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L-DOPA is the criterion standard of treatment for Parkinson disease. Although it
alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–
induced dyskinesia (LID). Several theoretical models including the firing rate model, the
firing pattern model, and the ensemble model are proposed to explain the mechanisms
of LID. The “firing rate model” proposes that decreasing the mean firing rates of the
output nuclei of basal ganglia (BG) including the globus pallidus internal segment and
substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing
pattern model” claimed that abnormal firing pattern of a single unit activity and local field
potentials may disturb the information processing in the BG, resulting in dyskinesia. The
“ensemble model” described that dyskinesia symptoms might represent a distributed
impairment involving many brain regions, but the number of activated neurons in the
striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit
mechanisms in driving LID symptoms has also been presented. LID is a multisystem
disease that affects wide areas of the brain. Brain regions including the striatum, the
pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are
all involved in the pathophysiology of LID. In addition, although both amantadine and
deep brain stimulation help reduce LID, these approaches have complications that limit
their wide use, and a novel antidyskinetic drug is strongly needed; these require us to
understand the circuit mechanism of LID more deeply.
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THE INTRODUCTION OF L-DOPA–INDUCED DYSKINESIA

Parkinson disease (PD) is a neurodegenerative disorder that occurs often in the elderly. Most of
its motor symptoms are caused by the progressive death of dopaminergic (DAergic) neurons in
substantia nigra pars compacta (SNc) and deficiency of DA in the striatum (Poewe et al., 2017).
Currently, DA replacement therapy using L-3,4-dihydroxyphenylalanine (L-DOPA) is the standard
treatment for PD patients. However, its long-term administration usually induces L-DOPA–
induced dyskinesia (LID) in the majority of PD patients (Duvoisin, 1967; Turcano et al., 2018; Kim
et al., 2020). The antiparkinsonian efficacy of L-DOPA is closely coupled with dyskinesia. Once
LID is established, it is difficult to alleviate these dyskinetic symptoms without the compromise
of its antiparkinsonian efficacy. The main factors associated with the development of dyskinesia
include the disease duration and the age at onset of PD. Many studies have shown that longer
disease duration with greater disease severity of PD is associated with a higher risk of LID
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(Rajput et al., 2002; Sharma et al., 2010). In addition, younger age
at disease onset is more likely to develop LID (Kostic et al., 1991;
Sharma et al., 2010).

However, these risk factors seem insufficient to explain the
incidence of dyskinesia in PD patients; there is some evidence
indicating that genetic factors may also contribute to the
occurrence of dyskinesia. They include opioid receptor (Strong
et al., 2006), brain-derived neurotrophic factor (Foltynie et al.,
2009), solute carrier family 6 member 3 (Kaplan et al., 2014), and
catechol-O-methyltransferase Val58Met (de Lau et al., 2012). But
these genetic components are not generally considered primary
pathophysiology mechanism for LID. The importance of these
genetic factors in the overall risk of developing LID needs further
study. Recently, using genomics, transcriptomics, and proteomics
methods, it has suggested that expression of one or more specific
molecular triggers may induce long-term adaptations of striatal
circuits, which result in LID; one of them is nuclear receptor
related 1 (Nurr1) protein (Sellnow et al., 2020; Steece-Collier
et al., 2020).

Despite significant advances, the pathogenesis of LID
remains incompletely understood. It is well accepted that
LID is caused by the combination of nigral denervation and
chronic pulsatile DAergic receptor stimulation, which establishes
inappropriate signaling between the motor cortex and the
striatum, contributing to the generation of dyskinesia.

A pathophysiological interpretation of LID implicates both
presynaptic and postsynaptic changes in DA transmission. In
PD, as the disease progresses, most of SNc DAergic neurons
die, and its ability to control extracellular DA in the brain is
impaired. In this situation, the majority of the conversion from
L-DOPA to DA occurs in serotonergic neurons. But different
from DAergic neurons, serotonergic neurons cannot modulate
the release of DA, which results in the fluctuation of DA
levels at the synaptic clefts (for reviews, see Huot et al., 2013;
Bastide et al., 2015). In addition, the DAergic denervation
in the dorsolateral striatum leads to a supersensitivity of DA
receptors in the striatum, which strongly stimulates cAMP
signaling pathway (Park et al., 2014; Sancesario et al., 2014) and
DA- and cAMP-regulated neuronal phosphoprotein (DARPP-
32) pathway (Guan et al., 2007; Santini et al., 2007). Other
signaling cascades are also activated, including ERK kinase
(Fasano et al., 2010; Santini et al., 2010) and the mammalian
target of rapamycin (Santini et al., 2009; Calabrese et al.,
2020). These pathways regulate gene transcription and protein
synthesis, which contribute to LID generation (for review, see
Spigolon and Fisone, 2018).

In addition, emerging evidence has shown that non-
DAergic systems including glutamatergic system is also
involved in LID pathophysiology (for review, see Cenci,
2014). Microdialysis studies in rodent models of LID have
revealed that extracellular levels of glutamate in the striatum are
increased (Dupre et al., 2011). Furthermore, amantadine, a weak
non-competitive N-methyl-D-aspartate receptor (NMDAR)
antagonist, is the first drug approved for dyskinesia by the Food
and Drug Administration. Interestingly, activity-dependent
synaptic plasticity at corticostriatal synapses is altered in LID,
demonstrating its inability to form both LTD (long-term

depression) and depotentiation in dyskinesia (Picconi et al.,
2003, 2008).

