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The gonads of vertebrate embryos are unique among organs because they have

a developmental choice; ovary or testis formation. Given the importance of proper

gonad formation for sexual development and reproduction, considerable research has

been conducted over the years to elucidate the genetic and cellular mechanisms of

gonad formation and sexual differentiation. While the molecular trigger for gonadal sex

differentiation into ovary of testis can vary among vertebrates, from egg temperature to

sex-chromosome linked master genes, the downstream molecular pathways are largely

conserved. The cell biology of gonadal formation and differentiation has long thought

to also be conserved. However, recent discoveries point to divergent mechanisms of

gonad formation, at least among birds and mammals. In this mini-review, we provide

an overview of cell lineage allocation during gonadal sex differentiation in the mouse

model, focusing on the key supporting and steroidogenic cells and drawing on recent

insights provided by single cell RNA-sequencing. We compare this data with emerging

information in the chicken model. We highlight surprising differences in cell lineage

specification between species and identify gaps in our current understanding of the cell

biology underlying gonadogenesis.

Keywords: sex determination, testis, ovary, single cell RNA seq, chicken embryo, gonad, gonadal differentiation

INTRODUCTION

Gonadal sex differentiation in vertebrates typically results in either ovary or testis formation. This
is a significant event in embryogenesis, setting the stage for either female or male development.
Gonads are initially morphologically identical between the sexes (the so-called “bipotential or
“indifferent” stage) and are subsequently directed down the ovarian or testicular pathways (Nef
et al., 2005; Barseghyan et al., 2018; Stevant et al., 2019). Different genetic or environmental
cues can initiate these alternative pathways (Trukhina et al., 2013). Therian mammals have an
XX:XY sex chromosome system and the Y chromosome-linked SRY gene acts as the master sex
determinant, directing testis formation. However, SRY is absent in non-mammals. Birds have
ZZ:ZW sex chromosomes and gonadal sex determination is governed by the Z-linked gene,
DMRT1, which operates via a dosage mechanism (Smith et al., 2009; Ioannidis et al., 2020). In
many reptiles, egg incubation temperature governs the direction of gonadal sex differentiation
(Yao et al., 2004a; Merchant-Larios and Diaz-Hernandez, 2013; Georges and Holleley, 2018). In
these species, temperature has an epigenetic effect upon the regulation of genes such as DMRT1
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(Ge et al., 2017, 2018). Teleost fish exhibit a remarkable variety of
different genetic sex determining triggers, (Matsuda et al., 2002;
Hattori et al., 2012; Liew et al., 2012; Crespo et al., 2013; Bertho
et al., 2018).

Despite these diverse triggers for gonadal sex differentiation,
most downstream genes are conserved among vertebrates. These
include the transcription factor gene SOX9 and the hormone
AMH, up-regulated in developing testes (Kent et al., 1996;
Nishikimi et al., 2000; Torres Maldonado et al., 2002), and the
signaling factors WNT4, R-SPO1, and forkhead transcription
factor FOXL2, up-regulated in developing ovaries (Loffler et al.,
2003; Smith et al., 2008; Bertho et al., 2016; Hirst et al., 2017;
Zhang et al., 2017; Major et al., 2019; Yamashita et al., 2019).
Similarly, the cellular composition of the gonads is conserved.
In all vertebrates, the gonadal primordium largely consists of
so-called supporting cell precursors, steroidogenic progenitors,
and primordial germ cells (Stevant et al., 2018; Nef et al., 2019).
During gonadal sex differentiation, each gonadal cell population
commits to an ovarian or testicular cell fate (Albrecht and
Eicher, 2001; Chen et al., 2017). In the developing testis, the
supporting cell lineage differentiates into Sertoli cells, which
enclose germ cells and form testis cords (Figure 1) (Rebourcet
et al., 2014). In the surrounding interstitium, the steroidogenic
lineage differentiates into testosterone-producing fetal Leydig
cells (Barsoum and Yao, 2011; Zhang et al., 2015; Liu et al., 2016).
In the ovary, supporting cell precursors form pre-granulosa
cells, steroidogenic progenitors become thecal cells and germ
cells differentiate into oogonia (Mork et al., 2012; Hummitzsch
et al., 2013; Liu et al., 2015; Wear et al., 2017) (Figure 1). The
supporting cell lineage is the first to differentiate under the
direction of a sex-determining trigger, such as Sry (Albrecht
and Eicher, 2001; Wilhelm et al., 2005). This lineage is thought
to channel other cell lineages down the ovarian or testicular
pathway. However, recent studies are shedding new light on cell
lineage allocation during vertebrate gonadal sex differentiation.
These studies are showing that gonadal development is more
complex than previously thought, involving more cell types and,
surprisingly, that their derivation may differ among different
vertebrate lineages (Stevant et al., 2018; Estermann et al., 2020;
Niu and Spradling, 2020). In this mini-review, we summarize
recent developments in this area, focusing on the somatic
component of the gonad and, in particular, the application of
single cell transcriptomics for tracing the origin of gonadal cell
types and delineating cell fate trajectories (Stevant et al., 2019).
We identify gaps in existing knowledge and outline current
directions. As vertebrate gonadal sex (testis vs. ovary) is typically
determined by somatic cells, not the germ cells, we focus here
on this component. However, it is noted that germ cells play
an essential role in gonadal sex determination in some models,
such as zebrafish (Slanchev et al., 2005; Siegfried and Nusslein-
Volhard, 2008).

