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Abstract: The ‘gasotransmitters’ hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide
(CO) act as second messengers in human physiology, mediating signal transduction via interaction
with or chemical modification of protein targets, thereby regulating processes such as neurotrans-
mission, blood flow, immunomodulation, or energy metabolism. Due to their broad reactivity
and potential toxicity, the biosynthesis and breakdown of H2S, NO, and CO are tightly regulated.
Growing evidence highlights the active role of gasotransmitters in their mutual cross-regulation. In
human physiology, the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine
γ-lyase (CSE) are prominent H2S enzymatic sources. While CBS is known to be inhibited by NO
and CO, little is known about CSE regulation by gasotransmitters. Herein, we investigated the
effect of S-nitrosation on CSE catalytic activity. H2S production by recombinant human CSE was
found to be inhibited by the physiological nitrosating agent S-nitrosoglutathione (GSNO), while
reduced glutathione had no effect. GSNO-induced inhibition was partially reverted by ascorbate and
accompanied by the disappearance of one solvent accessible protein thiol. By combining differential
derivatization procedures and mass spectrometry-based analysis with functional assays, seven out
of the ten protein cysteine residues, namely Cys84, Cys109, Cys137, Cys172, Cys229, Cys307, and
Cys310, were identified as targets of S-nitrosation. By generating conservative Cys-to-Ser variants
of the identified S-nitrosated cysteines, Cys137 was identified as most significantly contributing to
the GSNO-mediated CSE inhibition. These results highlight a new mechanism of crosstalk between
gasotransmitters.

Keywords: hydrogen sulfide; S-nitrosoglutathione; gasotransmitters; cystathionine γ-lyase; signaling;
crosstalk

1. Introduction

Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), the three
gasotransmitters in mammalian physiology are gaseous molecules endogenously produced
to act as second messengers and mediate signal transduction [1–3]. This signaling function
is achieved by targeting proteins, namely via binding to metal centers and post-translational
modification of specific residues (reviewed e.g., in [4,5]). The ability of gasotransmitters to
interact with proteins underlies both their physiological roles and potential toxicity. Indeed,
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depending on their concentration, beneficial or deleterious effects for human health may
be elicited.

Within its physiological concentration range, H2S is known to regulate several physi-
ological processes such as neurotransmission, inflammation, immunomodulation, blood
flow, apoptosis, and energy metabolism, whereas dysregulation of H2S homeostasis was
found to be implicated in several diseases including cancer and cardiovascular and neu-
rological disorders [5,6]. This dual role of H2S requires a tight balance of its homeostasis,
which is maintained by several finely regulated enzymes responsible for its synthesis and
breakdown. The transsulfuration enzymes cystathionine β-synthase (CBS) and cystathion-
ine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MST) synthesize H2S, while
H2S degradation is mainly catalyzed by the mitochondrial sulfide oxidation pathway.

CSE is a homotetrameric enzyme of 44 kDa subunits. It contains an N-terminal
catalytic domain that binds the cofactor pyridoxal-5′-phosphate (PLP) through covalent
linkage with a lysine (K212) forming a Schiff base. CSE contains ten cysteine residues
including two CXXC motifs. Despite the proximity between several Cys residues within
the CSE structure, no disulfide bonds are formed, which constitutes an unusually high
number of virtually exposed cysteine thiols. CSE catalyzes the second and final step of the
methionine cycle reverse transsulfuration branch. In the first step, CBS condenses homocys-
teine and serine into cystathionine. Then, CSE catalyzes the conversion of cystathionine to
cysteine, α-ketobutyrate, and ammonia. CSE thus contributes to homocysteine homeostasis
and provides a cysteine source under high methionine dietary intake. Due to its substrate
promiscuity, CSE is also able to use different combinations of sulfur-containing substrates
to generate H2S [5,7]. Indeed, it is the most efficient H2S-generating enzyme at physio-
logic (homo)cysteine levels [8,9]. Mutations identified in patients with the rare inherited
error of metabolism cystathioninuria lead to CSE variants with amino acid substitutions
(p.T67I and p.Q240E) that result in lower PLP cofactor affinity and impaired enzymatic
activity. Both mutations affect structural elements located in the vicinity of the PLP active
site [10]. Despite being a rare disease (estimated prevalence of 1:14,000 live births [11]),
cystathioninuria is a co-morbidity of several other diseases such as diabetes insipidus,
Down’s syndrome, neuroblastoma, hepatoblastoma, and celiac disease [11,12].

Data on CSE regulation are scarce and point mainly to mechanisms operating at
the transcriptional level [13]. Studies revealed upregulation of CSE expression by TNFα-
mediated recruitment of the SP1 transcription factor [14], LPS-mediated recruitment of NF-
κB [15,16], endoplasmatic reticulum (ER) stress-mediated recruitment of ATF4 transcription
factor [17], and a tissue-specific up/downregulation in diabetes models [18,19], suggesting
modulation in response to stimuli such as inflammation, apoptosis, and oxidative stress.
Modulation of CSE transcription by hypoxia [20] and exogenous H2S [21] has also been
reported. Regulatory mechanisms at the protein level are not as widely explored yet.
In vitro SUMOylation of CSE has been reported [22], although the functional implications
remain to be determined. Recently, CSE has been shown to be impaired by nitration of
tyrosine residues promoted by excess homocysteine as a result of high dietary methionine in
mice [23]. Notably, in the same report, Luo et al. demonstrated that seven cysteine residues
(Cys84, Cys109, Cys172, Cys229, Cys252, Cys307, and Cys310) in human CSE expressed
in HEK293 cells can be targeted by persulfidation. Furthermore, except for Cys172 and
Cys310, this cysteine modification appears to be important for the CSE H2S-synthesizing
activity [23].