Another non-DAergic system, the cholinergic system, also
contributes to LID development. In the striatum, the principal
source of acetylcholine is the cholinergic interneurons (ChIs).
ChIs have widespread axonal arborizations to modulate striatal
neurotransmission (Calabresi et al., 2000). This modulation
could influence striatal DA, γ-aminobutyric acid (GABA), and
other neurotransmitter release via nicotinic and muscarinic
acetylcholine receptors (nAChRs and mAChRs) (for reviews, see
Conti et al., 2018; Bordia and Perez, 2019). It has shown that
acute L-DOPA administration increases ERK phosphorylation in
spiny projection neurons (SPNs), whereas repeated application
leads to the activation of ERK in ChIs, which leads to increased
basal firing and potentiated responses to DA in ChIs (Ding
et al., 2011). In addition, both pharmacological inhibition of
striatal cholinergic tone and ablation of striatal ChIs decrease LID
without affecting the beneficial efficacy of L-DOPA (Ding et al.,
2011; Won et al., 2014).

Furthermore, accumulating evidence indicates that
morphologic changes in dendritic spines may also underlie
dyskinesia (Fieblinger and Cenci, 2015; Nishijima et al., 2018).
In Parkinsonian rodents, the treatment of L-DOPA could induce
a remarkable structural plasticity of striatal spines. Spines in
indirect pathway SPN (iSPN) are lost after a DA-denervating
lesion, but they can regrow in response to the application of
L-DOPA; this spine regrowth exhibits aberrant morphology,
indicating that the affected iSPNs are abnormal rewired (Zhang
et al., 2013). In contrast, direct pathway SPN (dSPN) spine
density is reduced (Fieblinger et al., 2014; Nishijima et al., 2014).
But how the specific spine changes of iSPNs and dSPNs are
related to the pathophysiology of LID remains unknown.

In this review, we will first evaluate three models to explain the
pathophysiology of LID, including “firing rate,” “firing pattern,”
and “ensemble” model. We will present an overview of studies
supporting or negating these models. Then we will discuss brain
regions, which are involved in LID, indicating that the generation
and modulation of LID require the coordinated actions of the
striatum, the pallidal–subthalamic network, the motor cortex,
the thalamus, and the cerebellum. Finally, we provide three
critical questions for the future study.

THEORETIC MODELS OF BG IN LID

There are two major populations of cells in the striatum, dSPNs
and iSPNs, based on their different projection targets. DA D1
receptors are highly expressed in dSPNs; these neurons project
directly to the outputs of the basal ganglia (BG) including
substantia nigra reticulata (SNr) and the globus pallidus internal
segment (GPi). In contrast, DA D2 receptors are located in
iSPNs. They reach SNr and/or GPi indirectly via globus pallidus
external segment (GPe) and the subthalamic nucleus (STN) (for
review, see Bastide et al., 2015). Generally, the activation of the
direct pathway reduces the output of the BG, stimulating the
thalamus and cortex, which promotes the movement. While the
stimulation of the indirect pathway increases the BG output,

Frontiers in Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 614412

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-614412 March 9, 2021 Time: 11:39 # 3

Yang et al. Neuronal Circuitry Mediating LID

FIGURE 1 | The direct and indirect pathway of the BG. In the health, the activation of the direct pathway reduces the output of the BG, stimulating the thalamus and
cortex, which promotes the movement. While the stimulation of the indirect pathway increases the BG output, suppressing the cortex and inhibiting the movement.
In PD, the deficiency of DA in the striatum causes the overactivation of indirect pathway, as well as the hypoactivation of direct pathway, resulting in the suppression
of the thalamus and the cortex, which inhibits the movement. In contrast, in LID, the activity of direct output pathway is increased while the indirect output pathway is
inhibited, which disinhibits the thalamus and the cortex, resulting in the increase of the movement. Red lines indicate excitatory transmission, whereas blue lines
mean inhibitory transmission, and line width represents the strength of neuronal transmission. This figure adapted from McGregor and Nelson (2019).

suppressing the cortex and the movement (for review, see Bastide
et al., 2015; Figure 1). In PD, the deficiency of DA in the striatum
causes the overactivation of indirect pathway, as well as the
hypoactivation of direct pathway, resulting in the suppression
of the thalamus and the cortex, which inhibits the movement
(Figure 1; McGregor and Nelson, 2019). While in LID the DA
concentration in the striatum is increased, which enhances the
output of direct pathway by the stimulation of D1 receptor, the
indirect pathway is inhibited via the activation of D2 receptor.
The overall outcome of these actions reduces the BG output and
induces dyskinesia (Figure 1).

There are 3 major hypotheses that explain the pathophysiology
of LID. First, the “firing rate model” proposes that decreasing
the mean firing rates of the output nuclei of BG including GPi
and SNr, along the BG pathways, induces dyskinesia. Second,
“firing pattern model” claimed that abnormal firing pattern of
single unit activity and local field potentials (LFPs) may disturb
the information processing in the BG, resulting in dyskinesia.
Third, “ensemble model” described that dyskinetic symptoms are
induced by alterations in patterns of activity of several specific cell
types brain-wide.

Firing Rate Model (Table 1)
The firing rate model proposes that brain information is encoded
in the firing rate of individual neurons. LID symptoms might
be caused by the reduction of firing rate of GPi neurons, which
disinhibit the thalamic–cortical motor pathway (DeLong, 1990;
Vitek and Giroux, 2000). Evidences favoring rate-based model

TABLE 1 | Changes in firing rates in health, PD, and LID conditions.