THE UNDIFFERENTIATED GONADAL
PRIMORDIUM

Vertebrate gonads form during embryonic or larval life and are
derived frommesoderm. The gonad develops in close association

with the mesonephric kidney and at the undifferentiated stage
(sometimes called the “genital ridge”) it comprises cords of
mesenchymal cells overlaid by coelomic epithelium (Karl and
Capel, 1997; Yoshino et al., 2016; Nef et al., 2019) (Figure 1).
Much of our understanding of gonadogenesis has come from
studies on the mouse embryo. The somatic component of
the mouse gonad largely derives from cells that proliferate
from the coelomic epithelium (Karl and Capel, 1998; Schmahl
et al., 2000; Schmahl and Capel, 2003; DeFalco et al., 2011).
Much research has focused on the genetics and cell biology of
genital ridge formation in the mouse. In this model, coelomic
epithelial cells proliferate to give rise to most cells of the
gonad. These cells express the gene Nr5a1, which encodes the
transcriptional regulator, steroidogenic factor 1 (Sf1). In both
mouse and chicken models, the coelomic epithelial cells undergo
asymmetric cell division whereby one daughter cell remains in
the epithelium and the other ingresses through an epithelial to
mesenchymal transition to colonize the genital ridge (Yoshino
et al., 2016; Lin et al., 2017; Yoshino and Saito, 2019). The
coelomic epithelium-derived cells are considered to give rise to
three main somatic cell populations in mammals: the supporting,
steroidogenic and “interstitial” cells (Schmahl and Capel, 2003;
Piprek et al., 2016; Stevant et al., 2018). In mouse, the first wave
of cells that ingress become supporting, steroidogenic and (non-
steroidogenic) interstitial cells (11.2–11.4 days post coitum, dpc).
Later ingressing cells (11.5–11.7 dpc) only give rise to interstitial
cells (Karl and Capel, 1998; DeFalco et al., 2011). However, it
is possible that an additional source of supporting cells also
exists, especially at later stages (Karl and Capel, 1998; Carre and
Greenfield, 2016). In addition, gonadal somatic cells also arise
from cells that immigrate from the adjacent mesonephros, giving
rise to vascular endothelial cells in the testis (Brennan et al.,
2002; Jeays-Ward et al., 2003; Svingen and Koopman, 2013).
The mesonephros is also the source of some steroidogenic cells
(Figure 2A, discussed below). Germ cells are of extra-gonadal
origin; they are specified in the epiblast and migrate into the
genital ridge from the hindgut and dorsal mesentery inmammals,
or via the bloodstream in avians (Hen and Sela-Donenfeld, 2019).

In the early forming mouse genital ridge, cells of the coelomic
epithelium express the transcription factors Gata4, Wt1, Sf1,
and Lhx9, and the signaling factor Notch and its antagonist,
Numb, all of which are required for proper gonad formation
(Birk et al., 2000; Wilhelm and Englert, 2002; Klattig et al.,
2007; Chen et al., 2017; Lin et al., 2017). Lineage tracing
experiments have previously shown that a pool of Wt1+/Sf1+