The biological roles of H2S are interconnected with those of NO and CO through
a mechanistic crosstalk (reviewed e.g., in [5,24]). In some cases, the gasotransmitters
can undergo direct chemical reactions between themselves, producing reactive species
that further propagate signal transduction [5,25–27]. In other cases, they independently
act on the same pathways, having concordant or opposing effects. More complex is
the interplay that the three gasotransmitters establish through modulation of their own
metabolic pathways. Examples of the latter case are the reversible inhibition of H2S
production by NO and CO binding to the CBS heme iron [9,28–34], and the inhibition of
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the mitochondrial sulfide oxidizing pathway suggested to occur via NO- and CO-mediated
inhibition of cytochrome c oxidase (CcOX), leading to quinol oxidation impairment uphill
of the electron transport chain [5,35]. As for CSE, while various studies have reported on
the relevance of CSE-derived H2S for the control of eNOS in different (patho)physiological
contexts (e.g., [36–38]), little is known about how NO and related reactive nitrogen species
modulate CSE function. Asimakopoulou and co-workers reported on CSE inhibition
by the NO donor diethylamine NONOate and hypothesized the possibility of cysteine
S-nitrosation [39]. Moreover, as described above, CSE nitration modulated by excess
homocysteine negatively impacts CSE activity [23].

S-nitrosation is a prominent post-translational modification very relevant in health
and disease (reviewed e.g., in [40]). It can occur via reaction of NO with metal-oxidized
cysteinyl radicals, or via transfer of a nitrosonium ion (NO+) from low molecular thiols such
as GSNO (transnitrosation) [41,42]. S-nitrosation/denitrosation of protein thiols leads to
changes in enzymatic activity, protein conformation, subcellular localization, and protein–
protein interactions [43]. Here, by investigating the effect of S-nitrosation on human CSE
function, we disclose a new crosstalk mechanism between H2S and NO.

2. Materials and Methods
2.1. Materials

Tris hydrochloride (#9090.3), di-potassium hydrogen phosphate (#6875.3), 1,4-dithiothreitol
(DTT, #6908.3), tris(2-carboxyethyl)phosphine (TCEP, #HN95.2), and ethylenediaminete-
traacetic acid (EDTA, #8040.2) were purchased from Carl Roth GmbH + Co. KG (Karlsruhe,
Germany). Potassium phosphate monobasic (#60229) was purchased from Fluka Ana-
lytical (Sigma-Aldrich, Steinheim, Germany). Glycerol (#24388.295) was purchased from
VWR International (Leuven, Belgium). Sodium chloride (#1.06404.5000) and imidazole
(#1.04716.1000) were purchased from Merck KGaA (Darmstadt, Germany). The protease in-
hibitor cocktail cOmplete Tablets Mini EDTA-free EASYpack (#04693159001) was purchased
from Roche (Mannheim, Germany). Lysozyme (#62971), deoxyribonuclease I (DNAse I,
#DN25), pyridoxal 5′-phosphate hydrate (PLP, #P9255), L-cysteine hydrochloride (#C1276), L-
homocysteine thiolactone hydrochloride (#H6503), O-(carboxymethyl)hydroxylamine hemi-
hydrochloride (AOAA, #C13408), (+)-sodium L-ascorbate (#11140), reduced L-glutathione
(#G4251), 7-azido-4-methylcoumarin (AzMc, #802409), 5,5′-dithiobis-(2-nitrobenzoic acid)
(DTNB, #D8130), iodoacetamide (#I1149), acrylamide (#8.00830), Trizma®® base (#T1503),
and urea (#GE17-1319-01) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
S-nitrosoglutathione (GSNO) was purchased from Sigma-Aldrich (#N4148) and Santa Cruz
Biotechnology (#sc-200349C). Trypsin (#V5280) was purchased from Promega (Madisson,
WI, USA) and formic acid (OptimaTM #A117-50) from Thermo Fisher Scientific (Waltham,
MA, USA).

2.2. Protein Expression and Purification

The gene encoding wild-type (WT) CSE was synthesized (Genscript, The Netherlands)
including an N-terminal His6 tag followed by two recognition sites for the TEV and the
3C protease, respectively. The synthetic gene was cloned between the NcoI and BamHI
sites of pET-28b. The C70S, C84S, C109S, C137S, C172S, C229S, C307S, and C310S variants
were generated by site-directed mutagenesis using the WT-expressing vector as a template
(Genscript, The Netherlands). All cloned sequences can be found in the Supplementary
Materials.

Recombinant human CSE was expressed and purified essentially as in [44] with a
few modifications. Cell pellets were resuspended in buffer A (50 mM Tris-HCl buffer, pH
7.5, 300 mM NaCl, 10% glycerol, 500 µM TCEP), supplemented with 1 mg/mL lysozyme,
DNAse I, and cOmplete EDTA-free Protease Inhibitor Cocktail Tablet (Roche), and lysed
by five cycles of sonication (each cycle: 30 s, 0.6 amplitude and 50% duty cycle). After
centrifugation at 26,500 g, 20 min, 4 ◦C, the soluble lysate was injected in a HisTrap™ FF
Crude column (GE Healthcare, Carnaxide, Portugal) equilibrated with buffer A containing
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20 µM PLP and 10 mM imidazole, and elution was performed with a 10–500 mM imidazole
gradient (in the same buffer). The fractions containing CSE were further purified by size
exclusion chromatography in a HiLoad™ 16/600 Superdex™ 200 column (GE) equilibrated
in buffer B (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% glycerol, 100 µM TCEP, 20 µM
PLP). WT CSE and all protein variants eluted essentially in their tetrameric form. CSE was
concentrated by ultra-filtration with Amicon-30kDa Ultra-15 centrifugal filter units (Merck,
Darmstadt, Germany) and protein batches were flash frozen in liquid nitrogen and stored
at −80 ◦C.

2.3. Differential Scanning Fluorimetry

The effect of Cys-to-Ser substitutions on protein stability was assessed by dye-free dif-
ferential scanning fluorimetry in a NanoTemper Prometheus NT.48 (NanoTemper, Munich,
Germany), monitoring the intrinsic tryptophan fluorescence as a function of linearly in-
creasing temperature. Each CSE variant was tested (in triplicates) at 0.5 mg·mL−1 in buffer
B. A 2-min hold step at 20 ◦C was followed by a 1 ◦C·min−1 linear temperature gradient,
measuring in simultaneous fluorescence emission at 330 nm and 350 nm, with fluorescence
excitation at 275 nm. Data are represented as the ratio between the fluorescence emission
at 330 nm and that at 350 nm, as a function of temperature. The melting temperature (Tm)
was determined from the first derivative of the thermal denaturation curves.