Parkinsonian LID Citations

Striatum

dMSNs Decreased Increased Parker et al., 2018; Ryan et al.,
2018; Sagot et al., 2018

iMSNs Increased Decreased Parker et al., 2018; Ryan et al.,
2018; Sagot et al., 2018

ChIs NT Enhanced Ding et al., 2011

STN Increased No effect Aristieta et al., 2012

SNr Increased Decreased Aristieta et al., 2016; Jin et al., 2016

M1 Cortex Decreased Increased Ueno et al., 2014

LC Decreased Normal Miguelez et al., 2011

LHb NT Increased Bastide et al., 2014

DRN Increased Increased Prinz et al., 2013

Simple depiction of firing rate changes in health, PD, and LID conditions across
many brain regions including the BG. “NT” means “not tested.”

of LID came from studies in humans, non-human primates,
and rodents. In Parkinsonian monkeys, the application of L-
DOPA reduces the firing rate in the GPi neurons (Papa et al.,
1999). Further, in PD patients with LID, during the expression
of dyskinesias, both GPi and STN firing rate shift from increased
activity in the Parkinsonian state to hypoactivity (Lozano et al.,
2000). Studies in rodents with LID also support rate-based model.
In 6-OHDA–lesioned rats, the firing rate of STN neurons was
decreased by L-DOPA and non-selective DA receptor agonist
apomorphine (Kreiss et al., 1997).
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Recently, firing rate changes of dSPN and iSPN in LID are also
studied. Ryan et al. (2018) showed that, in Parkinsonian mice,
DA depletion significantly reduces dSPN firing rates, whereas
the firing rate of iSPNs is not increased significantly, which
cause an imbalance between dSPN and iSPN activity. After
the administration of L-DOPA, the firing rate of dSPNs in
Parkinsonian mice is much higher than that in healthy controls,
whereas the firing rate of iSPNs is reduced below the normal
range (Ryan et al., 2018). In addition, using Pitx3 null mutant
(Pitx3−/−) mice, which is an animal model for PD with severe
DA denervation, the firing rate of dSPNs is increased in response
to L-DOPA or D1 receptor agonist, SKF81297 (Sagot et al., 2018).
A recent study using imaging somatic Ca2+ dynamics also reveals
that during dyskinesia, dSPNs are hyperactive, whereas iSPNs are
hypoactive (Parker et al., 2018).

In addition, chronic L-DOPA administration enhanced
baseline and DA-induced firing rates compared with chronic
saline treatment in striatal ChIs of Pitx3−/− mice (Ding et al.,
2011). The follow-up study by the same group showed that both
hyperpolarization–activation cyclic nucleotide-gated and small
conductance calcium-activated potassium (SK) channels mediate
the change of ChI firing rates in response to chronic L-DOPA
treatment (Choi et al., 2020).

Although many studies have favored the rate-based model of
LID, it still cannot explain several aspects of LID. For example, by
monitoring thousands of SPNs in behaving mice during LID, four
different types of SPN dynamics have been revealed, including
decreased spontaneous iSPN activity, increased spontaneous
dSPN activity, loss of spatial coordination of dSPN activity, and
reduced movement-coupled dSPN activity (Parker et al., 2018).
Both decreased iSPN activity and increased dSPN activity support
the rate-based model, but two other kinds of neural dynamics
cannot be explained by this model (Parker et al., 2018).

Firing Pattern Model
Burst Firing
Although many investigators attribute altered firing rates to the
generation of LID at the neuronal level in the BG and other
brain areas, recent studies have challenged this idea. It now
seems clear that changes in burst firing might underlie these
dyskinetic symptoms (Table 2). Burst firing means a neuron
repeatedly fires discrete groups of spikes; between bursts is a
period of quiescence. At least two main functional roles of bursts
have been proposed. First, bursting can enhance the reliability
of information transmission (Lisman, 1997). Second, bursts can
carry additional information and expand the coding space.

At the level of BG output, several groups have found altered
bursting activity in GPi neurons in human dyskinesia patients
and rodents with LID. Acute application of L-DOPA increases
the number of bursting cells in the GPi and SNr of Parkinsonian
rats (Meissner et al., 2006; Jin et al., 2016). In contrast, in another
study, although baseline bursting firing pattern is increased in
Parkinsonian rats, acute application of L-DOPA reduces the
number of bursting neurons in the SNr of dyskinetic rats
(Aristieta et al., 2016). Increased bursting has also been observed
in the STN and GPi of dyskinetic patients (Levy et al., 2001a).

TABLE 2 | Comparisons of firing patterns in health, PD, and LID conditions.

Parkinsonian LID Citations

Burst firing

SNr NT Increased Meissner et al., 2006

Increased Reduced Aristieta et al., 2016

GPi NT Increased Jin et al., 2016

NT Increased Levy et al., 2001a

STN NT Increased Levy et al., 2001a

LC Decreased Increased Miguelez et al., 2011

LHb NT Increased Bastide et al., 2016

Neuronal oscillation

β oscillation

STN Increased Decreased Delaville et al., 2015

Increased Decreased Alonso-Frech et al., 2006

Cortex Increased Decreased Delaville et al., 2015

NT Decreased Dupre et al., 2016

γ oscillation

Cortex Reduced Increased Delaville et al., 2015

NT Increased Dupre et al., 2016

NT Increased Swann et al., 2016

NT Increased Halje et al., 2012

STN Reduced Increased Delaville et al., 2015

The summary of firing patterns (burst firing and oscillation) changes in health, PD,
and LID conditions. “NT” means “not tested.”

In addition to the BG, neurons in other brain areas also
demonstrated changes in burst activity in dyskinetic rodents.
In locus coeruleus (LC), the percentage of neurons with
bursting activity is significantly reduced in Parkinsonian rats,
but acute L-DOPA administration increases it (Miguelez et al.,
2011). Furthermore, in lateral habenula (LHb) of ON-L-DOPA
dyskinetic 6-OHDA–lesioned rats, the proportion of bursting
neurons are significantly increased compared to the control
(Bastide et al., 2016).

As with firing rate, it is difficult to link bursting specifically
with dyskinesia. Measuring dyskinesia by the modulation of
bursting is a good approach. Although one study has shown that
bursting increase by constant positive current injection in the
STN ameliorates LID in Parkinsonian rats (Tai et al., 2020), more
work still needs to be done to confirm this link.

Neuronal Oscillations
Convergent evidence from both human patients and animal
models suggest that dyskinetic symptoms might also be
caused by abnormal changes in neuronal oscillation within the
cortico–BG–thalamic loop and other brain regions (Table 2)
(Richter et al., 2013).

Mechanisms that mediate the generation of oscillation in brain
regions are prime candidates for the pathophysiology of LID.

