overall,
GoogLeNet has two convolutional layers, two pooling layers,
and nine “Inception” modules. Each “Inception” module consists
of six convolution layers and one pooling layer. Although it
has 56 convolutional layers in total, only 7 million parameters
are included. GoogLeNet is the current state-of-the-art CNN

architecture for the ILSVRC, where it achieved 5.5% top-5
classification error on the ImageNet challenge, compared to
AlexNet’s 15.3% top-5 classification error. During the training
procedure, images were normalized to 256 pixels × 256 pixels to
match the input dimension of the input layer.

For both neural networks, the softmax classifier provides a
probability for each of the categories for a given input image. The
category with the highest predicted probability was taken as the
classifier prediction for the image, and we calculated classification
accuracy based on this prediction.

Transfer Learning
ImageNet, which was used in ILSVRC, consists of 1.2 million
256× 256× 3 images belonging to 1000 categories (Russakovsky
et al., 2015). At times, the objects in the image are small and
obscure, and thus pose more challenges for learning a successful
classification model. However, the models took the first place
have reached satisfactory performance (Krizhevsky et al., 2012;
Szegedy et al., 2015). After training from scratch, pre-trained
AlexNet and GoogLeNet models were downloaded3 and fine-
tuned at a learning rate which was 10 times smaller than the
default learning rate for the glioma grading task. This procedure
was explained in Figure 3. Since the images in ImageNet are

3https://github.com/NervanaSystems/ModelZoo
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FIGURE 3 | The procedure of transfer learning. First, models trained on ImageNet dataset were downloaded. Second, most parameters of the pre-trained models
were transferred to the new target task model. Third, first convolutional layer and fully-connected layers were trained on target task.

three-channel natural images, most of the images in medical
domain are one-channel gray images. And there are only two
categories need to be exported in our task. Thus, the first
convolutional layer and fully-connected layers were randomized
initialized and freshly trained, in order to accommodate the
new object categories. The initial weights of other layers of
the pre-trained model were transferred to the new model
directly and fine-tuned during the training process for the new
task.

Model Validation and Test
The performances of models were evaluated by assessing
the accuracy on training, validation, and test dataset with
five-fold CV on patient level. The classification results of
one test image is shown as the probability that the image
be classified into each category. Then, the probability of
images come from one subject were averaged together to get
the classification probability of this subject. The performance
measures of each models were analyzed based on the patient-
level probability. Meantime, the Area Under Curve (Ehteshami
Bejnordi et al., 2017) of Receiver Operator Characteristic
(ROC) of test data and cut-off value were calculated using
GraphPad Prism Version 6.0. All the performance measures,
including accuracy, loss and AUC, were the mean value of five-
fold CV.

Statistical Analysis
The normal distribution and t-test were tested to compare the
age between patients with LGG and HGG by GraphPad Prism
Version 6.0 software. Chi-square and Fisher exact tests were
performed to compare the gender between two groups using SPSS
version 19.0 software. All differences were considered statistically
significant at p < 0.05.

RESULTS

The Performances of CNNs Trained From
Scratch
In this work, we mainly focused on AlexNet and GoogLeNet.
The performance measures averaged for five-fold CV were
reported in Figure 4E, including train loss, validation loss,
validation accuracy, test accuracy and test AUC. The ROC
curves of test data of AlexNet and GoogLeNet of each CV
were plotted in Figures 4A,B. As could be seen, GoogLeNet
had a better performance than AlexNet. The mean value of
validation accuracy, test accuracy and test AUC of GoogLeNet
was 0.867, 0.909, and 0.939, respectively. As for AlexNet,
the mean value of validation accuracy, test accuracy and test
AUC were 0.866, 0.855, and 0.895, respectively. Although
GoogLeNet is deeper than AlexNet, it has less parameters
owing to the inception structures, which can reduce the risk of
overfitting.

The Influence of Transfer Learning
With transfer learning and fine-tuning, improved performances
were obtained for both AlexNet and GoogLeNet. Especially
for AlexNet, it reached performances close to GoogLeNet after
transfer learning, with a 0.072 increase in test accuracy and AUC.
The growth of test accuracy and AUC of GoogLeNet was 0.036
and 0.029. In general, transfer learning is an effective method
to improve the classification performance and GoogLeNet
performed better than AlexNet. Figures 4C,D shows the ROC
curves of these two models after applying transfer learning.
Although only T1+C images were used, the test accuracy and
AUC reached 0.945 and 0.968 in GoogLeNet (Figure 4E).

Feature maps of two subjects of three convolutional layers
in GoogLeNet were visualized in Figure 5. Normally, feature
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FIGURE 4 | Classification performance of AlexNet and GoogLeNet trained from scratch and fine-tuned from pre-trained model. (A–D) ROC curves of data test on
five validated models of AlexNet, GoogLeNet, pre-trained AlexNet and pre-trained GoogLeNet, respectively. (E) Performance measures table, including training loss,
validation loss, validation accuracy, test accuracy and test AUC, of the four models.

FIGURE 5 | Visualized feature maps of tree convolutional layers in GoogLeNet. (A) An example of LGG. (B) An example of HGG.

maps are thought to provide more detailed information as the
network become deeper. In the lower convolutional layers, the
network only acquires intensity and shape information from
the tumor. As the CNN structures become deeper, the features

are extracted from feature maps and become more abstract to
describe.