2.4. Spectrophotometric Measurements

UV–Visible absorption spectra were recorded in a Shimadzu UV-1800 spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan) coupled to a Shimadzu TCC-100 Peltier
temperature controller (Shimadzu Corporation, Kyoto, Japan) and a Starna ‘Spinette’ elec-
tronic cell stirrer (Starna Analytical Accessories, Starna Analytical Accessories, Essex, UK)
using Hellma®® Analytics SUPRASIL 1-cm path length quartz cuvettes.

2.5. Enzymatic Activity Assays

CSE activity assays were carried out as described in [45,46] using the H2S-selective
fluorogenic probe 7-azido-4-methylcoumarin (AzMC). Prior to activity measurements, CSE
was reacted with GSNO and/or ascorbate. The reaction mixtures (250 µL per reaction) con-
taining 20 µg CSE and 50 µM PLP in 200 mM Tris-HCl buffer, pH 8.0, 0.1 mM EDTA, were
prepared in micro-tubes in triplicate. EDTA was added to the reaction buffer to prevent
cleavage of GSNO by reaction with contaminant transition metals, with concomitant release
of NO [47–49]. In this manner, the possible reaction of NO with CSE-generated H2S is also
prevented, thereby excluding the formation to any significant extent of hybrid H2S/NO
species that could themselves react with CSE [26]. Under the tested conditions, given the
reactants’ concentrations and ratios and the timescale of the experiments, the possible reac-
tion of H2S with GSNO is also unlikely to interfere with the measurements [50–52]. GSNO
0.5 mM (or buffer in control samples) was added to the reaction mixture and incubated
for 30 min. The concentration of GSNO stocks was checked spectrophotometrically prior
to each experiment. Ascorbate 2 mM (or buffer) was then added to the reaction mixture
and incubated for 30 min. Alternatively, as a control, GSNO and ascorbate were previously
reacted for 30 min, and afterward incubated with the reaction mixture for 30 min. All
procedures were performed at room temperature and protected from light. Each reaction
mix was transferred to a 96-well black plate (Corning Costar®®) and 10 or 50 µM AzMC
was added to each well. The plate was incubated at 37 ◦C for 10 min. CSE activity was
triggered by the addition of L-homocysteine and L-cysteine (both at 2.5 mM final con-
centration). Fluorescence was monitored in a Thermo Scientific Appliskan®® microplate
reader at 37 ◦C for 1.5 h (λexcitation = 340 nm; λemission = 460 nm) or a TECAN Spark 10M. A
sample containing 1 mM aminooxyacetic acid (AOAA) was used as a positive inhibition
control. Enzyme activity was calculated from the slope of the absorbance increase, after
blank subtraction. The time interval of the curve from which the slope was extracted
corresponded to the first derivative maximum of the curve collected with unreacted CSE.
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All samples (GSNO-, ascorbate-, and AOAA-reacted) were analyzed in such time intervals,
and relative activities were calculated using unreacted CSE as the reference.

2.6. Determination of the Number of Free Exposed Thiols in Human Cystathionine γ-Lyase

The number of free exposed cysteine thiols in CSE was determined using DTNB.
DTNB stocks were prepared at 10 mM in 100 mM phosphate buffer, pH 8.0, containing
1 mM EDTA. Prior to thiol quantitation, CSE was reacted with GSNO and/or ascorbate.
Reaction mixtures were prepared in 200 mM Tris-HCl buffer, pH 8.0, to a final protein
concentration of 8 µM and a final volume of 500 µL. A first incubation was performed with
0.5 mM GSNO (or buffer in control samples) for 30 min, followed by buffer exchange with
a PD MiniTrap™ G-25 desalting column (GE Healthcare) equilibrated in 200 mM Tris pH
8.0. Only the initial 500 µL of eluate were recovered to avoid residual GSNO present at the
end of the elution peak. A second incubation was then performed with 2 mM ascorbate
(or buffer) for 30 min, followed by buffer exchange with a PD MiniTrap™ G-25 column
equilibrated with 100 mM phosphate buffer pH 8.0, 1 mM EDTA. Only the initial 500 µL of
the eluate was again recovered to avoid contamination by residual ascorbate. Alternatively,
GSNO and ascorbate were previously reacted for 30 min, then incubated with the reaction
mix for 30 min, and finally desalted in 100 mM phosphate buffer pH 8.0, 1 mM EDTA. All
incubations and desalting steps were performed at room temperature, protected from light.
Incubations were also undertaken with 300 µL of mineral oil above the aqueous medium
to limit air exposure and ascorbate oxidation. A quantity of 10 µL of a 10 mM DTNB stock
was added to 450 µL of eluate and incubated for 15 min at 20 ◦C. Spectra were recorded
between 250 and 600 nm. Spectra were also recorded for the protein samples (before DTNB
addition) and for DTNB alone (in 100 mM phosphate buffer pH 8.0, 1 mM EDTA). The
number of free thiols was calculated employing Equation (1):

SH =
Absprotein+DTNB

412nm − Absprotein
412nm − AbsDTNB

412nm
14, 150 × [CSE]

(1)

where Abs412nm corresponds to absorbance values at 412 nm, 14,150 M−1·cm−1 is the
molar extinction coefficient of TNB, and [CSE] is the protein concentration in the cuvette
(expressed in M).

2.7. Effect of CSE S-Nitrosation/Denitrosation on PLP Cofactor Load

The effect of GSNO-mediated WT CSE nitrosation/denitrosation on the PLP moiety
load was evaluated by recording UV–Visible absorption spectra. CSE was diluted to 6 µM
in 200 mM Tris-HCl buffer at pH 8.0, incubated at 20 ◦C with 40 µM GSNO for 30 min,
and then with 2 mM ascorbate for another 30 min. Spectra were recorded at different time
points prior to and after addition of ascorbate. Control spectra were obtained for CSE
incubated with reduced glutathione and/or sodium nitrite.