Neuronal oscillations are rhythmic or repetitive patterns
of neural activity in the central nervous system. Brain can
generate oscillatory activity driven either by individual neurons
or by interactions between neurons. For individual neurons,
oscillations can appear as rhythmic patterns of action potentials.
At the level of cell groups, synchronized activity of large
numbers of neurons produces macroscopic oscillations, which
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can be measured using LFP. It generally arises from feedback
interactions between the neurons. Usually, it is classified into
several bands based on frequency range, including δ (∼1–
4 Hz), θ (∼4–8 Hz), α (∼8–13 Hz), β (∼13–30 Hz), and γ

(∼30–100 Hz) bands (Wang, 2010). The oscillatory theory is
an important theoretic basis for deep brain stimulation (DBS)
therapy on LID (Stefani et al., 2019). There is a wide diversity
of cellular and circuit mechanisms underlying the generation of
these oscillations, and neural oscillations could mediate memory,
sleep, motor coordination, and other physiological functions.

β Oscillation
Most of studies have demonstrated that enhanced β oscillation
in cortico–BG–thalamic loop might cause motor impairment
including bradykinesia in PD (Brazhnik et al., 2012, 2014,
2016; Delaville et al., 2015). Correlative evidence showed that β

frequency stimulation at the STN may contribute to the slowing
of movements in PD patients (Chen et al., 2007). It is postulated
that in Parkinsonian state the BG demonstrates abnormally β

oscillatory activities; this β band activity impairs information
processing in cortico–BG loops and causes both motor and
cognitive deficits in PD.

In dyskinetic rodents and patients β band activity is reduced
(Figure 2). Treatment with L-DOPA, administrated acutely or
chronically, reduces β band activity induced by DA depletion
(Delaville et al., 2015). Additionally, in Parkinsonian rats, L-
DOPA priming decreases cortical β band activity during treadmill
walking (Dupre et al., 2016). PD patients in the “On” state also
showed decreased β oscillation (Alonso-Frech et al., 2006). In
addition, β oscillations can be divided into low (12–19 Hz) and
high (19–30 Hz) β band. They have different origins within the

FIGURE 2 | Oscillation model of LID. Oscillation model proposes that
dyskinesia is characterized by significant changes in oscillations; usually β

oscillation is reduced (Delaville et al., 2015), whereas γ oscillation is enhanced
(Halje et al., 2012).

cortico–BG–thalamic circuit (Brittain et al., 2014). Low β band
shows a greater decrease in power than the high β component in
response to L-DOPA and apomorphine (Priori et al., 2004).

Nevertheless, the link between PD and β oscillation is not
convincing. In Parkinsonian monkeys injected with 1-methyl-
4-Phenyl-1,2,3,6-tetrahydropyridine (MPTP), they show that
Parkinsonian symptoms do not depend on β oscillation. While
the moderate depletion of DA induces parkinsonism, only a
significant DA reduction generates β oscillation (Leblois et al.,
2007). Furthermore, the pharmacological inhibition of STN
activity by microinjection of lidocaine and muscimol into STN
can rescue some PD symptoms without suppressing β oscillation
in PD patients (Levy et al., 2001b). Similarly, how the change of β

oscillation is related to dyskinesia requires further study.

γ Oscillation
γ Oscillation is also associated with dyskinesia. Initial studies
suggested that this oscillation is primarily related to the
prokinetic effect of L-DOPA rather than to dyskinetic symptoms
(Cassidy et al., 2002; Alonso-Frech et al., 2006). It is further
supported by the study showing that the power of γ oscillation
increases with voluntary movements (Cassidy et al., 2002; Alegre
et al., 2005). The high-frequency oscillations (HFOs) in the 60–
90-Hz frequency band are also found in the motor cortex in
association with movements (Crone et al., 1998). Interestingly,
these movements related only to brief episodes of γ power
increase rather than sustained oscillatory activity (Cheyne and
Ferrari, 2013). Later, the link of this HFO to dyskinesia in
motor cortex is established by Halje et al. (2012) (Figure 2).
They found that 80-Hz HFOs are present only in the lesioned
hemisphere during LID. Further, the local application of D1
receptor antagonist in the motor cortex reduces both 80-Hz
oscillation and dyskinesia (Halje et al., 2012).

Since the original finding by Halje et al., the role of this
narrowband γ oscillation in rodent models of LID has been
further confirmed (Dupre et al., 2016; Swann et al., 2016). In
PD patients with an implantable bidirectional device for DBS
and electrocorticography, this typical motor cortical HFOs is
also observed along with dyskinesia, supporting the conclusion
that this narrowband HFO is pathological rather than prokinetic
(Swann et al., 2016). In addition, this oscillation is not affected
by voluntary movements, indicating that it can be a reliable
biomarker of dyskinesia (Swann et al., 2016). Furthermore, the
appearance of γ oscillation is related to the severity of DA damage
as the partially lesioned rats do not show the enhancement of
narrow γ band activity, this oscillation is obvious when LID
becomes severe (Dupre et al., 2016). Both γ oscillation and
dyskinesia can be induced by activating either D1 or D2 dopamine
receptors similar to that induced by L-DOPA following L-DOPA
priming in 6-OHDA–lesioned rats (Dupre et al., 2016).

Although an association between fast cortical oscillations and
LID is strongly suggested, it is still controversial. In the ventral
striatum of healthy rodents, the application of apomorphine
and amphetamine, which are DA agonists, also increases high γ

activity (∼80 Hz) (Berke, 2009).
It is well accepted that slow oscillations are necessary for

network synchronization over long distances, whereas faster
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rhythms including γ rhythms serve to synchronize neuronal
activity in short ranges (Jensen and Colgin, 2007). The amplitude
of γ oscillation could be modulated by the phase of a much slower
oscillation, which is called phase-amplitude coupling. It has been
demonstrated in many brain areas and plays very important roles
in a variety of cognitive processes including learning and memory
(Canolty and Knight, 2010). Recently, phase-amplitude coupling
has also been discovered in both the cortex and the striatum of
mice with dyskinesia. In the case of dyskinesia, the coupling of the
amplitude of oscillation at∼80 Hz to the phase of low frequencies
is significantly reduced (Belic et al., 2016).