multipotent progenitors cells expressing these factors in the
coelomic epithelium proliferate to give rise to supporting cells
and interstitial steroidogenic cells in mouse (Liu et al., 2016)
(Figure 2A). A similar SF1+ population in bovine embryos
has been termed GREL cells (Gonadal Ridge Epithelila-Like)
(Hummitzsch et al., 2013). The supporting cells (presumptive
Sertoli or granulosa cells) maintain Wt1 expression but down-
regulate Sf1 expression, while the steroidogenic precursors
maintain Sf1 and down-regulate Wt1 (Zhang et al., 2015;
Chen et al., 2017). Most recently, single-cell transcriptomics
has shed new light on lineage allocation in the gonads.
Single-cell RNA sequencing (scRNA-seq) permits transcriptome
analysis at the single cell level. Based on shared or divergent
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FIGURE 1 | Gonadal sex differentiation and cell lineage specification in the mouse model. Development of the gonad at embryonic and postnatal stages in the mouse.

In the embryo, the genital ridge forms as a thickening of coelomic epithelium overlying loose mesenchyme of the mesonephric kidney. Proliferating epithelium cells

generate a pool of multipotent progenitor cells. In male (XY) postnatal gonad (testis), the progenitors give rise to pre-Sertoli cells, which surround germ cells and

organize into testis cords. Steroidogenic fetal Leydig cells, together with some non-steroidogenic cells, differentiate around these cords. In the female postnatal gonad

(ovary) supporting cells differentiate as granulosa cells, encircling meiotically arrested germ cells to form primordial follicles. Steroidogenic thecal cells differentiate

around these structures. The supporting and steroidogenic cells in males and females are homologous, having have common origins. Key shows the different cell

types.

transcript profiling among cells, this approach allows the
identification of novel cell type markers as well as defining the
origins and developmental trajectories of cell lineages (Stevant
and Nef, 2018; Estermann and Smith, 2020). In the mouse,
pseudotime reconstruction based on single-cell RNA-seq data
reveals that the supporting and steroidogenic progenitors indeed
both derive from a coelomic epithelial population with a
Nr5a1+/Nr2f2+/Sox11+ transcriptional signature. Inmales (XY),
a subset of these cells first give rise to pre-Sertoli cells, confirming
the primacy of this lineage in testis formation (Stevant et al.,
2018). These cells activate Sry and rapidly engage a dynamic
genetic program. The remaining cells subsequently give rise to
waves of Insl3+/Hsd3β1+ steroidogenic fetal Leydig cells, and
some precursors remain as non-steroidogenic “interstitial cells”
(Stevant et al., 2018) (Figure 2A). The latter may contribute
to adult Leydig cells, a distinct population that emerges after

birth, although recent lineage tracing provides evidence that fetal
Leydig cells can dedifferentiate and give rise to adult Leydig stem
cells in mouse (Shima et al., 2018). In the female mouse gonad
(XX), a similar pattern is followed, albeit later than in males and
with less marked transcriptional changes. In females, Foxl2+ pre-
granulosa cells first differentiate, followed by Pdgfrα+/Wnt5a+

cells that generate theca around birth (Stevant et al., 2019). The
scRNA-seq approach outlined above has revealed a number of
novel markers of cell lineage commitment in mouse gonads
(Stevant and Nef, 2019; Stevant et al., 2019).

As all amniotic vertebrates exhibit the same gonadal cell types,
it has long been assumed that cellular origins are conserved.
However, recent scRNA-seq data from our laboratory indicate
that both the supporting cell and fetal steroidogenic lineages
in the chicken embryo do not derive from the coelomic
epithelium (Estermann et al., 2020). This is a fundamental
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FIGURE 2 | Gonadal somatic cell differentiation in the mouse vs. chicken embryo, showing major marker genes expressed. Cells derive from either the coelomic

epithelium or mesonephros, with different contributions depending upon the species. (A) Cell lineage derivation and progression in the mouse. In mouse, cells derived

(Continued)
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FIGURE 2 | from the coelomic epithelium gives rise to the supporting cell lineage and steroidogenic and non-steroidogenic interstitial cells. The mesonephric

mesenchyme also contributes to the steroidogenic lineage (Leydig cells in male, thecal cells in female). In the female, two waves of supporting cell progenitors arise

from the coelomic epithelium, generating medullary and cortical granulosa cells. (B) Cell lineage derivation and progression in the chicken, in which the supporting and

steroidogenic lineages both derive from mesonephric mesenchyme. The steroidogenic lineage derives indirectly from mesonephric mesenchyme via supporting cell

progenitors. This process involves the sequential upregulation of steroidogenic genes in a proportion of the supporting cells (intermediate cells), followed by a

downregulation of the supporting cell markers among “intermediate” cells. The coelomic epithelium in chicken gives rise to non-steroidogenic interstitial cells. PMCs,