2.8. Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) Analysis

Mass spectrometry (MS)-based analysis was used to identify modified cysteine residues.
Prior to MS analysis, CSE (WT and Cys-to-Ser variants) was reacted with GSNO and/or
ascorbate essentially as described above. The reaction mixtures, containing 8 µM CSE,
were prepared in 200 mM Tris-HCl buffer, pH 8.0. Two versions of a dual-derivatization
procedure (Supplementary Figures S1 and S2) were designed and employed to distinguish
S-nitrosated cysteines from other cysteine forms (particularly reduced thiols and disulfide
bonds). Unless stated otherwise, all incubations, buffer exchange, and concentration steps
were performed at room temperature, and samples were protected from light. In the first
strategy (Supplementary Figures S1 and S2), exposed non-nitrosated cysteine thiols were
covalently modified by incubation with 55 mM iodoacetamide (IAA) for 45 min. IAA
excess was removed through a buffer exchange step using a PD MiniTrap™ G-25 column
(GE) equilibrated and eluted with 200 mM Tris-HCl buffer, pH 8.0. Afterward, the protein
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sample was concentrated using a Microcon-30kDa centrifugal filter unit (Merck). The
protein sample was then incubated for 30 min with ascorbate (5 mM) to reduce possible
S-nitrosated cysteines; excess ascorbate was removed by buffer exchange and concentration
as described above. Subsequently, ascorbate-reduced cysteines were covalently modified
with acrylamide (AA, 55 mM, incubation for 45 min). AA excess was removed by buffer
exchange and concentration as before. The protein was then denatured and its putative
disulfide bridges reduced, respectively, by incubation with 8 M urea and 1 mM DTT for
30 min at 37 ◦C. Free/exposed cysteines in unfolded CSE were labelled with 55 mM IAA
for 45 min. Excess urea, DTT, and IAA were removed by buffer exchange and concentration
as described above. In the second version of this derivatization procedure (Supplementary
Figures S1 and S2), we included 6 M urea from the first derivatization step with IAA
to enable simultaneous and complete labelling of buried cysteines besides the exposed
ones. In fact, 6 M urea was always present in derivatization steps from that point on,
namely: reduction with ascorbate, derivatization with AA, and all PD10 buffer exchange
and concentration steps in between. Urea was only removed in the final AA removal
step, which was done with a PD MiniTrap™ G-25 equilibrated and eluted with 50 mM
ammonium bicarbonate buffer, pH 8.5. Protein samples were quantitated with the Bradford
assay. Protein digestion was achieved by adding trypsin at a trypsin:CSE ratio of 15:1
(mass/mass), incubating overnight at 37 ◦C under stirring, and stopping the reaction by the
addition of 10% formic acid. Following protein digestion, the peptides were analyzed by
liquid chromatography (Ultra High Performance Liquid Chromatography system, Bruker
Elute, Mannheim, Germany) interfaced with a Bruker Impact II quadrupole time-of-flight
mass spectrometer equipped with an electrospray source (Bruker Daltoniks, Mannheim,
Germany). Chromatographic separation was performed on an Acclaim PepMap C18
column (1.0 mm × 150 mm, 3 µm particle size; Thermo Scientific, Oeiras, Portugal). The
mobile phase consisted of water containing 0.1% formic acid (A) and acetonitrile containing
0.1% formic acid (B). The elution conditions were as follows: 0.2% B for 1 min, 0.2–46.2% B
over 59 min, 46.2–90% B over 1 min, 90% B for 4 min, 90–0.2% B over 1 min, and 0.2% B for
14 min. The injection volume was 10 µL, the flow rate was 100 µL·min−1, and the column
was maintained at 40 ◦C. Quality control samples (a tryptic peptide digest of bovine serum
albumin) were analyzed along with the analytical runs (after every 10 samples) in order to
check the consistency of analysis regarding signal intensity and retention time deviations.
An ESI-L Low Concentration Tuning Mix (Agilent Technologies, Santa Clara, CA, USA)
was used during the analysis for spectrum calibration. Sample analysis was performed by
data-dependent acquisition (auto MSMS mode) in the 300–2200 m/z range with a 2 Hz rate
and by a dynamic method with a fixed cycle time of 3 s. The MS source parameters were
set as follows: dry gas heater temperature, 200 ◦C; dry gas flow, 8 L·min−1; and capillary
voltage, 4500 V.

2.9. Database Searching and Processing

The acquired MS data files of the samples were converted to *.mgf format using the
Compass DataAnalysis software (Bruker Daltonics). Two distinct search engines were
used for peptide identification: Mascot (v2.6, Matrix Science Ltd., London, UK) [53] and
MaxQuant [54]. Search parameters were the same for the two methods and included
precursor ion mass tolerance = 10 ppm, fragment ion mass tolerance = 20 ppm, number
of missed cleavages ≤2, and variable amino acid modifications: oxidation of methionine,
carbamidomethylation of cysteines, and acrylamide incorporation (mass increment of
71.0371 Da) into cysteines. The acquired MS/MS spectra were searched against a database
containing only the human CSE protein sequence, obtained from Uniprot [55]. All spectra
corresponding to acrylamide-modified peptides were manually checked. The resulting
database searches containing MS/MS spectra were then used to generate spectral libraries
in the Skyline software [56] prior to MS1 filtering analyses.
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2.10. Statistical Analysis

At least three independent experiments were carried out for each type of assay. Data
are presented as mean ± standard error (SE). For comparison of groups of more than two
datasets, a one-way analysis of variance (ANOVA) with Dunnett’s multiple comparisons
test was performed using GraphPad Prism 8.3.1. software. We also used unpaired Student’s
t test to analyze data with only two sets, particularly when analyzing the number of
free exposed thiols in each CSE variant by comparing the untreated with the GSNO-
treated protein.