Ensemble Model
A neural ensemble is a group of neurons involved in a special
neural computation. Depending on functional requirements,
the same neuron could participate in different cell ensembles
related to different computations (Josselyn et al., 2015). There
is anatomical evidence to support this notion that each neuron
receives inputs from many other neurons while sending its
outputs to large populations of cells. It is proposed that dyskinesia
symptoms might represent a distributed impairment involving
many brain regions.

It is well accepted that LID is caused by aberrant activity in the
striatum evoked by L-DOPA. However, other brain regions have
also been involved, including the primary motor cortex (M1)
and the cerebellum. It is more likely that dyskinetic symptoms
are induced by the alterations in large populations of neurons
across the brain, although the number of activated neurons in the
striatum correlated most strongly with dyskinesia severity.

Using the targeted recombination in active population
technique, neurons in several brain regions, including the M1
and the striatum have been identified to be associated with LID
(Girasole et al., 2018). Optical activation of LID-associated striatal
neurons induces dyskinesia without the acute administration of
L-DOPA. Further, the inhibition of these striatal LID-associated
neurons reduces the generation of dyskinesia, whereas inhibiting
dSPNs only cannot (Girasole et al., 2018). In another study, a
subpopulation of dSPNs, which has abnormally high firing rates
induced by L-DOPA in the striatum, is correlated specifically
with dyskinesia (Ryan et al., 2018). Interestingly, it has been
shown that parvalbumin-positive interneurons and iSPNs in the
striatum might also contribute to LID (Girasole et al., 2018),
which is supported by another study (Alberico et al., 2017).

POSSIBLE LOCI OF CIRCUIT
MODULATION IN LID

It is well accepted that the striatum is the major target for L-
DOPA to induce LID. In Parkinsonian rat, local administration
of L-DOPA in the striatum induces dyskinesia (Buck et al., 2010).
Further immediate-early genes such as c-Fos, FosB, and 1FosB
are consistently upregulated in the striatum of animals with
LID (Cenci, 2002; Beck et al., 2019). Detailed information about
the involvement of the striatum in LID can be found in other
articles (Cenci et al., 2018; Zhai et al., 2019). However, other
brain regions have also been implicated in LID, including the

pallidal–subthalamic network, the motor cortex, the thalamus,
and the cerebellum (Figure 2) (Cenci et al., 2018). In addition,
a systematic mapping of the brain regions reveals that several
other regions including the LHb and the bed nucleus of the stria
terminals (BNST) are also involved in LID (Bastide et al., 2014).

The Pallidal–Subthalamic Network
The pallidal–subthalamic network consists of the STN and the
two segments of the globus pallidus (GPe and GPi). Each
component of this network has its own set of afferent and efferent
connections. The STN is a key structure in the cortico–BG–
thalamo-cortical circuit. It receives glutamatergic inputs from
the cortex (Heikenfeld et al., 2020), the thalamus (Kita et al.,
2016), and the superior colliculus (SC) (Coizet et al., 2009).
In addition, it has GABAergic input from the GPe (Canteras
et al., 1990) and DAergic input from the SN (Cragg et al.,
2004). Furthermore, the STN provides glutamatergic efferent to
the outputs of the BG including GPi, SNr, and the striatum
(Hamani et al., 2017). It is involved in both indirect pathway
and hyperdirect pathway in the cortico–BG–thalamo-cortical
circuit (Bonnevie and Zaghloul, 2019). In hyperdirect pathway,
STN receives direct signals from the cerebral cortex without the
involvement of GPe (Polyakova et al., 2020).

STN lesion or STN high-frequency stimulation (HFS)
alleviates dyskinesia by reducing the dose of the L-DOPA
required (Toda et al., 2004; Apetauerova et al., 2006; Aristieta
et al., 2012). The optogenetic inhibition of the STN significantly
reduced LID in Parkinsonian rats (Yoon et al., 2016). However,
STN-HFS may also produce dyskinesia in some PD patients
(Limousin et al., 1996) and Parkinsonian rodents (Beurrier et al.,
1997; Boulet et al., 2006). Furthermore, after LID in Parkinsonian
rats is induced, the depletion of DA in the STN significantly
attenuates LID, but the removal of DA in the STN alone could
not induce dyskinesia in Parkinsonian rats (Marin et al., 2013).

The GPi is an output of the BG, which receive afferent
stimulation from striatal dSPN directly. The efferent of the GPi
includes the thalamus (Jaeger and Kita, 2011). Another GP, the
GPe, receives two major inputs from STN and striatal iSPNs
(Jaeger and Kita, 2011). Part of the direct targets from the GPe
includes the STN, the striatum, and the thalamus (Mastro et al.,
2014). Different cell groups in the GPe connect to its different
targets. Prototypical neurons in the GPe send strong projections
to the STN, whereas arkypallidal neurons project to both SPNs
and fast-spiking interneurons in the striatum (Gittis et al., 2014).
Several studies have shown that the GPi is involved in LID.
Chronic DBS of GPi improves dyskinesia in Parkinsonian rats
(Rodrigues et al., 2007; Alam et al., 2014). In contrast to STN
stimulation, the stimulation of the GPi could improve dyskinesia
without changing the requirement for L-DOPA (Apetauerova
et al., 2006). Up now, no study investigates the involvement of
GPe in LID.

Substantia Nigra Pars Reticulata
The SN is divided into two parts: SNc and SNr. The
pars compacta serves mainly as a projection to the BG
circuit, supplying the striatum with DA. The pars reticulata
conveys signals from the BG to numerous other brain
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structures. Similar to GPi, the neurons in pars reticulata are
mainly GABAergic.