Peritubular myoid cells. Images created using BioRender.com.

difference to what has been established in mouse. In chicken,
the supporting and fetal steroidogenic precursors derive from
a mesenchymal population that is derived from the adjacent
mesonephric kidney (Figure 2B). In chicken, this population
has a PAX2+/DMRT1+/WNT4+/OSR1+ molecular signature,
different to that seen in mouse (Estermann et al., 2020).
Gonadal PAX2 expression appears to be unique to birds, as we
did not detect the protein in embryonic mouse gonads. This
finding of a non-coelomic epithelial derivation of supporting
cells, discovered by scRNA-seq, supports earlier lineage tracing
experiments in chicken (Sekido and Lovell-Badge, 2007). In
chicken, the coelomic epithelium gives rise to non-steroidogenic
interstitial cells (Estermann et al., 2020). These findings expand
our understanding of gonadal cell lineage origins in vertebrates,
indicating that mechanisms of assembling gonadal cell types
are not conserved among clades (DeFalco and Capel, 2009).
The reason for this is unclear, but additional vertebrate groups
should be examined at single cell resolution to further explore
the diversity of gonadal cell lineage formation.

THE SUPPORTING CELL LINEAGES:
SERTOLI AND GRANULOSA CELLS

The supporting cell lineage is the first somatic lineage to
commence differentiation in the embryonic gonad. This applies
to all vertebrates that have been examined. The fate of supporting
cell precursors in the gonad depends upon mutually antagonistic
genetic programs (Kim and Capel, 2006; Nicol and Yao, 2015).
In mouse, a critical level of Sry expression during a defined
developmental window activates the related Sox9 gene, which
in turn activates Fgf9, leading to pre-Sertoli cell differentiation
and the formation of testis cords (Sekido and Lovell-Badge,
2008; Gonen and Lovell-Badge, 2019). In females, this pathway is
antagonized by R-Spo1/Wnt4 signaling, leading to stabilization
of β-catenin. In females, β-catenin signal transduction by R-
Spo1 stimulates expression ofWnt4 and Follistatin, both required
for pre-granulosa cell formation (Yao et al., 2004b; Chassot
et al., 2008; Maatouk et al., 2008). In mouse, male-enriched
Fgf9 can inhibit female-enriched Wnt4 and vice versa (Kim
et al., 2006; Jameson et al., 2012a). Recent studies have shed
new light on differentiation of the key supporting cell lineage.
At the “bipotential” or “indifferent” stage in mouse, XX and
XY gonadal transcriptomes are very similar and biased toward
a female state, subsequently diverted in XY embryos by Sry
expression (Jameson et al., 2012b). Based on scRNA-seq of sorted
Nr5a1+ cells, Stévant and colleagues recently concluded that a
single progenitor population in mouse gives rise to a number

of somatic cell types over E10.5–E13.5; sequentially, multipotent
progenitors, pre-Sertoli, Sertoli, interstitial, and fetal Leydig cells
(Stevant et al., 2018). They found that Sertoli cell specification is
characterized by waves of transcription factor gene expression.
This includes known and new genes associated with the transient
spike of Sry expression, several intermediate transcriptional states
and a dynamic genetic program. This program features genes
that repress the corresponding female developmental program
and genes encoding signaling factors responsible for directing
steroidogenic cell differentiation in neighboring interstitial cells,
e.g., Desert Hedgehog and Pdgfα (Yao et al., 2002; Ricci et al.,
2004; Stevant et al., 2018, 2019).