3. Results
3.1. Effect of GSNO on CSE Enzymatic Activity and Cofactor Load

The H2S-generating activity of human CSE was measured prior to and after incubating
the enzyme with S-nitrosoglutathione (GSNO) (Figure 1). The GSNO-reacted protein
displayed 35 ± 5% activity compared to the unreacted enzyme. Control experiments
were performed to evaluate the functional recovery of CSE upon reversal of S-nitrosation
by excess ascorbate, which yielded 67 ± 7% of the control CSE activity. Pre-incubation
of GSNO with ascorbate prior to the addition to CSE resulted in a fully active enzyme
(101 ± 5%), similar to CSE incubated with reduced glutathione (GSH), which exhibited
103 ± 17% activity compared to unreacted CSE. Finally, CSE incubated with the inhibitor
aminooxyacetic acid (AOAA) had close to null activity (4.3 ± 0.5%).
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tion on the cofactor load was evaluated by collecting UV–Visible spectra of the enzyme 

Figure 1. Effect of GSNO on CSE enzymatic activity. H2S production by CSE was measured at 37 ◦C, monitoring AzMc
fluorescence in a plate reader. Reaction mixtures contained CSE (80. µg·mL−1) in 200 mM Tris-HCl pH 8.0, 50 µM PLP,
2.5 mM L-cysteine, and 2.5 mM L-homocysteine. CSE activity was analyzed for the as isolated protein (black circles; Ctrl)
and for CSE incubated with: GSNO (red full squares; +GSNO); GSNO and subsequently ascorbate (blue triangles; +GSNO
+Asc); GSNO preincubated with ascorbate (red hollow squares; +Asc-treated GSNO); ascorbate alone (green×); and AOAA
(black×). (a) Representative reaction traces, highlighting the region of the curve where CSE activity was measured from the
calculated slope (grey bar). (b) Histogram representing relative activities normalized to unreacted CSE. Error bars represent
the standard error (SE), where n ≥ 3. Differences between groups were assessed by one-way ANOVA, **** p < 0.0001,
*** p < 0.001.

Since CSE activity depends on the PLP cofactor, the possible effect of GSNO incubation
on the cofactor load was evaluated by collecting UV–Visible spectra of the enzyme prior
to and after incubation with GSNO. In the as isolated enzyme, a single broad band with
λmax at ≈426 nm arising from PLP can be observed (Supplementary Figure S3), which is
maintained upon prolonged incubation (>30 min) with GSNO alone, indicating no effect of
GSNO on the PLP cofactor load. On addition of ascorbate to the GSNO-reacted CSE, the
broad PLP band decreased in intensity by ≈20% compared to the unreacted enzyme.



Antioxidants 2021, 10, 1391 8 of 19

3.2. Effect of GSNO on Free Exposed Cysteines in WT CSE

To determine the number of cysteine residues becoming nitrosated upon reaction
with GSNO, we quantitated free exposed thiols in CSE prior to and after reaction with
GSNO. Several measurements employing the DTNB assay on independent protein batches
consistently revealed 2.4 ± 0.2 free cysteines in unreacted CSE. Upon incubation with
GSNO, exposed thiols decreased to 1.6 ± 0.2 (p < 0.0001). Addition of ascorbate to revert or
prevent S-nitrosation yielded 1.8 ± 0.1 (p < 0.0001) and 2.0 ± 0.1 (p < 0.001) free exposed
cysteines, respectively.

3.3. Identification of Cys229 as the Exposed S-Nitrosated Cysteine

A mass spectrometry (MS)-based methodology was used to identify the sites of
S-nitrosation, employing a dual derivatization strategy (reviewed e.g., in [57]), and us-
ing a sample pretreatment adapted from the FASILOX method [58]. The combined use
of buffer exchange columns and small-scale ultra-filtration devices ensured the com-
plete removal of the excess of labelling agents between steps, while avoiding dilution
(Supplementary Figures S1 and S2). Using strategy 1, only Cys229 was identified as
being modified with acrylamide (AA), thus indicating its S-nitrosation. Indeed, the
tetra charged ion at m/z 658.8111 ± 6.1 ppm, corresponding to the tryptic peptide
213YMNGHSDVVMGLVSVNCESLHNR235 with an additional mass increment of 71.0371
Da, characteristic of AA incorporation, was consistently identified in all GSNO-treated
samples (Figure 2). The S-nitrosated cysteine was confirmed to be Cys229 from the AA
mass increment observed at y7+ (m/z 929.4265) ion, while ions y6+ (m/z 755.3816) and y5+

(m/z 626.3369) did not display this mass increment (Supplementary Figure S4). Importantly,
although still detected in the samples where S-nitrosation was reverted or prevented by
ascorbate, the peak areas of the AA-modified peptide were significantly higher in the repli-
cates of GSNO-treated samples (Figure 2). Only trace amounts of AA-modified peptides
were identified in the untreated CSE sample (Figure 2). Conversely, the above-mentioned
tryptic peptide modified with IAA instead of AA was also identified in the GSNO-reacted
samples, thereby evidencing partial S-nitrosation.
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Figure 2. Identification of CSE exposed S-nitrosated cysteine(s) by mass spectrometry. Comparison of
the peak areas corresponding to the tetra charged ion at m/z 658.81, which corresponds to the tryptic
peptide 213YMNGHSDVVMGLVSVNCESLHNR235 with acrylamide (AA) incorporation at Cys229
in: GSNO-treated CSE (+GSNO); GSNO-treated CSE following incubation with ascorbate (+GSNO
+Asc); GSNO pre-incubation with ascorbate before CSE treatment (+Asc-treated GSNO); untreated
CSE (untreated). Two representative replicates of each sample are represented. The isotopic pattern
([M], [M + 1] and [M + 2] peaks) obtained is fully consistent with the one expected for the modified
peptide. Idotp: dot product of the expected isotope distributions.
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3.4. Cys229 S-Nitrosation Does Not Account for GSNO-Inhibition