Figure 6 shows the scatter plot of the mean probability of
each subject to be predicted as HGG in each cross-validation
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FIGURE 6 | Scatter plot of the mean probability of each subject to be predicted as HGG. The ground truth of the first column of each group is HGG. The ground
truth of the second column is LGG. The dash lines in each group indicate the cut-off value of two categories. The dash circles indicate misclassified subjects.

FIGURE 7 | Two examples of the misclassified subjects. (A) A HGG located on left temporal lobe, which was classified as LGG. (B) A LGG located on midline, which
was classified as HGG.

fold. Although satisfied classification results were got, two
subjects among the 22 test subjects were always misclassified.
Figure 7 displays the selected slices of these two subjects.
The ground truth of Figure 7A is HGG. Due to the non-
enhancement of the last five slices, they had high probability to

be recognized as LGG. The averaged probability of this subject
to be classified into HGG was obviously decreased. Figure 7B
was classified into HGG, which should be LGG. This is due to
the high signal of cavernous sinus area and choroid plexus on
T1WI.
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DISCUSSION

In this study, we demonstrated the utility of deep learning
to preoperatively grade glioma by using conventional MRI
images. Furthermore, the effect of transfer learning was evaluated
on both AlexNet and GoogLeNet. Thus, applications of the
fine-tuned CNN image features to glioma grading improves
the performance, compared with either the performance-
complementary properties of hand-crafted features, or training
CNNs from scratch.

Compared with previous studies, improved performances had
been got by applying deep learning technology in this study
(Zollner et al., 2012; Wu et al., 2015; Qi et al., 2017; Zhang
et al., 2017). Previous studies used hand-crafted clinical and/or
image features, followed by a complex training procedure. Deep
leaning simplified the multi-step pipeline, utilized by learning
classification features directly from images, allowing for greater
reproducibility. In this study, we demonstrated that accuracy
glioma grading can be achieved by without pre-engineered
features.

It is observed that AlexNet and GoogLeNet, with 8 and 56
convolutional layers and millions of network parameters, can
be useful even in medical domain where the available training
data are limited. Not only for the pre-trained model, but also
for the models trained from scratch. The required data size
is still not sure and is a bottleneck for deep learning studies.
Thus, it is crucial to find the trade-off between suitable model
and data size (Zhu et al., 2012). Although transfer learning
from the ImageNet dataset to medical images has been obvious
beneficial in our study, building progressively growing dataset is
still important.

Even if natural images and medical images has significant
difference, improved precision was got in our study using transfer
learning via fine-tuning. In machine learning studies, the basic
assumption is that the training data and the future data need
to be tested are in the same feature space and have the same
distribution. However, the training data for medical classification
task is extremely insufficient. It is an effective method to transfer
the feature knowledge learned from a large-scale database to a
specific medical task (Pan and Yang, 2010; Yosinski et al., 2014).
It is known that the features learned from the earliest layers of
CNN are usually general features, such as shape, margin and
color, which are applicable to many datasets and tasks. The deeper
the layer is, the more abstract the learned feature is. Then, the
last layer is aim to the specific task. Thus, due to the different
dimension of natural RGB images and medical gray images,
the first convolutional layer and last fully-connected layer were
fine-tuned in our glioma grading task.

Only T1+C MRI sequence was included in our model to
grade glioma before surgery. In practical diagnosis, once a mass is
identified and hemorrhage is excluded, a contrast-enhanced MRI
is typically ordered, with standard T1WI, T2WI, and T2 FLAIR
(Cha, 2006; Young, 2007). The volume of various tumor sub-
regions (necrotic, enhancing, and non-enhancing), compression
of the surrounding tissue and midline deviation can be identified
in conventional sequences. T1+C is an essential sequence in

routine diagnosis. It is able to indicate the blood-brain barrier
breakdown, which is often an indicator of HGG. However, even if
advanced MR sequenced have not been used in clinical diagnosis,
their potential in glioma grading had been demonstrated in
several studies (Qi et al., 2017; Zhang et al., 2017). Dynamic
contrast enhanced (DCE) MRI in the preoperative setting
measure pharmacokinetic parameters of contrast uptake, which
may be associated with early disease progression and survival
(Kim et al., 2017). Dynamic susceptibility contrast (DSC) MRI
may be helpful in preoperative diagnosis (Chakravorty et al.,
2015). Thus, it is necessary to combine advanced MRI sequences
to train a radiomics-based deep model for glioma grading in
future study.

As illustrated before in Figure 6, there are two main factors
that lead to the misclassification. First, since the heterogeneity
of glioma, the enhancement condition of each slice in the same
tumor has significant difference. Second, the intensity of normal
tissue, such as, cavernous sinus area, choroid plexus, and nasal
cavity, has obvious influence on the results. To overcome these
problems, applying brain extraction technology (BET) before
tumor segmentation should be tried in future study. What’s
more, combining multi-view images, which are axial, sagittal and
coronal view images, may improve the performance.

There are several possible improvements to this study. First
and foremost, sufficient cohort size is a limiting factor in the
training of deep CNN. Although we overcame this partially
by data augmentation and transfer learning technique, a larger
patient population would further improve the performance.
Second, since the patients were retrospectively enrolled from
Jan 2015 to May 2016, the pathology data were not up-to-date
with the 2016 WHO classification of gliomas. The IDH status
(mutated vs. wildtype) with the histopathology grade should be
included in future study. Third, the use of multi-modal and
multi-view images, which would provide systemic information of
the tumor, may improve the generalizability of the model. Fourth,
before the automatically glioma grading, an automatically tumor
segmentation model would be necessary to further increase the
precision.
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