Single-cell RNA-seq of sorted Nr5a1+ cells and lineage
tracing both indicate that the coelomic epithelium overlying the
mesenchyme gives rise to the Sertoli cell population in mouse
(Karl and Capel, 1998; Liu et al., 2016; Stevant et al., 2018).
While it is clear that the coelomic epithelium gives rise to
Sertoli cells in mouse, neither of these approaches can definitively
exclude a contribution to the Sertoli cell population from
mesonephric mesenchyme. Based on ultrastructural observations
in human and rabbit embryos, Wartenberg and colleagues
proposed a dual origin of Sertoli cells, electron dense “dark”
cells emanating from the mesonephros and “light” cells derived
from the coelomic epithelium (Wartenberg, 1978; Wartenberg
et al., 1991). Interestingly, recent single-cell RNA sequencing in
chicken suggest two potential Sertoli cell populations in E10.5
chicken testis; those expressing the typicalmarkers, such asAMH,
SOX9, and DMRT1, and those expressing these markers at a
lower level and also expressing low levels of mitochondrial genes
(Estermann et al., 2020). These could reflect two different Sertoli
origins, but more likely reflect two different maturational stages
(Guo et al., 2020). Low mitochondrial activity is linked to the
stem cell state (Vannini et al., 2016), so the low mitochondrial
gene expressors could be a previously unrecognized stem pre-
Sertoli cell population.

In the female gonad, the supporting cell lineage differentiates
into pre-granulosa cells, homologous to the pre-Sertoli cells of
males (Figure 1). According to scRNA-seq, these two cell type
precursors have similar transcriptional profiles, but then both
up-regulate a similar set of genes, though later and temporally
extended in females. Hence, commitment to a supporting cell
fate is thought not to be a sexually dimorphic event (Stevant
et al., 2019). In females, the presumptive pre-granulosa cells
then up-regulate Wnt4 and R-Spondin1 (Rspo1), which are
initially expressed in both sexes.Wnt4/Rspo1/β-catenin signaling
pathway drives differentiation of the supporting cell lineage into a
pre-granulosa phenotype (Kim et al., 2006; Jameson et al., 2012a;
Ayers et al., 2013). Consistent with previous mouse microarray
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data (Jameson et al., 2012b), recent single-cell RNA-seq from
both mouse and chicken indicate that the progenitor supporting
cells are primed to a female (pre-granulosa) fate. In both species,
undifferentiated male supporting cells cluster with differentiated
pre-granulosa cells, showing strong transcriptomic similarity
(Stevant et al., 2019; Estermann et al., 2020).

In the mouse ovary, pre-granulosa cells derive from the
coelomic epithelium, as occurs for the male supporting cell
lineage, expressing the shared signature of Sf1+/Wt1+/Gata4+.
Two granulosa cell populations arise, which differentially express
the Foxl2 transcription factor and the R-Spo1 receptor, Lgr5.
The first wave of cells expresses the cell cycle inhibitor, p27, and
Foxl2, formingmedullary follicles. The second wave express Lgr5,
then p27/Foxl2 and form both medullary and cortical primordial
follicles (Mork et al., 2012; Niu and Spradling, 2020) (Figure 2A).
Both granulosa cell types derive from a common Gata4 gonadal
precursor in the coelomic epithelium, but the balance between
Rspo1/Wnt/β-catenin and p27/Foxl2 pathways determines their
differential fate (Rastetter et al., 2014; Gustin et al., 2016). In
chicken, granulosa cells are characterized by maintenance of
WNT4 and transcription factor OSR1, and activation of the
diagnostic FOXL2 and CYP19A1 (Aromatase) genes. In the
mouse embryo, the germline plays a role in granulosa and
thecal cell formation. Meiotic germ cells are required for proper
differentiation of granulosa cells and folliculogenesis in the
mouse embryos (Guigon and Magre, 2006). Complete thecal cell
differentiation also involves inductive signaling from granulosa
cells and oocytes (Liu et al., 2015). Such a critical role for germ
cells does not appear to apply in the male, as testis cords can
form normally without the presence of germ cells (McLaren,
1988). Using scRNA-seq, critical granulosa-oocyte interactions
necessary for folliculogenesis have recently been confirmed in
humans (Zhang et al., 2018). In the chicken, germ cell ablation
apparently does not impact either ovary or testis formation
(McCarrey and Abbott, 1978).