To further analyze the functional role of Cys229 as a site for S-nitrosation, we produced
the recombinant C229S CSE variant. The stability of this variant appeared to be unaffected,
as its melting temperature (Tm) analyzed by dye-free differential scanning fluorimetry
(nanoDSF) was 74.1 ± 0.1 ◦C compared to 73.2 ± 0.1 ◦C for WT CSE (Supplementary
Figure S5). Under the same experimental conditions, WT and C229S CSE exhibited similar
basal activity and similar GSNO-induced inhibitory effect and recovery by ascorbate
(Figure 3a), therefore exempting Cys229 from having a major role in GSNO-inhibition of
CSE. In addition, as expected, C229S revealed a lower number of free exposed cysteine
thiols, i.e., 1.70 ± 0.06 (versus 2.4 ± 0.2 in the WT protein), which decreased to 1.41 ± 0.15
only after GSNO treatment (Figure 3b).
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Figure 3. Effect of C229S substitution on GSNO-inhibition. (a) H2S production by GSNO-treated and GSNO/Asc-treated
WT and C229S CSE, measured as described in the legend to Figure 1. Relative activities were normalized to the respective
unreacted CSE variant, except for (a), where the activity of untreated C229S was normalized to that of untreated WT CSE.
Ascorbate was added to the GSNO-modified CSE (+GSNO +Asc). Error bars represent the standard error (SE), where n ≥ 5.
(b) number of free exposed cysteines in CSE as determined using DTNB for as isolated CSE (-GSNO) and upon incubation
with GSNO (+GSNO). Error bars represent the standard error (SE), where n ≥ 4. One-way ANOVA was employed to
compare differences between groups in both graphs, **** p < 0.0001. Student’s t-test was used to compare the exposed
cysteine thiols of the C229S variant (b) with or without GSNO, * p < 0.05.

3.5. Identification of Buried S-Nitrosated Cysteines

The initial derivatization strategy (strategy 1) for the identification of S-nitrosated
cysteines by MS only allowed us to identify the cysteine with the highest degree of solvent
exposure. To identify non-exposed S-nitrosated cysteines, the derivatization strategy was
adapted to unfold the untreated or GSNO-treated CSE with urea prior to the first derivati-
zation step and all throughout the double-labelling procedure (strategy 2 in Supplementary
Figure S2). Following this adaptation, we identified a total of seven S-nitrosated cysteine
residues upon the identification of ions compatible with the tryptic peptides containing
Cys84, Cys109, Cys137, Cys172, Cys229, and Cys307/Cys310 with the acrylamide mass
increment (Figure 4, Supplementary Figures S4, S6–S10). No signal corresponding to
the peptide 306QCTGCTGMVTFYIK319 with two AA units was observed, which suggests
that Cys307 and Cys310 residues are not simultaneously S-nitrosated. Nonetheless, the
tandem mass spectrum of the double charged ion at m/z 840.3854 ± 2.7 ppm, which is com-
patible with the two isobaric peptides 306QCTGCTGMVTFYIK319 with the incorporation
of AA at one Cys and IAA at the other Cys (306QC(IAA)TGC(AA)TGMVTFYIK319 and
306QC(AA)TGC(IAA)TGMVTFYIK319; Supplementary Figure S6), exhibits fragment ions
compatible with AA incorporation at Cys307 and Cys310, thereby indicating that both can
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be s-nitrosated. It should be mentioned that regardless of the derivatization strategy, no
peptide containing Cys70 was observed by MS, which precluded any conclusion about
whether it could also be a site of S-nitrosation. Additionally, noteworthy is the fact that all
AA-modified Cys residues were also identified as IAA-modified. This can be explained by
the lability of the Cys-S-NO modification under the derivatization conditions used but can
also stem from incomplete S-nitrosation of each Cys target.
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Figure 4. Identification of CSE buried S-nitrosated cysteine(s) by mass spectrometry. Comparison of peak areas from
ions corresponding to the tryptic peptides containing Cys84 (a), Cys109 (b), Cys137 (c), Cys172 (d), Cys229 (e), and
Cys307/Cys310 (f) with acrylamide (AA) incorporation, in GSNO-treated and Ctrl samples. The isotopic pattern ([M],
[M + 1] and [M + 2] peaks) obtained is fully consistent with the one expected for the modified peptide.

3.6. Functional Analysis of the Serine Variants of Cys70, Cys84, Cys109, Cys137, Cys172, Cys307
and Cys310

Following the strategy adopted to analyze the functional impact of Cys229 S-nitrosation,
we produced the structurally conservative Cys-to-Ser variants for the other S-nitrosation
targets identified by MS, namely Cys84, Cys109, Cys137, Cys172, Cys307, and Cys310. In
addition, although MS data were uninformative for Cys70, we also produced the C70S
variant. The newly generated variants were differently affected by the Cys-to-Ser substitu-
tions in terms of resistance to thermal denaturation compared to WT CSE (Supplementary
Figure S5) compared to WT CSE. While C70S, C109S, and C172S showed a slightly increased
thermal stability (∆Tm ≥ +1 ◦C), C137S, C307S and C310S exhibited a slight decrease in the
melting temperature (∆Tm ≤ −1 ◦C). Overall, the substitutions did not heavily affect the
stability of the corresponding variants, which all proved to be remarkably stable proteins,
exhibiting Tm values above 68 ◦C.

We then evaluated the H2S-synthesizing activity of each variant. As shown in
Figure 5a, whereas the C84S, C172S, C229S, C307S, and C310S variants exhibited simi-
lar activity to WT CSE, the remaining variants were functionally impaired, particularly
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C70S, C109S, and C137S. Next, we assessed the inhibition of each CSE variant by GSNO
(and recovery by ascorbate). We observed that all variants except C137S exhibited essen-
tially WT-like behavior, with activity values of 27–45% in the GSNO-treated compared
to the respective untreated variant, and recovery by ascorbate to 67–79% of untreated
enzyme activity (Figure 5b). Conversely, the C137S variant appeared remarkably less
sensitive to GSNO inhibition, with 74% activity compared to paired untreated samples and
non-significant recovery by ascorbate (Figure 5b).
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Figure 5. Effect of Cys-to-Ser substitutions on CSE H2S-synthesizing activity and GSNO-inhibition.
(a) Comparison of H2S production by untreated WT CSE and Cys-to-Ser variants. Relative activities
were measured as described in the legend to Figure 1 and normalized to the WT CSE. Error bars
represent the standard error (SE), where n ≥ 4. (b) Effect of S-nitrosation on the enzymatic activity of
WT CSE and Cys-to-Ser variants. Histograms represent the relative activities of each variant after
GSNO treatment (+GSNO) or the same followed by ascorbate reversal (+GSNO +Asc), normalized
to the respective unreacted CSE variant. Error bars represent the standard error (SE), where n ≥ 4.
Differences between groups were assessed by one-way ANOVA: **** p < 0.0001, *** p < 0.001,
** p < 0.01.
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3.7. Effect of GSNO on Exposed Cysteines in CSE Cys-to-Ser Variants