SNr receives several afferents from other brain regions,
including GABAergic inputs from the striatum and glutamatergic
projections from the STN. SNr also sends significant connections
to the thalamus and SC (Beckstead et al., 1979). In addition,
the neurons in SNr form collaterals with pars compacta,
modulating the activity of DAergic neurons in the pars compacta
(Mailly et al., 2003).

Many studies have shown that SNr is involved in LID.
During dyskinesia, the activities of SNr neurons in patients and
animal models of PD are significantly inhibited (Lozano et al.,
2000; Meissner et al., 2006; Aristieta et al., 2016). In addition,
optical stimulation of dSPN GABAergic terminals at the SNr
can produce a full dyskinetic state similar to that induced by L-
DOPA (Keifman et al., 2019). Interestingly, the stimulation of M4
mAChRs in SNr inhibits LID (Brugnoli et al., 2020).

Motor Cortex
The motor cortex comprises three different areas, including the
M1, the premotor cortex, and the supplementary motor area
(SMA) (Bastide et al., 2015). Accumulated evidence indicated
that the motor cortex is involved in LID (Huang et al., 2011;
Halje et al., 2012; Belic et al., 2016; Dupre et al., 2016).
Most of studies have been done in PD patients and rodents.
It has shown that LID is associated with increased activity
of neurons in M1 (Lindenbach et al., 2016). Using single-
photon emission computed tomography technique, both SMA
and M1 are found to be overactivated in PD patients with
LID by analyzing regional cerebral blood flow (Rascol et al.,
1998). This conclusion has also been confirmed by magnetic
resonance imaging data (Cerasa et al., 2015). In addition, in
Parkinsonian rats, the application of L-DOPA increases M1
blood flow while decreasing M1 glucose metabolism (Ohlin
et al., 2012). But other studies reported different results; in PD
patients, L-DOPA reduces M1 blood oxygen levels and glucose
metabolism (Haslinger et al., 2001). These inconsistent studies
require future clarification.

In the rodent brain, pyramidal cells account for 80% of cortical
neurons. There are two different types of pyramidal neurons in
the motor cortex: intratelencephalic (IT) and pyramidal tract
(PT) neurons based on their projection targets (Reiner et al.,
2010). IT neurons preferentially target both ipsilateral striatum
and contralateral striatum as well as the cortex. Therefore,
IT neurons include both corticostriatal and corticocortical
projections, whereas PT neurons preferentially connect
brainstem, spinal cord, and ipsilateral striatum (McColgan
et al., 2020). In addition, it has been suggested that IT neurons
express D1 receptors and preferentially target dSPNs, whereas
PT neurons express D2 receptors and preferentially connect
iSPN in the striatum (Shepherd, 2013), but this hypothesis is
challenged by other studies; it has shown that IT and PT neurons
project to both iSPN and dSPN in the striatum (Kress et al.,
2013). Further work is required to study this inconsistency. In
LID rat model, both IT-type and PT-type neurons in the M1
demonstrate enlarged dendrite spines (Ueno et al., 2014, 2017).
IT-type neurons also show increased neuronal activity (Ueno

et al., 2014); whether the activity of PT-type neurons is also
increased remains unstudied yet (Ueno et al., 2017).

Using transcranial magnetic stimulation (TMS), a lack of
depotentiation-like cortical plasticity in PD patients with LID
is also revealed (Huang et al., 2011). In the motor cortex of
LID rat model, 80-Hz high-frequency LFP oscillations appear
(Halje et al., 2012). The association between high-frequency
LFP oscillations and LID has also been confirmed by several
other studies (Delaville et al., 2015; Belic et al., 2016; Dupre
et al., 2016). In addition, when D1 receptors in the motor cortex
is pharmacologically inhibited, both 80-Hz oscillations and
abnormal involuntary movement (AIM) are attenuated (Halje
et al., 2012). Thus, not surprisingly, directly targeting the M1 with
TMS and transcranial direct current stimulation (tDCS) has been
used to treat LID symptoms. M1-tDCS improves LID symptoms
in PD patients, which might be mediated by downregulating M1
excitability (Ferrucci et al., 2016).

Thalamus
In addition to act as a relay afferent to the neocortex, the
thalamus is also related to the movement control. It includes
several important nuclei such as the centromedian/parafascicular
complex (CM/Pf) and the motor thalamus. CM/Pf can
communicate bidirectionally with the BG; CM/Pf provides major
glutamatergic inputs to the BG (Van der Werf et al., 2002).
In turn, it receives innervations from the BG output (Sidibe
et al., 2002). Further, CM/Pf has wide afferent connections
from sensorimotor cortex and responses to many sensory and
arousing stimuli (Yamanaka et al., 2018). There is accumulating
evidence demonstrating the involvement of CM/Pf in LID
(Jouve et al., 2010; Alam et al., 2014). In 6-OHDA–lesioned
Parkinsonian rat model, Pf-HFS partially alleviates LID. In
addition, Pf-HFS can also provide antiparkinsonian benefits,
although its efficacy is reduced by L-DOPA (Jouve et al., 2010).
At the cellular level, Pf-HFS partially prevents the increase
of preproenkephalin-A mRNA levels in the striatum induced
by DA denervation, preproenkephalin-A is a marker for iSPN
function (Jouve et al., 2010). Further, Pf-HFS reverses the lesion-
induced changes of cytochrome oxidase subunit I in the STN,
GPe, and SNr (Jouve et al., 2010). Chronic DBS of CM/Pf
improves the dyskinetic symptoms in both Parkinsonian rats and
patients (Stefani et al., 2009; Alam et al., 2014), although one
study showed that CM/Pf lesion in MPTP-lesioned dyskinetic
monkeys provides no benefit on LID symptoms (Lanciego et al.,
2008). Further studies are still required to understand the
specific contribution of CM/Pf neurons to the pathophysiology
of LID.