ORIGINS OF THE STEROIDOGENIC
LINEAGES

Gonads function as endocrine organs in addition to facilitating
gamete production. The developmental origins of the gonadal
steroidogenic cell lineages (fetal Leydig cells in males, thecal cells
in females) has for some time been unclear and contested. In
mouse, organ culture studies of labeled mesonephroi suggested
an origin of fetal Leydig cell precursors from the mesonephric
kidney (Merchant-Larios and Moreno-Mendoza, 1998; Nishino
et al., 2001). Recent cell lineage tracing and scRNA-seq in
mouse and chicken support a dual origin in mouse (coelomic
epithelium and mesonephros) and a mesonephric mesenchymal
origin in chicken (DeFalco et al., 2011; Estermann et al., 2020)
(Figures 2A,B). In mouse, a second wave of coelomic epithelial
cell proliferation gives rise to “interstitial” cell precursors (those
outside testis cords), defined by expression of the Notch effector,
Hes1, and others. Some steroidogenic precursors commence
expression of Gli1 in response to Dhh secreted from Sertoli cells
and they form Hedgehog-dependent fetal Leydig cells (Yao et al.,

2002; Liu et al., 2016). A second population of fetal Leydig cells
derive from the mesonephros (Liu et al., 2016). Both populations
up-regulate Sf1 and the steroidogenic marker, Cyp17a1. In
the early gonads of both sexes, the steroidogenic precursors
are transcriptionally highly similar, essentially indistinguishable
(Jameson et al., 2012b). This is because both are specialized
androgen-producing cells. In females, the homologous cells are
the theca, but, in the mouse, they appear much later, around birth
(Nicol and Yao, 2014; Liu et al., 2015). Like the fetal Leydig cells,
these have a dual coelomic epithelial and mesonephric origin
in the mouse embryo (Figure 2A). Hedgehog signaling from
granulosa cells induces thecal cell formation (Gli1+/ Hsd3β1+

cells). In addition, cells derived from the mesonephros also
contribute to the thecal cell pool in mouse (Young and McNeilly,
2010; Liu et al., 2015).

In contrast to the dual origin of fetal steroidogenic cells
in mouse (Figure 2A), the steroidogenic cell precursors in
chicken appear to derive, like the supporting cells, directly
from nephrogenic (mesonephric) mesenchyme (Estermann et al.,
2020). This is another interesting difference between mouse
and chicken. In fact, studies in chicken suggest that the
embryonic steroidogenic lineage derives directly from the
supporting cell lineage (Figure 2B). Single cell RNA-seq shows
that the steroidogenic lineage progression in both sexes (fetal
Leydig and thecal cells) can be traced in pseudotime to the
supporting cell population (Estermann et al., 2020). A subset of
supporting cells progressively up-regulate steroidogenic markers
and down-regulate supporting cell markers (“intermediate”
cells) (Estermann et al., 2020). This was confirmed by
immunofluorescence, which shows some transitional cells
expressing both supporting and steroidogenic markers during
chicken gonadal sex differentiation (Estermann et al., 2020).
In summary, the mesonephric kidney plays a central role
in furnishing cells to the avian gonad but contributes only
interstitial cell types in mouse. Further research on this point
of difference could involve lineage tracing in the chicken model
to confirm the mesonephric origin in chicken. This could
be achieved by labeling mesonephric cells with DiI or other
tracers, or generating transgenic reporter embryos with labeled
mesonephric kidneys. However, at present, the production of
transgenic avian embryos is time-consuming and challenging
(Tyack et al., 2013; Lambeth et al., 2016).

OTHER SOMATIC TYPES; THE ORIGIN
AND DIFFERENTIATION OF
NON-STEROIDOGENIC “INTERSTITIAL
CELLS”

In addition to supporting and steroidogenic cells, the embryonic
gonad also comprises non-steroidogenic interstitial cells. These
include vascular endothelial cells and peri-tubular myoid cells
in males, and poorly defined interstitial cell populations in
females. In mouse, there is a role for the mesonephros in the
provision of interstitial cells. Male-specific migration of cells
into the gonad from the mesonephros is required for proper
testis cord formation in mouse (Martineau et al., 1997; Tilmann

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 December 2020 | Volume 8 | Article 616387

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Estermann et al. Gonadal Sex Differentiation

and Capel, 1999). In vitro gonad culture and in vivo reporter
studies show that the immigrating cell population required
for cord formation are endothelial cells, which partition cords
of Sertoli cells and vascularize the developing testis (Combes
et al., 2009a,b). This must involve crosstalk among mesenchymal
and endothelial cells, and possibly pre-Sertoli cells. Peritubular
myoid cells and other non-steroidogenic interstitial cells are
thought to be induced within the mouse gonad, not migrating
from the mesonephros (Cool et al., 2008). Does this apply in
other vertebrates? In one study, microsurgical ablation of the
mesonephros did not prevent gonadal sex differentiation in
the chicken embryo (Merchant-Larios et al., 1989). However, a
pool of mesenchymal cells remained after the ablation. In fact,
male-specific immigration of endothelial precursor cells appears
conserved in chicken (Smith et al., 2005). In chicken, at least
some of these (non-endothelial) interstitial cells derive from the
coelomic epithelium (Figure 2B), as shown by lineage tracing of
GFP-labeled epithelial cells (Estermann et al., 2020). The fate of
these cells is unclear, but they may contribute to peri-tubular
myoid cells or adult Leydig progenitors. In mouse, it has been
shown that macrophages derived from the yolk sac enter the male
gonad are also required for proper vascular organization and cord
formation in the testis (DeFalco et al., 2014). It is not known if
this is a conserved phenomenon.