To further disclose the identity of the free exposed cysteines in CSE, we employed the
DTNB method to analyze the remainder of the Cys-to-Ser variants. As shown in Figure 6,
whereas the C84S, C109S, C172S, C307S, and C310S variants exhibited the same number of
exposed cysteines as the WT CSE, C70S, and C137S displayed similar values to C229S (i.e.,
approximately one cysteine less than the WT protein). Moreover, upon incubation with
GSNO, all variants showed less exposed cysteine thiols to various degrees. While C229S
decreased only from 1.7 to 1.4 exposed thiols upon GSNO treatment, C70S and C137S
exhibited larger decreases of 0.5 and 0.7 exposed thiols, respectively.
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Figure 6. Number of free exposed cysteines as determined using DTNB in WT and mutated CSE for
the as isolated protein (-GSNO) and upon incubation with GSNO (+GSNO). Error bars represent the
standard error (SE), where n ≥ 4. One-way ANOVA was performed to check if there were differences
between WT (control) versus the different variants, **** p < 0.0001. Student’s t-test was used to
compare each variant with or without GSNO incubation, **** p < 0.0001, *** p < 0.001, ** p < 0.01,
* p < 0.05.

4. Discussion

Despite growing interest in the role of gasotransmitters in human pathophysiology,
the regulatory networks that tightly control the levels of these reactive species in different
physiological contexts are slowly but surely unravelled. A body of evidence accumulated
from studies on different models from isolated proteins to cellular and animal models point
to a cross-regulation between the three gasotransmitters, whereby they control each other’s
levels. While NO and CO have long been reported to inhibit CBS-derived H2S production,
thereby affecting different cellular pathways, the effect of these gasotransmitters on CSE
function and structure has thus far been underappreciated.

Herein, we combined functional assays with biochemical and biophysical analytical
tools to investigate the effect of S-nitrosation on H2S generation by human CSE. Human
CSE has ten non-disulfide cysteine residues, an unusually high number of such residues.
Upon incubation with the physiological S-nitrosating agent S-nitrosoglutathione (GSNO),
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CSE activity was inhibited by ≈70% (Figure 1). Interestingly, the selective CSE inhibitor
propargylglycine maximally inhibits CSE to a similar extent (20–30% residual activity),
similar to the NO releaser diethylamine NONOate [39,44]. Restoring CSE activity upon
reduction in the putatively S-nitrosated cysteine(s) with excess sodium ascorbate resulted
in partial functional recovery (Figure 1). Notably, although GSNO alone did not seem
to affect the PLP spectral features, the S-nitrosation reversal in the presence of large ex-
cess of ascorbate slightly decreased the cofactor load consistently with the incomplete
activity recovery. As control experiments, we ruled out the effects of the sole ascorbate or
reduced glutathione on CSE function, pointing to cysteine S-nitrosation as responsible for
CSE inhibition.

To identify the cysteine residues targeted by S-nitrosation with a functional impact on
enzymatic activity, we used MS-based analysis upon labelling with two different deriva-
tization agents. Using the protein derivatization strategy 1 (Supplementary Figure S1),
Cys229 was identified as the single solvent-exposed cysteine residue to be s-nitrosated
(Figure 2). We generated the C229S variant to assess the relevance of this residue and
observed that it exhibited a similar enzymatic activity as the WT CSE, displaying the
same degree of inhibition by GSNO (Figure 3). Consistent with the predicted exposure of
Cys229 based on CSE crystallographic structure (Figure 7, Supplementary Table S1 and
Supplementary Figure S11), the number of exposed thiols in C229S significantly decreased
with respect to the WT CSE, and further exhibited a small decrease upon GSNO treatment
(Figure 3). Given that the MS-based dual derivatization strategy initially undertaken could
have overlooked the buried S-nitrosated cysteine residues, we modified the derivatization
procedure (Strategy 2 in Supplementary Figure S1). By chemically unfolding the untreated
or S-nitrosated WT CSE with urea prior to derivatization, we exposed all surface-exposed
and -occluded cysteine residues. This allowed us to detect a total of seven acrylamide-
derivatized cysteines, thereby identified as s-nitrosation targets (Figure 4). This striking
difference between the two dual derivatization strategies highlights the difficulties in the
assignment of cysteine residues as targets of post-translational modifications, particularly
oxidative ones (reviewed e.g., in [57]).