Another nucleus in the thalamus, the motor thalamus, is
also linked to LID, which is demonstrated by several studies
(Ohye and Shibazaki, 2001; Guridi et al., 2008). It includes the
ventral anterior, ventral lateral, and ventral medial nuclei. They
receive direct afferents from GPi/SNr, the cerebral cortex, and
the deep cerebellar nuclei. The lesions of the motor thalamus
improve dyskinetic symptoms in PD patients with LID (Ohye and
Shibazaki, 2001; Guridi et al., 2008).

Frontiers in Neuroscience | www.frontiersin.org 7 March 2021 | Volume 15 | Article 614412

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-614412 March 9, 2021 Time: 11:39 # 8

Yang et al. Neuronal Circuitry Mediating LID

FIGURE 3 | Brain regions involved in the pathophysiology of LID. Besides the striatum, other brain regions including the pallidal–subthalamic network, the motor
cortex, the thalamus, the cerebellum, the dorsal raphe nucleus (DRN), the LC, the LHb, and the BNST are also involved in LID. During LID, LHb neurons are
suggested to induce the aberrant DA release in the striatum from serotonergic terminals via DRN and generate LID symptoms (Carta et al., 2007; Bernard and Veh,
2012), but the mechanisms how the LC and the BNST affect LID remain unknown (red “?” represents unknown). In addition, the BG and the cerebellum are thought
to communicate at the subcortical level. The subthalamic nucleus (STN) sends projections to the cerebellar cortex through pontine nuclei (PN) (blue line) (Bostan
et al., 2010), whereas the dentate nucleus in the cerebellum sends connection to the striatum via the thalamus (yellow line) (Hoshi et al., 2005).

Cerebellum
Although both the BG and the cerebellum are involved
in the movement control, they have different functions.
The function of the cerebellum is to control fine-tuning
movement, whereas BG’s function is to select wanted movement.
These two systems are thought to be independent, and
they connect only at the level of the cerebral cortex. But
studies have shown that the BG and the cerebellum could
also communicate at the subcortical level (Hoshi et al.,
2005; Bostan et al., 2010). The STN sends projections to
the cerebellar cortex through pontine nuclei (Bostan et al.,
2010), whereas the dentate nucleus in the cerebellum sends
connection to the striatum via the thalamus (Hoshi et al., 2005;
Figure 3).

Most studies demonstrating cerebellar involvement in LID
are done in human beings using tDCS and/or TMS. For
example, cerebellar tDCS decreases LID in PD patients
(Ferrucci et al., 2016). It is proposed that the cerebellum
is overactivated in LID. This impairs its ability for efficient
information processing. Cerebellar tDCS reduces LID by
decreasing the overstimulation of cerebellum (Ferrucci et al.,
2016). In addition, repetitive TMS is used on the lateral
cerebellum in PD patients with LID. It has shown that a
single session of cerebellar continuous theta burst stimulation
(TBS) transiently reduces LID, whereas multiple sessions
of cerebellar TBS alleviate LID for a longer time (Koch
et al., 2009). Cerebellar TBS might do so by decreasing
short intracortical inhibition and increasing long intracortical
inhibition, which reorganizes cortical circuits linked to LTD
induction (Koch et al., 2009).

Furthermore, a single session of inhibitory cerebellar TMS
could rescue the deficits of sensorimotor M1 plasticity in PD
patients with LID, whereas repeated cerebellar TMS had an
antidyskinetic effect along with a resurgence of sensorimotor
plasticity in M1, suggesting this effect of cerebellar stimulation
could restore M1 plasticity (Kishore et al., 2014). It is
hypothesized that the abnormal output from the BG might affect
cerebellar sensory processing function, which induces both the
maladaptive plastic responses in M1 and the appearance of LID
(Kishore et al., 2014).

Other Brain Regions
Lateral Habenula
LHb receives innervations from both the limbic system and the
BG including GPi (Hikosaka et al., 2008; Hong and Hikosaka,
2008). It projects to the monoaminergic brain regions such
as the ventral tegmental area (VTA), the SNc, and the dorsal
and medial raphe (DRN and MRN) (Bernard and Veh, 2012).
Recent study claims that LHb might encode negative reward,
which is involved in reward processing (Baker et al., 2016).
So far, only one article demonstrates that LHb contributes to
the generation of LID. It demonstrates that L-DOPA increases
LHb activity. In addition, LID symptoms are relieved when LHb
neurons are inactivated (Bastide et al., 2016). It is well known
that LHb projects to serotonin neurons in the DRN. In advanced
PD, instead of DAergic terminals, serotonergic terminals control
the release of DA. Therefore, during LID, LHb neurons might
induce the aberrant DA release from serotonergic terminals and
generate LID symptoms (Carta et al., 2007; Navailles et al.,
2011; Figure 3).

Frontiers in Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 614412

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-614412 March 9, 2021 Time: 11:39 # 9

Yang et al. Neuronal Circuitry Mediating LID

Bed Nucleus of the Stria Terminal
BNST is related to motivated behaviors and has two-way
communications with the central amygdale, the lateral
hypothalamus, the VTA, and the periaqueductal gray (Vranjkovic
et al., 2017). It has shown that transcription factors, 1FosB, ARC,
Zif268, and FRA2, are overexpressed in the BNST of dyskinetic
rats (Cenci, 2002; Lindgren et al., 2011; Bastide et al., 2014).
When neurons in BNST are pharmacogenetically inactivated,
dyskinesia is significantly reduced (Bastide et al., 2017). It is
hypothesized that the BNST could modulate LID symptoms via
SNc and that it might also affect LID severity, either directly
or indirectly, through the modulation of anxiety-related and
sensorimotor processes.