DISCUSSION AND CONCLUSIONS

While the sex-determining trigger can differ among clades,
vertebrate gonads typically comprise the same cell types. Recent
advances in transcriptome analysis have shed new light on the cell
lineage origins and developmental trajectories in the vertebrate
gonad. We now have a detailed understanding of the molecular
genetic programs driving supporting and steroidogenic cell
lineage specification in the mouse model. The mouse may or may
not be typical of all mammals. Surprisingly, the way in which
these cell types are assembled differs between the mouse and
chicken models. In mouse, a central role can be ascribed to the
coelomic epithelium in generating the supporting cell lineage,
whereas in chicken, nephrogenic mesenchyme has a central role.
These apparent differences uncovered by single cell RNA-seq
should now be confirmed by lineage tracing. In mouse, this
can be done using inducible genetic reporters to trace lineage
allocation (Zhang et al., 2015). However, transgenic technologies
lag in chicken and reporter lines are not currently routine.
Nevertheless, we are able to label the coelomic epithelium with
GFP in chicken, which clearly shows that the epithelium does not
give rise to either supporting or steroidogenic cells (Estermann
et al., 2020), in sharp contrast to the mouse.

Why is there a fundamental difference in cell lineage origin
between these vertebrate clades? This is unclear, but it could relate
to differences in mesonephric kidney function. In mouse, there
is evidence that the mesonephros is functional as an excretory
organ from E10.5, before gonad formation (Lawrence et al.,

2018). In chicken, the mesonephros is not fully functional until
later, after the gonadal primordium is formed (Kirby, 2000).
In mouse, the fact that the mesonephros is functional may
impose a developmental constraint upon its involvement in
gonad formation. Another possibility may involve the evolution
of master sex-determining switches genes. Supporting cells in
mammals are specified by Sry. This gene has evolved from Sox3
and may have been co-opted to the coelomic epithelium only in
the mammalian lineage. This did not occur in the avian lineage
(Sry is absent), and hence birds retain the more ancient master
sex gene, DMRT1, and provision of supporting cell progenitors
from the mesonephros. It will be of interest to apply scRNA-seq
to other vertebrate clades to test the evolutionary conservation of
supporting cell lineage derivation.

The most recent embryonic gonad scRNA-seq datasets have
yielded a large number of new cell type specific markers
of embryonic gonadal sex differentiation (Zhang et al., 2018;
Stevant et al., 2019; Estermann et al., 2020). One challenge
is to now identify which of these novel factors are important
for specification of the supporting and steroidogenic lineages.
Gaps in our knowledge include the crosstalk between these two
cell types. Signals from the supporting cells are required for
steroidogenic cell specification, and the steroidogenic lineage
also feeds back to the supporting cells. Further research
should focus on identifying factors mediating cell cross-talk;
methods such as scRNA-seq are ideally placed to address this
point (e.g., see Combes et al., 2019). In chicken, a subset of
supporting cells directly give rise to the steroidogenic lineages
in both sexes, but how this subset is allocated is unknown.
Lastly, scRNA-seq can now be combined with methods that
explore gene regulation and chromatin modification at single-
cell resolution, such as single-cell ATAC-seq (scATAC-seq)
and ChiP-seq (Pott and Lieb, 2015; Rotem et al., 2015). This
will provide a more complete understanding of the regulatory
landscape governing gonadal sex differentiation. Single cell
ATAC-seq identifies open chromatin associated with active
regulatory regions. Integrating matched single cell RNA-seq data
with scATAC-seq will allow the assembly of gene regulatory
pathways activated during differentiation of the supporting
and steroidogenic lineages. This information will shed light
on the extent to which these pathways are shared or diverged
across vertebrates.
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