Based on the newly revealed target cysteine residues, we generated conservative
Cys-to-Ser variants of each of those residues including Cys70, which could still have been
modified despite no MS data were obtained. The introduced amino acid substitutions
had a mild impact on protein stability, slightly destabilizing some variants or stabilizing
others. Despite the structural and functional relevance of cysteine residues, protein engi-
neering strategies for stabilization of recombinant proteins often involves the substitution
of cysteine residues by a relatively structurally conservative serine. Regardless of the
structural impact, from the eight Cys-to-Ser variants only three were clearly functionally
impaired compared to WT CSE, namely C70S, C109S, and C137S, exhibiting 36–56% of the
WT enzymatic activity (Figure 5). The remaining displayed enzymatic activities similar
to the WT enzyme (Figure 5). These results only partially overlap with those reported
by Luo et al. for the corresponding Cys-to-Ala substitutions [23]. In that study, C84A,
C109A, and C307A CSE had statistically significant lower activity than the WT enzyme,
whereas the C70A variant had 50% higher activity. These differences highlight the caution
required when generating protein variants with cysteine substitutions, since the size and
polarity of the side chain can be relevant aside from the thiol chemistry. Herein, despite the
C70S, C109S, and C137S variants being functionally impaired, only C137S revealed to be
relatively insensitive to GSNO-derived inhibition, whereas all other variants exhibited the
same degree of GSNO sensitivity as the WT enzyme (Figure 5). This observation points to
Cys137 as the main target residue of CSE S-nitrosation contributing to GSNO-mediated
inhibition. To further understand the functional and structural impact of S-nitrosation, we
analyzed the number of exposed thiols in each variant by the DTNB assay and observed
WT-like patterns for all variants, except C70S, C137S, and, as mentioned above, C229S
(Figure 6). This further confirms that three free exposed cysteine residues are present in the
WT CSE, consistent with the 2.5 exposed thiols quantitated by DTNB in the WT CSE. This
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observation only partially overlaps with the solvent accessibility calculated based on the
crystallographic structure (Supplementary Table S1 and Supplementary Figure S11), which
predicts Cys70, Cys84, Cys229, and Cys307 to be exposed. However, a close inspection
of each residue revealed the Cys84 side chain to be turned inward toward the core of the
protein. Moreover, while the Cys307 side chain appeared to be partially exposed, it is
likely secluded from the solvent by the missing N-terminal region that is not present in the
available crystallographic structure. In contrast, whereas Cys137 was not predicted to be
exposed, the region where it is located has a high degree of flexibility, as observed by the
B-factor representation (Supplementary Figure S12). Therefore, this increased mobility and
flexibility is likely to contribute to expose Cys137, which could not have been predicted
from the static crystallographic structure. Besides the C70S, C137S and C229S variants al-
lowing us to identify the CSE solvent exposed cysteines, their GSNO treatment resulted in a
further decrease in exposed thiols to different degrees, which suggests partial s-nitrosation
of each of these residues. This is consistent with the MS analysis, which always revealed a
mixture of acrylamide- and iodoacetamide-derivatized cysteines for these residues upon
GSNO treatment. However, we cannot rule out that such a mixture arises from the lability
of s-nitrosated cysteines and the stringent chemical treatment inherent to the analysis.
Regardless, among the exposed cysteine residues, Cys229 emerged as the main target of
s-nitrosation, since GSNO treatment of the C229S variant led to the smallest decrease in
exposed thiols as detected by the DTNB assay (Figure 6).
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Figure 7. Structure of human cystathionine γ-lyase. (a) Cartoon representation of the crystallographic structure of human
CSE (PDB ID: 2NMP). One monomer is colored in light blue, while the remaining monomers are shown in grey. (b–d) Zoom-
in on the regions of the protein where the cysteine residues investigated in this study are located. Red sticks, Cys residues
that have been shown to be S-nitrosated; orange sticks, Cys residues without evidence for S-nitrosation; green sticks, PLP
moiety in the active site.
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We sought to understand the impact of the cysteine residues on CSE structure and func-
tion, particularly those that seem functionally relevant and/or affording GSNO-mediated
inhibition, by inspecting the CSE crystallographic structure (Figure 7 and Supplementary
Figures S11 and S12) and the sequence conservation of these residues (Supplementary
Figure S13). Cys70 is structurally located in the same helix as Thr67, which appears to
be relevant for enzymatic activity, as the T67I variant identified in cystathioninuria pa-
tient(s) is reported to display significantly reduced enzymatic activity compared to the WT
CSE [10,44]. Cys109 precedes the mobile loop region between Met110 and Asn118, which
forms one of the loops flanking the PLP binding cleft in the active site. Moreover, in this
loop, the aromatic side chain of the Tyr114 region displays π-stacking interactions with the
pyridoxine ring of PLP. Cys137 is also located in a highly mobile region very close to this
same loop (Supplementary Figure S12). It is thus plausible that substitution of Cys109 or
Cys137 by serine structurally affects this region near the active site with functional conse-
quences. Despite the functional impairment of the serine variants of these cysteine residues,
only Cys137 appears to be relevant for GSNO-mediated inhibition. Again, S-nitrosation
of this residue may have an impact on the mobile loops flanking the active site. Notably,
similar to most cysteine residues in CSE, Cys137 is conserved in mammalian CSE, while it
is absent in other eukaryotes. Conversely, Cys229 is the only completely non-conserved
Cys residue in CSE, being only present in the human enzyme. Thus far, no consensus
motif is known to fully and unequivocally predict S-nitrosation sites. However, the envi-
ronment surrounding a particular cysteine residue likely determines its predisposition for
S-nitrosation. Flanking acidic/basic residues, distally located charged residues, low pKa,
nearby hydrophobicity, α-helical location, and a large solvent-accessible area are common
to S-nitrosatable cysteines [41,43]. Oddly, the protein environment surrounding Cys137
residue in human CSE appears to be mostly hydrophobic. However, this information is
based solely on the ‘static’ crystallographic structures, which may fail to reveal the different
microenvironments the Cys137 side chain could probe, given the high flexibility of the
region where it is embedded.

In conclusion, while protein-mediated control of NO and CO availability by H2S
has been thoroughly investigated and documented (reviewed e.g., in [1]), the evidence
for NO- and CO-mediated modulation of H2S levels is still accumulating. Most studies
on this topic concern either the direct reactions between reactive nitrogen species and
reactive sulfide species (reviewed e.g., in [24,25]), or the inhibition of human CBS by NO
and CO (reviewed e.g., in [5,8,34]). The latter has been thoroughly characterized, and
different cellular and physiological consequences of this regulatory mechanism have been
demonstrated [8,9,59–61]). While H2S has been reported to affect protein S-nitrosation (e.g.,
in [62]), the discovery of inhibition of human CSE upon S-nitrosation unravels another
mechanism of crosstalk between NO and H2S with various predictable consequences in
terms of human physiology and pathophysiology. Moreover, this regulatory crosstalk
centered at human CSE offers the perspective of drug development for various human
diseases including cancer (reviewed e.g., in [5,63]).

5. Conclusions

In human (patho)physiology, cross-regulation of each ‘gasotransmitter’ by one another
affords an intricate web of regulatory mechanisms that ensures an effective signaling
function at safe homeostatic levels. Regulation of CSE-mediated H2S production via protein
s-nitrosation affords an extra layer of complexity to this network and offers another possible
avenue of pharmacological modulation of H2S availability for pathologies associated with
disturbed H2S metabolism.
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