Dorsal Raphe Nucleus
DRN contains the main population of serotonergic neurons
in the brain; they provide extensive innervation to the BG
including SN and caudate putamen (Di Matteo et al., 2008).
In rats, both the number of serotonergic neurons in the DRN
and serotonin content in the striatum and prefrontal cortex
are significantly reduced after the administration of L-DOPA;
these changes might be mediated by oxidative-stress mechanism
(Stansley and Yamamoto, 2014). Consistently, the decrease in
serotonin content after the application of L-DOPA in a rat
model of PD is also observed; but different from previous
study, this reduction occurs throughout the whole rat brain
(Navailles et al., 2011). These differences might be caused by
different experimental models and methods they used. But
other authors found the opposite. This is thought to be a
sprouting of serotoninergic neurons induced by L-DOPA in
Parkinsonian rat, which potentiates the DA release in the DA-
depleted striatum (Rylander et al., 2010). Interestingly, there
are no anatomical changes for the serotonergic neurons in the
DRN of PD patients with LID, suggesting a functional but
not structural change in the serotonergic system in dyskinesia
(Cheshire et al., 2015).

In addition, both DA degeneration and subsequent L-DOPA
treatment affect the intrinsic excitability of serotonergic neurons
in the DRN of Parkinsonian mouse model (Prinz et al., 2013).
This change might mediate some dyskinetic symptoms. But
another study drew a different conclusion; they find that the effect
of L-DOPA is not related to changes of the activity of rat DRN
serotonergic neurons (Miguelez et al., 2016).

Further, several studies have shown that lesions of the rat
DRN rescue LID symptoms (Carta et al., 2007; Eskow et al.,
2009). The expression of the dopamine D2 autoreceptor in
serotonergic neurons of rat DRN also blocks LID (Sellnow
et al., 2019). Interestingly, the serotonergic and DAergic
systems interact reciprocally. The impairment of serotonergic
neuron reduces DA release (Navailles et al., 2011), whereas
the administration of L-DOPA decreases the level of serotonin
(Navailles et al., 2011).

Locus Coeruleus
It has been shown that noradrenergic (NAergic) neurons in
the LC are also degenerated in PD (Del Tredici et al., 2002).

In fact, more neurons die in the LC than in the SNc (Zarow
et al., 2003). Additionally, it is proposed that the degeneration
of LC NAergic neurons happens early before that of SNc DAergic
neurons (Braak and Del Tredici, 2008). To date, there is growing
evidence that additional loss of NA neurons of the LC, the main
source of NA in the brain, can affect LID symptoms (Fulceri et al.,
2007; Perez et al., 2007, 2009; Miguelez et al., 2011), but results
are not consistent, NA loss can increase, reduce, or have no effect
on LID symptoms. Studies have reported that the denervation
of LC NAergic terminals increases LID symptoms induced by L-
DOPA in Parkinsonian rats (Fulceri et al., 2007; Perez et al., 2007).
In addition, chemical destruction of LC increases dyskinesia
induced by L-DOPA (Miguelez et al., 2011). In contrast, NA
loss does not significantly modulate dyskinetic symptoms in
Parkinsonian rats; instead, it reduces therapeutic effects of L-
DOPA (Ostock et al., 2014). In another study, NA loss reduces
dyskinesia (Barnum et al., 2012).

In addition, the expression of α2A adrenoceptor RNA in the
LC is increased in Parkinsonian rats, and long-term treatment
of L-DOPA reverses this increase (Alachkar et al., 2012).
Further, both selective agonists and antagonists of α2-NAergic
receptors modulate dyskinetic symptoms (Ostock et al., 2015).
Systemic and local LC infusions of clonidine, a α2-NAergic
receptor agonist, reduces LID and locomotor activity without
modulating L-DOPA’s antiparkinsonian benefits. Conversely,
the application of atipamezole, a specific α2-NAergic receptor
antagonist, prolongs LID (Ostock et al., 2015). It is proposed
that atipamezole might modulate motor function indirectly by
stimulating the release of NA and/or inhibiting the activity of α2-
NAergic receptor at postsynaptic site. NAergic system might help
to remove DA derived from L-DOPA via the NA transporter (Arai
et al., 2008). In addition, when both the NAergic and DAergic
systems are denervated, L-DOPA-derived DA remains for a long
time in the cleft, which leads to a prolongation of dyskinesia
(Hida and Arai, 1998).

CONCLUSION

In this review, based on accumulated evidence, we proposed
that LID-related changes of network activity including burst
firing and oscillation of neurons might induce dyskinesia. While
firing rates clearly change across the BG–thalamus–cortex loop
and other brain areas in both LID patients and animal models,
extensive evidence suggests that dyskinesia is characterized by
significant changes in burst firing and oscillations.

Despite the accumulation of extensive evidence for
circuit mechanisms in driving LID symptoms, several major
questions remain.

(1) Do changes in burst firing or oscillation cause dyskinesia?
Or are they just epiphenomenon? Most evidence
supporting their roles in dyskinesia is correlative, but
no matter whether they are epiphenomenon or causal, they
can provide important biological marker for the dyskinesia
diagnosis. This could facilitate drug screening studies in
PD rodents with dyskinesia, as well as identifying the better
stimulation regimes for PD patients with LID.
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(2) In addition, so far it is still difficult to link specific changes
in neuronal activity of dyskinesia-related brain regions to
dyskinesia. The pathophysiological mechanisms underlying
the development of dyskinesias still need further study.

(3) Do current therapies including anti-LID compounds and
DBS affect the circuit mechanisms of LID? Several studies
have addressed this possibility. For example, the application
of amantadine in Parkinsonian mice with dyskinesia
reduces high γ oscillation in both M1 and dorsolateral
striatum (Zheng et al., 2020). In another study, amantadine
increases STN firing rate (Allers et al., 2005). In addition,
both the depletion of 5-HT using pCPA (a serotonin
synthesis inhibitor) and the blockage of serotonin signaling
using its antagonist significantly modify STN neuron firing
rate, but whether this modulation mediates the therapy

of serotonin ligands on dyskinesia remains unstudied
(Aristieta et al., 2014).
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